llvm-6502/lib/Target/X86/X86InstrSSE.td
Chandler Carruth 4b365159bf [x86] Rename X86ISD::VPERMILP to X86ISD::VPERMILPI (and the same for the
td pattern). Currently we only model the immediate operand variation of
VPERMILPS and VPERMILPD, we should make that clear in the pseudos used.
Will be adding support for the variable mask variant in my next commit.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218282 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-22 22:29:42 +00:00

9065 lines
430 KiB
TableGen

//===-- X86InstrSSE.td - SSE Instruction Set ---------------*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the X86 SSE instruction set, defining the instructions,
// and properties of the instructions which are needed for code generation,
// machine code emission, and analysis.
//
//===----------------------------------------------------------------------===//
class OpndItins<InstrItinClass arg_rr, InstrItinClass arg_rm> {
InstrItinClass rr = arg_rr;
InstrItinClass rm = arg_rm;
// InstrSchedModel info.
X86FoldableSchedWrite Sched = WriteFAdd;
}
class SizeItins<OpndItins arg_s, OpndItins arg_d> {
OpndItins s = arg_s;
OpndItins d = arg_d;
}
class ShiftOpndItins<InstrItinClass arg_rr, InstrItinClass arg_rm,
InstrItinClass arg_ri> {
InstrItinClass rr = arg_rr;
InstrItinClass rm = arg_rm;
InstrItinClass ri = arg_ri;
}
// scalar
let Sched = WriteFAdd in {
def SSE_ALU_F32S : OpndItins<
IIC_SSE_ALU_F32S_RR, IIC_SSE_ALU_F32S_RM
>;
def SSE_ALU_F64S : OpndItins<
IIC_SSE_ALU_F64S_RR, IIC_SSE_ALU_F64S_RM
>;
}
def SSE_ALU_ITINS_S : SizeItins<
SSE_ALU_F32S, SSE_ALU_F64S
>;
let Sched = WriteFMul in {
def SSE_MUL_F32S : OpndItins<
IIC_SSE_MUL_F32S_RR, IIC_SSE_MUL_F64S_RM
>;
def SSE_MUL_F64S : OpndItins<
IIC_SSE_MUL_F64S_RR, IIC_SSE_MUL_F64S_RM
>;
}
def SSE_MUL_ITINS_S : SizeItins<
SSE_MUL_F32S, SSE_MUL_F64S
>;
let Sched = WriteFDiv in {
def SSE_DIV_F32S : OpndItins<
IIC_SSE_DIV_F32S_RR, IIC_SSE_DIV_F64S_RM
>;
def SSE_DIV_F64S : OpndItins<
IIC_SSE_DIV_F64S_RR, IIC_SSE_DIV_F64S_RM
>;
}
def SSE_DIV_ITINS_S : SizeItins<
SSE_DIV_F32S, SSE_DIV_F64S
>;
// parallel
let Sched = WriteFAdd in {
def SSE_ALU_F32P : OpndItins<
IIC_SSE_ALU_F32P_RR, IIC_SSE_ALU_F32P_RM
>;
def SSE_ALU_F64P : OpndItins<
IIC_SSE_ALU_F64P_RR, IIC_SSE_ALU_F64P_RM
>;
}
def SSE_ALU_ITINS_P : SizeItins<
SSE_ALU_F32P, SSE_ALU_F64P
>;
let Sched = WriteFMul in {
def SSE_MUL_F32P : OpndItins<
IIC_SSE_MUL_F32P_RR, IIC_SSE_MUL_F64P_RM
>;
def SSE_MUL_F64P : OpndItins<
IIC_SSE_MUL_F64P_RR, IIC_SSE_MUL_F64P_RM
>;
}
def SSE_MUL_ITINS_P : SizeItins<
SSE_MUL_F32P, SSE_MUL_F64P
>;
let Sched = WriteFDiv in {
def SSE_DIV_F32P : OpndItins<
IIC_SSE_DIV_F32P_RR, IIC_SSE_DIV_F64P_RM
>;
def SSE_DIV_F64P : OpndItins<
IIC_SSE_DIV_F64P_RR, IIC_SSE_DIV_F64P_RM
>;
}
def SSE_DIV_ITINS_P : SizeItins<
SSE_DIV_F32P, SSE_DIV_F64P
>;
let Sched = WriteVecLogic in
def SSE_VEC_BIT_ITINS_P : OpndItins<
IIC_SSE_BIT_P_RR, IIC_SSE_BIT_P_RM
>;
def SSE_BIT_ITINS_P : OpndItins<
IIC_SSE_BIT_P_RR, IIC_SSE_BIT_P_RM
>;
let Sched = WriteVecALU in {
def SSE_INTALU_ITINS_P : OpndItins<
IIC_SSE_INTALU_P_RR, IIC_SSE_INTALU_P_RM
>;
def SSE_INTALUQ_ITINS_P : OpndItins<
IIC_SSE_INTALUQ_P_RR, IIC_SSE_INTALUQ_P_RM
>;
}
let Sched = WriteVecIMul in
def SSE_INTMUL_ITINS_P : OpndItins<
IIC_SSE_INTMUL_P_RR, IIC_SSE_INTMUL_P_RM
>;
def SSE_INTSHIFT_ITINS_P : ShiftOpndItins<
IIC_SSE_INTSH_P_RR, IIC_SSE_INTSH_P_RM, IIC_SSE_INTSH_P_RI
>;
def SSE_MOVA_ITINS : OpndItins<
IIC_SSE_MOVA_P_RR, IIC_SSE_MOVA_P_RM
>;
def SSE_MOVU_ITINS : OpndItins<
IIC_SSE_MOVU_P_RR, IIC_SSE_MOVU_P_RM
>;
def SSE_DPPD_ITINS : OpndItins<
IIC_SSE_DPPD_RR, IIC_SSE_DPPD_RM
>;
def SSE_DPPS_ITINS : OpndItins<
IIC_SSE_DPPS_RR, IIC_SSE_DPPD_RM
>;
def DEFAULT_ITINS : OpndItins<
IIC_ALU_NONMEM, IIC_ALU_MEM
>;
def SSE_EXTRACT_ITINS : OpndItins<
IIC_SSE_EXTRACTPS_RR, IIC_SSE_EXTRACTPS_RM
>;
def SSE_INSERT_ITINS : OpndItins<
IIC_SSE_INSERTPS_RR, IIC_SSE_INSERTPS_RM
>;
let Sched = WriteMPSAD in
def SSE_MPSADBW_ITINS : OpndItins<
IIC_SSE_MPSADBW_RR, IIC_SSE_MPSADBW_RM
>;
let Sched = WriteVecIMul in
def SSE_PMULLD_ITINS : OpndItins<
IIC_SSE_PMULLD_RR, IIC_SSE_PMULLD_RM
>;
// Definitions for backward compatibility.
// The instructions mapped on these definitions uses a different itinerary
// than the actual scheduling model.
let Sched = WriteShuffle in
def DEFAULT_ITINS_SHUFFLESCHED : OpndItins<
IIC_ALU_NONMEM, IIC_ALU_MEM
>;
let Sched = WriteVecIMul in
def DEFAULT_ITINS_VECIMULSCHED : OpndItins<
IIC_ALU_NONMEM, IIC_ALU_MEM
>;
let Sched = WriteShuffle in
def SSE_INTALU_ITINS_SHUFF_P : OpndItins<
IIC_SSE_INTALU_P_RR, IIC_SSE_INTALU_P_RM
>;
let Sched = WriteMPSAD in
def DEFAULT_ITINS_MPSADSCHED : OpndItins<
IIC_ALU_NONMEM, IIC_ALU_MEM
>;
let Sched = WriteFBlend in
def DEFAULT_ITINS_FBLENDSCHED : OpndItins<
IIC_ALU_NONMEM, IIC_ALU_MEM
>;
let Sched = WriteBlend in
def DEFAULT_ITINS_BLENDSCHED : OpndItins<
IIC_ALU_NONMEM, IIC_ALU_MEM
>;
let Sched = WriteVarBlend in
def DEFAULT_ITINS_VARBLENDSCHED : OpndItins<
IIC_ALU_NONMEM, IIC_ALU_MEM
>;
let Sched = WriteFBlend in
def SSE_INTALU_ITINS_FBLEND_P : OpndItins<
IIC_SSE_INTALU_P_RR, IIC_SSE_INTALU_P_RM
>;
let Sched = WriteBlend in
def SSE_INTALU_ITINS_BLEND_P : OpndItins<
IIC_SSE_INTALU_P_RR, IIC_SSE_INTALU_P_RM
>;
//===----------------------------------------------------------------------===//
// SSE 1 & 2 Instructions Classes
//===----------------------------------------------------------------------===//
/// sse12_fp_scalar - SSE 1 & 2 scalar instructions class
multiclass sse12_fp_scalar<bits<8> opc, string OpcodeStr, SDNode OpNode,
RegisterClass RC, X86MemOperand x86memop,
OpndItins itins,
bit Is2Addr = 1> {
let isCommutable = 1 in {
def rr : SI<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set RC:$dst, (OpNode RC:$src1, RC:$src2))], itins.rr>,
Sched<[itins.Sched]>;
}
def rm : SI<opc, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set RC:$dst, (OpNode RC:$src1, (load addr:$src2)))], itins.rm>,
Sched<[itins.Sched.Folded, ReadAfterLd]>;
}
/// sse12_fp_scalar_int - SSE 1 & 2 scalar instructions intrinsics class
multiclass sse12_fp_scalar_int<bits<8> opc, string OpcodeStr, RegisterClass RC,
string asm, string SSEVer, string FPSizeStr,
Operand memopr, ComplexPattern mem_cpat,
OpndItins itins,
bit Is2Addr = 1> {
let isCodeGenOnly = 1 in {
def rr_Int : SI<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2),
!if(Is2Addr,
!strconcat(asm, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(asm, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set RC:$dst, (!cast<Intrinsic>(
!strconcat("int_x86_sse", SSEVer, "_", OpcodeStr, FPSizeStr))
RC:$src1, RC:$src2))], itins.rr>,
Sched<[itins.Sched]>;
def rm_Int : SI<opc, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, memopr:$src2),
!if(Is2Addr,
!strconcat(asm, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(asm, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set RC:$dst, (!cast<Intrinsic>(!strconcat("int_x86_sse",
SSEVer, "_", OpcodeStr, FPSizeStr))
RC:$src1, mem_cpat:$src2))], itins.rm>,
Sched<[itins.Sched.Folded, ReadAfterLd]>;
}
}
/// sse12_fp_packed - SSE 1 & 2 packed instructions class
multiclass sse12_fp_packed<bits<8> opc, string OpcodeStr, SDNode OpNode,
RegisterClass RC, ValueType vt,
X86MemOperand x86memop, PatFrag mem_frag,
Domain d, OpndItins itins, bit Is2Addr = 1> {
let isCommutable = 1 in
def rr : PI<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set RC:$dst, (vt (OpNode RC:$src1, RC:$src2)))], itins.rr, d>,
Sched<[itins.Sched]>;
let mayLoad = 1 in
def rm : PI<opc, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set RC:$dst, (OpNode RC:$src1, (mem_frag addr:$src2)))],
itins.rm, d>,
Sched<[itins.Sched.Folded, ReadAfterLd]>;
}
/// sse12_fp_packed_logical_rm - SSE 1 & 2 packed instructions class
multiclass sse12_fp_packed_logical_rm<bits<8> opc, RegisterClass RC, Domain d,
string OpcodeStr, X86MemOperand x86memop,
list<dag> pat_rr, list<dag> pat_rm,
bit Is2Addr = 1> {
let isCommutable = 1, hasSideEffects = 0 in
def rr : PI<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
pat_rr, NoItinerary, d>,
Sched<[WriteVecLogic]>;
def rm : PI<opc, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
pat_rm, NoItinerary, d>,
Sched<[WriteVecLogicLd, ReadAfterLd]>;
}
//===----------------------------------------------------------------------===//
// Non-instruction patterns
//===----------------------------------------------------------------------===//
// A vector extract of the first f32/f64 position is a subregister copy
def : Pat<(f32 (vector_extract (v4f32 VR128:$src), (iPTR 0))),
(COPY_TO_REGCLASS (v4f32 VR128:$src), FR32)>;
def : Pat<(f64 (vector_extract (v2f64 VR128:$src), (iPTR 0))),
(COPY_TO_REGCLASS (v2f64 VR128:$src), FR64)>;
// A 128-bit subvector extract from the first 256-bit vector position
// is a subregister copy that needs no instruction.
def : Pat<(v4i32 (extract_subvector (v8i32 VR256:$src), (iPTR 0))),
(v4i32 (EXTRACT_SUBREG (v8i32 VR256:$src), sub_xmm))>;
def : Pat<(v4f32 (extract_subvector (v8f32 VR256:$src), (iPTR 0))),
(v4f32 (EXTRACT_SUBREG (v8f32 VR256:$src), sub_xmm))>;
def : Pat<(v2i64 (extract_subvector (v4i64 VR256:$src), (iPTR 0))),
(v2i64 (EXTRACT_SUBREG (v4i64 VR256:$src), sub_xmm))>;
def : Pat<(v2f64 (extract_subvector (v4f64 VR256:$src), (iPTR 0))),
(v2f64 (EXTRACT_SUBREG (v4f64 VR256:$src), sub_xmm))>;
def : Pat<(v8i16 (extract_subvector (v16i16 VR256:$src), (iPTR 0))),
(v8i16 (EXTRACT_SUBREG (v16i16 VR256:$src), sub_xmm))>;
def : Pat<(v16i8 (extract_subvector (v32i8 VR256:$src), (iPTR 0))),
(v16i8 (EXTRACT_SUBREG (v32i8 VR256:$src), sub_xmm))>;
// A 128-bit subvector insert to the first 256-bit vector position
// is a subregister copy that needs no instruction.
let AddedComplexity = 25 in { // to give priority over vinsertf128rm
def : Pat<(insert_subvector undef, (v2i64 VR128:$src), (iPTR 0)),
(INSERT_SUBREG (v4i64 (IMPLICIT_DEF)), VR128:$src, sub_xmm)>;
def : Pat<(insert_subvector undef, (v2f64 VR128:$src), (iPTR 0)),
(INSERT_SUBREG (v4f64 (IMPLICIT_DEF)), VR128:$src, sub_xmm)>;
def : Pat<(insert_subvector undef, (v4i32 VR128:$src), (iPTR 0)),
(INSERT_SUBREG (v8i32 (IMPLICIT_DEF)), VR128:$src, sub_xmm)>;
def : Pat<(insert_subvector undef, (v4f32 VR128:$src), (iPTR 0)),
(INSERT_SUBREG (v8f32 (IMPLICIT_DEF)), VR128:$src, sub_xmm)>;
def : Pat<(insert_subvector undef, (v8i16 VR128:$src), (iPTR 0)),
(INSERT_SUBREG (v16i16 (IMPLICIT_DEF)), VR128:$src, sub_xmm)>;
def : Pat<(insert_subvector undef, (v16i8 VR128:$src), (iPTR 0)),
(INSERT_SUBREG (v32i8 (IMPLICIT_DEF)), VR128:$src, sub_xmm)>;
}
// Implicitly promote a 32-bit scalar to a vector.
def : Pat<(v4f32 (scalar_to_vector FR32:$src)),
(COPY_TO_REGCLASS FR32:$src, VR128)>;
def : Pat<(v8f32 (scalar_to_vector FR32:$src)),
(COPY_TO_REGCLASS FR32:$src, VR128)>;
// Implicitly promote a 64-bit scalar to a vector.
def : Pat<(v2f64 (scalar_to_vector FR64:$src)),
(COPY_TO_REGCLASS FR64:$src, VR128)>;
def : Pat<(v4f64 (scalar_to_vector FR64:$src)),
(COPY_TO_REGCLASS FR64:$src, VR128)>;
// Bitcasts between 128-bit vector types. Return the original type since
// no instruction is needed for the conversion
let Predicates = [HasSSE2] in {
def : Pat<(v2i64 (bitconvert (v4i32 VR128:$src))), (v2i64 VR128:$src)>;
def : Pat<(v2i64 (bitconvert (v8i16 VR128:$src))), (v2i64 VR128:$src)>;
def : Pat<(v2i64 (bitconvert (v16i8 VR128:$src))), (v2i64 VR128:$src)>;
def : Pat<(v2i64 (bitconvert (v2f64 VR128:$src))), (v2i64 VR128:$src)>;
def : Pat<(v2i64 (bitconvert (v4f32 VR128:$src))), (v2i64 VR128:$src)>;
def : Pat<(v4i32 (bitconvert (v2i64 VR128:$src))), (v4i32 VR128:$src)>;
def : Pat<(v4i32 (bitconvert (v8i16 VR128:$src))), (v4i32 VR128:$src)>;
def : Pat<(v4i32 (bitconvert (v16i8 VR128:$src))), (v4i32 VR128:$src)>;
def : Pat<(v4i32 (bitconvert (v2f64 VR128:$src))), (v4i32 VR128:$src)>;
def : Pat<(v4i32 (bitconvert (v4f32 VR128:$src))), (v4i32 VR128:$src)>;
def : Pat<(v8i16 (bitconvert (v2i64 VR128:$src))), (v8i16 VR128:$src)>;
def : Pat<(v8i16 (bitconvert (v4i32 VR128:$src))), (v8i16 VR128:$src)>;
def : Pat<(v8i16 (bitconvert (v16i8 VR128:$src))), (v8i16 VR128:$src)>;
def : Pat<(v8i16 (bitconvert (v2f64 VR128:$src))), (v8i16 VR128:$src)>;
def : Pat<(v8i16 (bitconvert (v4f32 VR128:$src))), (v8i16 VR128:$src)>;
def : Pat<(v16i8 (bitconvert (v2i64 VR128:$src))), (v16i8 VR128:$src)>;
def : Pat<(v16i8 (bitconvert (v4i32 VR128:$src))), (v16i8 VR128:$src)>;
def : Pat<(v16i8 (bitconvert (v8i16 VR128:$src))), (v16i8 VR128:$src)>;
def : Pat<(v16i8 (bitconvert (v2f64 VR128:$src))), (v16i8 VR128:$src)>;
def : Pat<(v16i8 (bitconvert (v4f32 VR128:$src))), (v16i8 VR128:$src)>;
def : Pat<(v4f32 (bitconvert (v2i64 VR128:$src))), (v4f32 VR128:$src)>;
def : Pat<(v4f32 (bitconvert (v4i32 VR128:$src))), (v4f32 VR128:$src)>;
def : Pat<(v4f32 (bitconvert (v8i16 VR128:$src))), (v4f32 VR128:$src)>;
def : Pat<(v4f32 (bitconvert (v16i8 VR128:$src))), (v4f32 VR128:$src)>;
def : Pat<(v4f32 (bitconvert (v2f64 VR128:$src))), (v4f32 VR128:$src)>;
def : Pat<(v2f64 (bitconvert (v2i64 VR128:$src))), (v2f64 VR128:$src)>;
def : Pat<(v2f64 (bitconvert (v4i32 VR128:$src))), (v2f64 VR128:$src)>;
def : Pat<(v2f64 (bitconvert (v8i16 VR128:$src))), (v2f64 VR128:$src)>;
def : Pat<(v2f64 (bitconvert (v16i8 VR128:$src))), (v2f64 VR128:$src)>;
def : Pat<(v2f64 (bitconvert (v4f32 VR128:$src))), (v2f64 VR128:$src)>;
}
// Bitcasts between 256-bit vector types. Return the original type since
// no instruction is needed for the conversion
let Predicates = [HasAVX] in {
def : Pat<(v4f64 (bitconvert (v8f32 VR256:$src))), (v4f64 VR256:$src)>;
def : Pat<(v4f64 (bitconvert (v8i32 VR256:$src))), (v4f64 VR256:$src)>;
def : Pat<(v4f64 (bitconvert (v4i64 VR256:$src))), (v4f64 VR256:$src)>;
def : Pat<(v4f64 (bitconvert (v16i16 VR256:$src))), (v4f64 VR256:$src)>;
def : Pat<(v4f64 (bitconvert (v32i8 VR256:$src))), (v4f64 VR256:$src)>;
def : Pat<(v8f32 (bitconvert (v8i32 VR256:$src))), (v8f32 VR256:$src)>;
def : Pat<(v8f32 (bitconvert (v4i64 VR256:$src))), (v8f32 VR256:$src)>;
def : Pat<(v8f32 (bitconvert (v4f64 VR256:$src))), (v8f32 VR256:$src)>;
def : Pat<(v8f32 (bitconvert (v32i8 VR256:$src))), (v8f32 VR256:$src)>;
def : Pat<(v8f32 (bitconvert (v16i16 VR256:$src))), (v8f32 VR256:$src)>;
def : Pat<(v4i64 (bitconvert (v8f32 VR256:$src))), (v4i64 VR256:$src)>;
def : Pat<(v4i64 (bitconvert (v8i32 VR256:$src))), (v4i64 VR256:$src)>;
def : Pat<(v4i64 (bitconvert (v4f64 VR256:$src))), (v4i64 VR256:$src)>;
def : Pat<(v4i64 (bitconvert (v32i8 VR256:$src))), (v4i64 VR256:$src)>;
def : Pat<(v4i64 (bitconvert (v16i16 VR256:$src))), (v4i64 VR256:$src)>;
def : Pat<(v32i8 (bitconvert (v4f64 VR256:$src))), (v32i8 VR256:$src)>;
def : Pat<(v32i8 (bitconvert (v4i64 VR256:$src))), (v32i8 VR256:$src)>;
def : Pat<(v32i8 (bitconvert (v8f32 VR256:$src))), (v32i8 VR256:$src)>;
def : Pat<(v32i8 (bitconvert (v8i32 VR256:$src))), (v32i8 VR256:$src)>;
def : Pat<(v32i8 (bitconvert (v16i16 VR256:$src))), (v32i8 VR256:$src)>;
def : Pat<(v8i32 (bitconvert (v32i8 VR256:$src))), (v8i32 VR256:$src)>;
def : Pat<(v8i32 (bitconvert (v16i16 VR256:$src))), (v8i32 VR256:$src)>;
def : Pat<(v8i32 (bitconvert (v8f32 VR256:$src))), (v8i32 VR256:$src)>;
def : Pat<(v8i32 (bitconvert (v4i64 VR256:$src))), (v8i32 VR256:$src)>;
def : Pat<(v8i32 (bitconvert (v4f64 VR256:$src))), (v8i32 VR256:$src)>;
def : Pat<(v16i16 (bitconvert (v8f32 VR256:$src))), (v16i16 VR256:$src)>;
def : Pat<(v16i16 (bitconvert (v8i32 VR256:$src))), (v16i16 VR256:$src)>;
def : Pat<(v16i16 (bitconvert (v4i64 VR256:$src))), (v16i16 VR256:$src)>;
def : Pat<(v16i16 (bitconvert (v4f64 VR256:$src))), (v16i16 VR256:$src)>;
def : Pat<(v16i16 (bitconvert (v32i8 VR256:$src))), (v16i16 VR256:$src)>;
}
// Alias instructions that map fld0 to xorps for sse or vxorps for avx.
// This is expanded by ExpandPostRAPseudos.
let isReMaterializable = 1, isAsCheapAsAMove = 1, canFoldAsLoad = 1,
isPseudo = 1, SchedRW = [WriteZero] in {
def FsFLD0SS : I<0, Pseudo, (outs FR32:$dst), (ins), "",
[(set FR32:$dst, fp32imm0)]>, Requires<[HasSSE1]>;
def FsFLD0SD : I<0, Pseudo, (outs FR64:$dst), (ins), "",
[(set FR64:$dst, fpimm0)]>, Requires<[HasSSE2]>;
}
//===----------------------------------------------------------------------===//
// AVX & SSE - Zero/One Vectors
//===----------------------------------------------------------------------===//
// Alias instruction that maps zero vector to pxor / xorp* for sse.
// This is expanded by ExpandPostRAPseudos to an xorps / vxorps, and then
// swizzled by ExecutionDepsFix to pxor.
// We set canFoldAsLoad because this can be converted to a constant-pool
// load of an all-zeros value if folding it would be beneficial.
let isReMaterializable = 1, isAsCheapAsAMove = 1, canFoldAsLoad = 1,
isPseudo = 1, SchedRW = [WriteZero] in {
def V_SET0 : I<0, Pseudo, (outs VR128:$dst), (ins), "",
[(set VR128:$dst, (v4f32 immAllZerosV))]>;
}
def : Pat<(v2f64 immAllZerosV), (V_SET0)>;
def : Pat<(v4i32 immAllZerosV), (V_SET0)>;
def : Pat<(v2i64 immAllZerosV), (V_SET0)>;
def : Pat<(v8i16 immAllZerosV), (V_SET0)>;
def : Pat<(v16i8 immAllZerosV), (V_SET0)>;
// The same as done above but for AVX. The 256-bit AVX1 ISA doesn't support PI,
// and doesn't need it because on sandy bridge the register is set to zero
// at the rename stage without using any execution unit, so SET0PSY
// and SET0PDY can be used for vector int instructions without penalty
let isReMaterializable = 1, isAsCheapAsAMove = 1, canFoldAsLoad = 1,
isPseudo = 1, Predicates = [HasAVX], SchedRW = [WriteZero] in {
def AVX_SET0 : I<0, Pseudo, (outs VR256:$dst), (ins), "",
[(set VR256:$dst, (v8f32 immAllZerosV))]>;
}
let Predicates = [HasAVX] in
def : Pat<(v4f64 immAllZerosV), (AVX_SET0)>;
let Predicates = [HasAVX2] in {
def : Pat<(v4i64 immAllZerosV), (AVX_SET0)>;
def : Pat<(v8i32 immAllZerosV), (AVX_SET0)>;
def : Pat<(v16i16 immAllZerosV), (AVX_SET0)>;
def : Pat<(v32i8 immAllZerosV), (AVX_SET0)>;
}
// AVX1 has no support for 256-bit integer instructions, but since the 128-bit
// VPXOR instruction writes zero to its upper part, it's safe build zeros.
let Predicates = [HasAVX1Only] in {
def : Pat<(v32i8 immAllZerosV), (SUBREG_TO_REG (i8 0), (V_SET0), sub_xmm)>;
def : Pat<(bc_v32i8 (v8f32 immAllZerosV)),
(SUBREG_TO_REG (i8 0), (V_SET0), sub_xmm)>;
def : Pat<(v16i16 immAllZerosV), (SUBREG_TO_REG (i16 0), (V_SET0), sub_xmm)>;
def : Pat<(bc_v16i16 (v8f32 immAllZerosV)),
(SUBREG_TO_REG (i16 0), (V_SET0), sub_xmm)>;
def : Pat<(v8i32 immAllZerosV), (SUBREG_TO_REG (i32 0), (V_SET0), sub_xmm)>;
def : Pat<(bc_v8i32 (v8f32 immAllZerosV)),
(SUBREG_TO_REG (i32 0), (V_SET0), sub_xmm)>;
def : Pat<(v4i64 immAllZerosV), (SUBREG_TO_REG (i64 0), (V_SET0), sub_xmm)>;
def : Pat<(bc_v4i64 (v8f32 immAllZerosV)),
(SUBREG_TO_REG (i64 0), (V_SET0), sub_xmm)>;
}
// We set canFoldAsLoad because this can be converted to a constant-pool
// load of an all-ones value if folding it would be beneficial.
let isReMaterializable = 1, isAsCheapAsAMove = 1, canFoldAsLoad = 1,
isPseudo = 1, SchedRW = [WriteZero] in {
def V_SETALLONES : I<0, Pseudo, (outs VR128:$dst), (ins), "",
[(set VR128:$dst, (v4i32 immAllOnesV))]>;
let Predicates = [HasAVX2] in
def AVX2_SETALLONES : I<0, Pseudo, (outs VR256:$dst), (ins), "",
[(set VR256:$dst, (v8i32 immAllOnesV))]>;
}
//===----------------------------------------------------------------------===//
// SSE 1 & 2 - Move FP Scalar Instructions
//
// Move Instructions. Register-to-register movss/movsd is not used for FR32/64
// register copies because it's a partial register update; Register-to-register
// movss/movsd is not modeled as an INSERT_SUBREG because INSERT_SUBREG requires
// that the insert be implementable in terms of a copy, and just mentioned, we
// don't use movss/movsd for copies.
//===----------------------------------------------------------------------===//
multiclass sse12_move_rr<RegisterClass RC, SDNode OpNode, ValueType vt,
X86MemOperand x86memop, string base_opc,
string asm_opr> {
def rr : SI<0x10, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, RC:$src2),
!strconcat(base_opc, asm_opr),
[(set VR128:$dst, (vt (OpNode VR128:$src1,
(scalar_to_vector RC:$src2))))],
IIC_SSE_MOV_S_RR>, Sched<[WriteFShuffle]>;
// For the disassembler
let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0 in
def rr_REV : SI<0x11, MRMDestReg, (outs VR128:$dst),
(ins VR128:$src1, RC:$src2),
!strconcat(base_opc, asm_opr),
[], IIC_SSE_MOV_S_RR>, Sched<[WriteFShuffle]>;
}
multiclass sse12_move<RegisterClass RC, SDNode OpNode, ValueType vt,
X86MemOperand x86memop, string OpcodeStr> {
// AVX
defm V#NAME : sse12_move_rr<RC, OpNode, vt, x86memop, OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}">,
VEX_4V, VEX_LIG;
def V#NAME#mr : SI<0x11, MRMDestMem, (outs), (ins x86memop:$dst, RC:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(store RC:$src, addr:$dst)], IIC_SSE_MOV_S_MR>,
VEX, VEX_LIG, Sched<[WriteStore]>;
// SSE1 & 2
let Constraints = "$src1 = $dst" in {
defm NAME : sse12_move_rr<RC, OpNode, vt, x86memop, OpcodeStr,
"\t{$src2, $dst|$dst, $src2}">;
}
def NAME#mr : SI<0x11, MRMDestMem, (outs), (ins x86memop:$dst, RC:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(store RC:$src, addr:$dst)], IIC_SSE_MOV_S_MR>,
Sched<[WriteStore]>;
}
// Loading from memory automatically zeroing upper bits.
multiclass sse12_move_rm<RegisterClass RC, X86MemOperand x86memop,
PatFrag mem_pat, string OpcodeStr> {
def V#NAME#rm : SI<0x10, MRMSrcMem, (outs RC:$dst), (ins x86memop:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set RC:$dst, (mem_pat addr:$src))],
IIC_SSE_MOV_S_RM>, VEX, VEX_LIG, Sched<[WriteLoad]>;
def NAME#rm : SI<0x10, MRMSrcMem, (outs RC:$dst), (ins x86memop:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set RC:$dst, (mem_pat addr:$src))],
IIC_SSE_MOV_S_RM>, Sched<[WriteLoad]>;
}
defm MOVSS : sse12_move<FR32, X86Movss, v4f32, f32mem, "movss">, XS;
defm MOVSD : sse12_move<FR64, X86Movsd, v2f64, f64mem, "movsd">, XD;
let canFoldAsLoad = 1, isReMaterializable = 1 in {
defm MOVSS : sse12_move_rm<FR32, f32mem, loadf32, "movss">, XS;
let AddedComplexity = 20 in
defm MOVSD : sse12_move_rm<FR64, f64mem, loadf64, "movsd">, XD;
}
// Patterns
let Predicates = [UseAVX] in {
let AddedComplexity = 15 in {
// Move scalar to XMM zero-extended, zeroing a VR128 then do a
// MOVS{S,D} to the lower bits.
def : Pat<(v4f32 (X86vzmovl (v4f32 (scalar_to_vector FR32:$src)))),
(VMOVSSrr (v4f32 (V_SET0)), FR32:$src)>;
def : Pat<(v4f32 (X86vzmovl (v4f32 VR128:$src))),
(VMOVSSrr (v4f32 (V_SET0)), (COPY_TO_REGCLASS VR128:$src, FR32))>;
def : Pat<(v4i32 (X86vzmovl (v4i32 VR128:$src))),
(VMOVSSrr (v4i32 (V_SET0)), (COPY_TO_REGCLASS VR128:$src, FR32))>;
def : Pat<(v2f64 (X86vzmovl (v2f64 (scalar_to_vector FR64:$src)))),
(VMOVSDrr (v2f64 (V_SET0)), FR64:$src)>;
// Move low f32 and clear high bits.
def : Pat<(v8f32 (X86vzmovl (v8f32 VR256:$src))),
(SUBREG_TO_REG (i32 0),
(VMOVSSrr (v4f32 (V_SET0)),
(EXTRACT_SUBREG (v8f32 VR256:$src), sub_xmm)), sub_xmm)>;
def : Pat<(v8i32 (X86vzmovl (v8i32 VR256:$src))),
(SUBREG_TO_REG (i32 0),
(VMOVSSrr (v4i32 (V_SET0)),
(EXTRACT_SUBREG (v8i32 VR256:$src), sub_xmm)), sub_xmm)>;
}
let AddedComplexity = 20 in {
// MOVSSrm zeros the high parts of the register; represent this
// with SUBREG_TO_REG. The AVX versions also write: DST[255:128] <- 0
def : Pat<(v4f32 (X86vzmovl (v4f32 (scalar_to_vector (loadf32 addr:$src))))),
(COPY_TO_REGCLASS (VMOVSSrm addr:$src), VR128)>;
def : Pat<(v4f32 (scalar_to_vector (loadf32 addr:$src))),
(COPY_TO_REGCLASS (VMOVSSrm addr:$src), VR128)>;
def : Pat<(v4f32 (X86vzmovl (loadv4f32 addr:$src))),
(COPY_TO_REGCLASS (VMOVSSrm addr:$src), VR128)>;
// MOVSDrm zeros the high parts of the register; represent this
// with SUBREG_TO_REG. The AVX versions also write: DST[255:128] <- 0
def : Pat<(v2f64 (X86vzmovl (v2f64 (scalar_to_vector (loadf64 addr:$src))))),
(COPY_TO_REGCLASS (VMOVSDrm addr:$src), VR128)>;
def : Pat<(v2f64 (scalar_to_vector (loadf64 addr:$src))),
(COPY_TO_REGCLASS (VMOVSDrm addr:$src), VR128)>;
def : Pat<(v2f64 (X86vzmovl (loadv2f64 addr:$src))),
(COPY_TO_REGCLASS (VMOVSDrm addr:$src), VR128)>;
def : Pat<(v2f64 (X86vzmovl (bc_v2f64 (loadv4f32 addr:$src)))),
(COPY_TO_REGCLASS (VMOVSDrm addr:$src), VR128)>;
def : Pat<(v2f64 (X86vzload addr:$src)),
(COPY_TO_REGCLASS (VMOVSDrm addr:$src), VR128)>;
// Represent the same patterns above but in the form they appear for
// 256-bit types
def : Pat<(v8i32 (X86vzmovl (insert_subvector undef,
(v4i32 (scalar_to_vector (loadi32 addr:$src))), (iPTR 0)))),
(SUBREG_TO_REG (i32 0), (VMOVSSrm addr:$src), sub_xmm)>;
def : Pat<(v8f32 (X86vzmovl (insert_subvector undef,
(v4f32 (scalar_to_vector (loadf32 addr:$src))), (iPTR 0)))),
(SUBREG_TO_REG (i32 0), (VMOVSSrm addr:$src), sub_xmm)>;
def : Pat<(v4f64 (X86vzmovl (insert_subvector undef,
(v2f64 (scalar_to_vector (loadf64 addr:$src))), (iPTR 0)))),
(SUBREG_TO_REG (i32 0), (VMOVSDrm addr:$src), sub_xmm)>;
}
def : Pat<(v8f32 (X86vzmovl (insert_subvector undef,
(v4f32 (scalar_to_vector FR32:$src)), (iPTR 0)))),
(SUBREG_TO_REG (i32 0),
(v4f32 (VMOVSSrr (v4f32 (V_SET0)), FR32:$src)),
sub_xmm)>;
def : Pat<(v4f64 (X86vzmovl (insert_subvector undef,
(v2f64 (scalar_to_vector FR64:$src)), (iPTR 0)))),
(SUBREG_TO_REG (i64 0),
(v2f64 (VMOVSDrr (v2f64 (V_SET0)), FR64:$src)),
sub_xmm)>;
def : Pat<(v4i64 (X86vzmovl (insert_subvector undef,
(v2i64 (scalar_to_vector (loadi64 addr:$src))), (iPTR 0)))),
(SUBREG_TO_REG (i64 0), (VMOVSDrm addr:$src), sub_xmm)>;
// Move low f64 and clear high bits.
def : Pat<(v4f64 (X86vzmovl (v4f64 VR256:$src))),
(SUBREG_TO_REG (i32 0),
(VMOVSDrr (v2f64 (V_SET0)),
(EXTRACT_SUBREG (v4f64 VR256:$src), sub_xmm)), sub_xmm)>;
def : Pat<(v4i64 (X86vzmovl (v4i64 VR256:$src))),
(SUBREG_TO_REG (i32 0),
(VMOVSDrr (v2i64 (V_SET0)),
(EXTRACT_SUBREG (v4i64 VR256:$src), sub_xmm)), sub_xmm)>;
// Extract and store.
def : Pat<(store (f32 (vector_extract (v4f32 VR128:$src), (iPTR 0))),
addr:$dst),
(VMOVSSmr addr:$dst, (COPY_TO_REGCLASS (v4f32 VR128:$src), FR32))>;
def : Pat<(store (f64 (vector_extract (v2f64 VR128:$src), (iPTR 0))),
addr:$dst),
(VMOVSDmr addr:$dst, (COPY_TO_REGCLASS (v2f64 VR128:$src), FR64))>;
// Shuffle with VMOVSS
def : Pat<(v4i32 (X86Movss VR128:$src1, VR128:$src2)),
(VMOVSSrr (v4i32 VR128:$src1),
(COPY_TO_REGCLASS (v4i32 VR128:$src2), FR32))>;
def : Pat<(v4f32 (X86Movss VR128:$src1, VR128:$src2)),
(VMOVSSrr (v4f32 VR128:$src1),
(COPY_TO_REGCLASS (v4f32 VR128:$src2), FR32))>;
// 256-bit variants
def : Pat<(v8i32 (X86Movss VR256:$src1, VR256:$src2)),
(SUBREG_TO_REG (i32 0),
(VMOVSSrr (EXTRACT_SUBREG (v8i32 VR256:$src1), sub_xmm),
(EXTRACT_SUBREG (v8i32 VR256:$src2), sub_xmm)),
sub_xmm)>;
def : Pat<(v8f32 (X86Movss VR256:$src1, VR256:$src2)),
(SUBREG_TO_REG (i32 0),
(VMOVSSrr (EXTRACT_SUBREG (v8f32 VR256:$src1), sub_xmm),
(EXTRACT_SUBREG (v8f32 VR256:$src2), sub_xmm)),
sub_xmm)>;
// Shuffle with VMOVSD
def : Pat<(v2i64 (X86Movsd VR128:$src1, VR128:$src2)),
(VMOVSDrr VR128:$src1, (COPY_TO_REGCLASS VR128:$src2, FR64))>;
def : Pat<(v2f64 (X86Movsd VR128:$src1, VR128:$src2)),
(VMOVSDrr VR128:$src1, (COPY_TO_REGCLASS VR128:$src2, FR64))>;
def : Pat<(v4f32 (X86Movsd VR128:$src1, VR128:$src2)),
(VMOVSDrr VR128:$src1, (COPY_TO_REGCLASS VR128:$src2, FR64))>;
def : Pat<(v4i32 (X86Movsd VR128:$src1, VR128:$src2)),
(VMOVSDrr VR128:$src1, (COPY_TO_REGCLASS VR128:$src2, FR64))>;
// 256-bit variants
def : Pat<(v4i64 (X86Movsd VR256:$src1, VR256:$src2)),
(SUBREG_TO_REG (i32 0),
(VMOVSDrr (EXTRACT_SUBREG (v4i64 VR256:$src1), sub_xmm),
(EXTRACT_SUBREG (v4i64 VR256:$src2), sub_xmm)),
sub_xmm)>;
def : Pat<(v4f64 (X86Movsd VR256:$src1, VR256:$src2)),
(SUBREG_TO_REG (i32 0),
(VMOVSDrr (EXTRACT_SUBREG (v4f64 VR256:$src1), sub_xmm),
(EXTRACT_SUBREG (v4f64 VR256:$src2), sub_xmm)),
sub_xmm)>;
// FIXME: Instead of a X86Movlps there should be a X86Movsd here, the problem
// is during lowering, where it's not possible to recognize the fold cause
// it has two uses through a bitcast. One use disappears at isel time and the
// fold opportunity reappears.
def : Pat<(v2f64 (X86Movlpd VR128:$src1, VR128:$src2)),
(VMOVSDrr VR128:$src1, (COPY_TO_REGCLASS VR128:$src2, FR64))>;
def : Pat<(v2i64 (X86Movlpd VR128:$src1, VR128:$src2)),
(VMOVSDrr VR128:$src1, (COPY_TO_REGCLASS VR128:$src2, FR64))>;
def : Pat<(v4f32 (X86Movlps VR128:$src1, VR128:$src2)),
(VMOVSDrr VR128:$src1, (COPY_TO_REGCLASS VR128:$src2, FR64))>;
def : Pat<(v4i32 (X86Movlps VR128:$src1, VR128:$src2)),
(VMOVSDrr VR128:$src1, (COPY_TO_REGCLASS VR128:$src2, FR64))>;
}
let Predicates = [UseSSE1] in {
let AddedComplexity = 15 in {
// Move scalar to XMM zero-extended, zeroing a VR128 then do a
// MOVSS to the lower bits.
def : Pat<(v4f32 (X86vzmovl (v4f32 (scalar_to_vector FR32:$src)))),
(MOVSSrr (v4f32 (V_SET0)), FR32:$src)>;
def : Pat<(v4f32 (X86vzmovl (v4f32 VR128:$src))),
(MOVSSrr (v4f32 (V_SET0)), (COPY_TO_REGCLASS VR128:$src, FR32))>;
def : Pat<(v4i32 (X86vzmovl (v4i32 VR128:$src))),
(MOVSSrr (v4i32 (V_SET0)), (COPY_TO_REGCLASS VR128:$src, FR32))>;
}
let AddedComplexity = 20 in {
// MOVSSrm already zeros the high parts of the register.
def : Pat<(v4f32 (X86vzmovl (v4f32 (scalar_to_vector (loadf32 addr:$src))))),
(COPY_TO_REGCLASS (MOVSSrm addr:$src), VR128)>;
def : Pat<(v4f32 (scalar_to_vector (loadf32 addr:$src))),
(COPY_TO_REGCLASS (MOVSSrm addr:$src), VR128)>;
def : Pat<(v4f32 (X86vzmovl (loadv4f32 addr:$src))),
(COPY_TO_REGCLASS (MOVSSrm addr:$src), VR128)>;
}
// Extract and store.
def : Pat<(store (f32 (vector_extract (v4f32 VR128:$src), (iPTR 0))),
addr:$dst),
(MOVSSmr addr:$dst, (COPY_TO_REGCLASS VR128:$src, FR32))>;
// Shuffle with MOVSS
def : Pat<(v4i32 (X86Movss VR128:$src1, VR128:$src2)),
(MOVSSrr VR128:$src1, (COPY_TO_REGCLASS VR128:$src2, FR32))>;
def : Pat<(v4f32 (X86Movss VR128:$src1, VR128:$src2)),
(MOVSSrr VR128:$src1, (COPY_TO_REGCLASS VR128:$src2, FR32))>;
}
let Predicates = [UseSSE2] in {
let AddedComplexity = 15 in {
// Move scalar to XMM zero-extended, zeroing a VR128 then do a
// MOVSD to the lower bits.
def : Pat<(v2f64 (X86vzmovl (v2f64 (scalar_to_vector FR64:$src)))),
(MOVSDrr (v2f64 (V_SET0)), FR64:$src)>;
}
let AddedComplexity = 20 in {
// MOVSDrm already zeros the high parts of the register.
def : Pat<(v2f64 (X86vzmovl (v2f64 (scalar_to_vector (loadf64 addr:$src))))),
(COPY_TO_REGCLASS (MOVSDrm addr:$src), VR128)>;
def : Pat<(v2f64 (scalar_to_vector (loadf64 addr:$src))),
(COPY_TO_REGCLASS (MOVSDrm addr:$src), VR128)>;
def : Pat<(v2f64 (X86vzmovl (loadv2f64 addr:$src))),
(COPY_TO_REGCLASS (MOVSDrm addr:$src), VR128)>;
def : Pat<(v2f64 (X86vzmovl (bc_v2f64 (loadv4f32 addr:$src)))),
(COPY_TO_REGCLASS (MOVSDrm addr:$src), VR128)>;
def : Pat<(v2f64 (X86vzload addr:$src)),
(COPY_TO_REGCLASS (MOVSDrm addr:$src), VR128)>;
}
// Extract and store.
def : Pat<(store (f64 (vector_extract (v2f64 VR128:$src), (iPTR 0))),
addr:$dst),
(MOVSDmr addr:$dst, (COPY_TO_REGCLASS VR128:$src, FR64))>;
// Shuffle with MOVSD
def : Pat<(v2i64 (X86Movsd VR128:$src1, VR128:$src2)),
(MOVSDrr VR128:$src1, (COPY_TO_REGCLASS VR128:$src2, FR64))>;
def : Pat<(v2f64 (X86Movsd VR128:$src1, VR128:$src2)),
(MOVSDrr VR128:$src1, (COPY_TO_REGCLASS VR128:$src2, FR64))>;
def : Pat<(v4f32 (X86Movsd VR128:$src1, VR128:$src2)),
(MOVSDrr VR128:$src1, (COPY_TO_REGCLASS VR128:$src2, FR64))>;
def : Pat<(v4i32 (X86Movsd VR128:$src1, VR128:$src2)),
(MOVSDrr VR128:$src1, (COPY_TO_REGCLASS VR128:$src2, FR64))>;
// FIXME: Instead of a X86Movlps there should be a X86Movsd here, the problem
// is during lowering, where it's not possible to recognize the fold cause
// it has two uses through a bitcast. One use disappears at isel time and the
// fold opportunity reappears.
def : Pat<(v2f64 (X86Movlpd VR128:$src1, VR128:$src2)),
(MOVSDrr VR128:$src1, (COPY_TO_REGCLASS VR128:$src2, FR64))>;
def : Pat<(v2i64 (X86Movlpd VR128:$src1, VR128:$src2)),
(MOVSDrr VR128:$src1, (COPY_TO_REGCLASS VR128:$src2, FR64))>;
def : Pat<(v4f32 (X86Movlps VR128:$src1, VR128:$src2)),
(MOVSDrr VR128:$src1, (COPY_TO_REGCLASS VR128:$src2, FR64))>;
def : Pat<(v4i32 (X86Movlps VR128:$src1, VR128:$src2)),
(MOVSDrr VR128:$src1, (COPY_TO_REGCLASS VR128:$src2, FR64))>;
}
//===----------------------------------------------------------------------===//
// SSE 1 & 2 - Move Aligned/Unaligned FP Instructions
//===----------------------------------------------------------------------===//
multiclass sse12_mov_packed<bits<8> opc, RegisterClass RC,
X86MemOperand x86memop, PatFrag ld_frag,
string asm, Domain d,
OpndItins itins,
bit IsReMaterializable = 1> {
let neverHasSideEffects = 1 in
def rr : PI<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src),
!strconcat(asm, "\t{$src, $dst|$dst, $src}"), [], itins.rr, d>,
Sched<[WriteFShuffle]>;
let canFoldAsLoad = 1, isReMaterializable = IsReMaterializable in
def rm : PI<opc, MRMSrcMem, (outs RC:$dst), (ins x86memop:$src),
!strconcat(asm, "\t{$src, $dst|$dst, $src}"),
[(set RC:$dst, (ld_frag addr:$src))], itins.rm, d>,
Sched<[WriteLoad]>;
}
defm VMOVAPS : sse12_mov_packed<0x28, VR128, f128mem, alignedloadv4f32,
"movaps", SSEPackedSingle, SSE_MOVA_ITINS>,
PS, VEX;
defm VMOVAPD : sse12_mov_packed<0x28, VR128, f128mem, alignedloadv2f64,
"movapd", SSEPackedDouble, SSE_MOVA_ITINS>,
PD, VEX;
defm VMOVUPS : sse12_mov_packed<0x10, VR128, f128mem, loadv4f32,
"movups", SSEPackedSingle, SSE_MOVU_ITINS>,
PS, VEX;
defm VMOVUPD : sse12_mov_packed<0x10, VR128, f128mem, loadv2f64,
"movupd", SSEPackedDouble, SSE_MOVU_ITINS, 0>,
PD, VEX;
defm VMOVAPSY : sse12_mov_packed<0x28, VR256, f256mem, alignedloadv8f32,
"movaps", SSEPackedSingle, SSE_MOVA_ITINS>,
PS, VEX, VEX_L;
defm VMOVAPDY : sse12_mov_packed<0x28, VR256, f256mem, alignedloadv4f64,
"movapd", SSEPackedDouble, SSE_MOVA_ITINS>,
PD, VEX, VEX_L;
defm VMOVUPSY : sse12_mov_packed<0x10, VR256, f256mem, loadv8f32,
"movups", SSEPackedSingle, SSE_MOVU_ITINS>,
PS, VEX, VEX_L;
defm VMOVUPDY : sse12_mov_packed<0x10, VR256, f256mem, loadv4f64,
"movupd", SSEPackedDouble, SSE_MOVU_ITINS, 0>,
PD, VEX, VEX_L;
defm MOVAPS : sse12_mov_packed<0x28, VR128, f128mem, alignedloadv4f32,
"movaps", SSEPackedSingle, SSE_MOVA_ITINS>,
PS;
defm MOVAPD : sse12_mov_packed<0x28, VR128, f128mem, alignedloadv2f64,
"movapd", SSEPackedDouble, SSE_MOVA_ITINS>,
PD;
defm MOVUPS : sse12_mov_packed<0x10, VR128, f128mem, loadv4f32,
"movups", SSEPackedSingle, SSE_MOVU_ITINS>,
PS;
defm MOVUPD : sse12_mov_packed<0x10, VR128, f128mem, loadv2f64,
"movupd", SSEPackedDouble, SSE_MOVU_ITINS, 0>,
PD;
let SchedRW = [WriteStore] in {
def VMOVAPSmr : VPSI<0x29, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
"movaps\t{$src, $dst|$dst, $src}",
[(alignedstore (v4f32 VR128:$src), addr:$dst)],
IIC_SSE_MOVA_P_MR>, VEX;
def VMOVAPDmr : VPDI<0x29, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
"movapd\t{$src, $dst|$dst, $src}",
[(alignedstore (v2f64 VR128:$src), addr:$dst)],
IIC_SSE_MOVA_P_MR>, VEX;
def VMOVUPSmr : VPSI<0x11, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
"movups\t{$src, $dst|$dst, $src}",
[(store (v4f32 VR128:$src), addr:$dst)],
IIC_SSE_MOVU_P_MR>, VEX;
def VMOVUPDmr : VPDI<0x11, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
"movupd\t{$src, $dst|$dst, $src}",
[(store (v2f64 VR128:$src), addr:$dst)],
IIC_SSE_MOVU_P_MR>, VEX;
def VMOVAPSYmr : VPSI<0x29, MRMDestMem, (outs), (ins f256mem:$dst, VR256:$src),
"movaps\t{$src, $dst|$dst, $src}",
[(alignedstore256 (v8f32 VR256:$src), addr:$dst)],
IIC_SSE_MOVA_P_MR>, VEX, VEX_L;
def VMOVAPDYmr : VPDI<0x29, MRMDestMem, (outs), (ins f256mem:$dst, VR256:$src),
"movapd\t{$src, $dst|$dst, $src}",
[(alignedstore256 (v4f64 VR256:$src), addr:$dst)],
IIC_SSE_MOVA_P_MR>, VEX, VEX_L;
def VMOVUPSYmr : VPSI<0x11, MRMDestMem, (outs), (ins f256mem:$dst, VR256:$src),
"movups\t{$src, $dst|$dst, $src}",
[(store (v8f32 VR256:$src), addr:$dst)],
IIC_SSE_MOVU_P_MR>, VEX, VEX_L;
def VMOVUPDYmr : VPDI<0x11, MRMDestMem, (outs), (ins f256mem:$dst, VR256:$src),
"movupd\t{$src, $dst|$dst, $src}",
[(store (v4f64 VR256:$src), addr:$dst)],
IIC_SSE_MOVU_P_MR>, VEX, VEX_L;
} // SchedRW
// For disassembler
let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0,
SchedRW = [WriteFShuffle] in {
def VMOVAPSrr_REV : VPSI<0x29, MRMDestReg, (outs VR128:$dst),
(ins VR128:$src),
"movaps\t{$src, $dst|$dst, $src}", [],
IIC_SSE_MOVA_P_RR>, VEX;
def VMOVAPDrr_REV : VPDI<0x29, MRMDestReg, (outs VR128:$dst),
(ins VR128:$src),
"movapd\t{$src, $dst|$dst, $src}", [],
IIC_SSE_MOVA_P_RR>, VEX;
def VMOVUPSrr_REV : VPSI<0x11, MRMDestReg, (outs VR128:$dst),
(ins VR128:$src),
"movups\t{$src, $dst|$dst, $src}", [],
IIC_SSE_MOVU_P_RR>, VEX;
def VMOVUPDrr_REV : VPDI<0x11, MRMDestReg, (outs VR128:$dst),
(ins VR128:$src),
"movupd\t{$src, $dst|$dst, $src}", [],
IIC_SSE_MOVU_P_RR>, VEX;
def VMOVAPSYrr_REV : VPSI<0x29, MRMDestReg, (outs VR256:$dst),
(ins VR256:$src),
"movaps\t{$src, $dst|$dst, $src}", [],
IIC_SSE_MOVA_P_RR>, VEX, VEX_L;
def VMOVAPDYrr_REV : VPDI<0x29, MRMDestReg, (outs VR256:$dst),
(ins VR256:$src),
"movapd\t{$src, $dst|$dst, $src}", [],
IIC_SSE_MOVA_P_RR>, VEX, VEX_L;
def VMOVUPSYrr_REV : VPSI<0x11, MRMDestReg, (outs VR256:$dst),
(ins VR256:$src),
"movups\t{$src, $dst|$dst, $src}", [],
IIC_SSE_MOVU_P_RR>, VEX, VEX_L;
def VMOVUPDYrr_REV : VPDI<0x11, MRMDestReg, (outs VR256:$dst),
(ins VR256:$src),
"movupd\t{$src, $dst|$dst, $src}", [],
IIC_SSE_MOVU_P_RR>, VEX, VEX_L;
}
let Predicates = [HasAVX] in {
def : Pat<(v8i32 (X86vzmovl
(insert_subvector undef, (v4i32 VR128:$src), (iPTR 0)))),
(SUBREG_TO_REG (i32 0), (VMOVAPSrr VR128:$src), sub_xmm)>;
def : Pat<(v4i64 (X86vzmovl
(insert_subvector undef, (v2i64 VR128:$src), (iPTR 0)))),
(SUBREG_TO_REG (i32 0), (VMOVAPSrr VR128:$src), sub_xmm)>;
def : Pat<(v8f32 (X86vzmovl
(insert_subvector undef, (v4f32 VR128:$src), (iPTR 0)))),
(SUBREG_TO_REG (i32 0), (VMOVAPSrr VR128:$src), sub_xmm)>;
def : Pat<(v4f64 (X86vzmovl
(insert_subvector undef, (v2f64 VR128:$src), (iPTR 0)))),
(SUBREG_TO_REG (i32 0), (VMOVAPSrr VR128:$src), sub_xmm)>;
}
def : Pat<(int_x86_avx_storeu_ps_256 addr:$dst, VR256:$src),
(VMOVUPSYmr addr:$dst, VR256:$src)>;
def : Pat<(int_x86_avx_storeu_pd_256 addr:$dst, VR256:$src),
(VMOVUPDYmr addr:$dst, VR256:$src)>;
let SchedRW = [WriteStore] in {
def MOVAPSmr : PSI<0x29, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
"movaps\t{$src, $dst|$dst, $src}",
[(alignedstore (v4f32 VR128:$src), addr:$dst)],
IIC_SSE_MOVA_P_MR>;
def MOVAPDmr : PDI<0x29, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
"movapd\t{$src, $dst|$dst, $src}",
[(alignedstore (v2f64 VR128:$src), addr:$dst)],
IIC_SSE_MOVA_P_MR>;
def MOVUPSmr : PSI<0x11, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
"movups\t{$src, $dst|$dst, $src}",
[(store (v4f32 VR128:$src), addr:$dst)],
IIC_SSE_MOVU_P_MR>;
def MOVUPDmr : PDI<0x11, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
"movupd\t{$src, $dst|$dst, $src}",
[(store (v2f64 VR128:$src), addr:$dst)],
IIC_SSE_MOVU_P_MR>;
} // SchedRW
// For disassembler
let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0,
SchedRW = [WriteFShuffle] in {
def MOVAPSrr_REV : PSI<0x29, MRMDestReg, (outs VR128:$dst), (ins VR128:$src),
"movaps\t{$src, $dst|$dst, $src}", [],
IIC_SSE_MOVA_P_RR>;
def MOVAPDrr_REV : PDI<0x29, MRMDestReg, (outs VR128:$dst), (ins VR128:$src),
"movapd\t{$src, $dst|$dst, $src}", [],
IIC_SSE_MOVA_P_RR>;
def MOVUPSrr_REV : PSI<0x11, MRMDestReg, (outs VR128:$dst), (ins VR128:$src),
"movups\t{$src, $dst|$dst, $src}", [],
IIC_SSE_MOVU_P_RR>;
def MOVUPDrr_REV : PDI<0x11, MRMDestReg, (outs VR128:$dst), (ins VR128:$src),
"movupd\t{$src, $dst|$dst, $src}", [],
IIC_SSE_MOVU_P_RR>;
}
let Predicates = [HasAVX] in {
def : Pat<(int_x86_sse_storeu_ps addr:$dst, VR128:$src),
(VMOVUPSmr addr:$dst, VR128:$src)>;
def : Pat<(int_x86_sse2_storeu_pd addr:$dst, VR128:$src),
(VMOVUPDmr addr:$dst, VR128:$src)>;
}
let Predicates = [UseSSE1] in
def : Pat<(int_x86_sse_storeu_ps addr:$dst, VR128:$src),
(MOVUPSmr addr:$dst, VR128:$src)>;
let Predicates = [UseSSE2] in
def : Pat<(int_x86_sse2_storeu_pd addr:$dst, VR128:$src),
(MOVUPDmr addr:$dst, VR128:$src)>;
// Use vmovaps/vmovups for AVX integer load/store.
let Predicates = [HasAVX] in {
// 128-bit load/store
def : Pat<(alignedloadv2i64 addr:$src),
(VMOVAPSrm addr:$src)>;
def : Pat<(loadv2i64 addr:$src),
(VMOVUPSrm addr:$src)>;
def : Pat<(alignedstore (v2i64 VR128:$src), addr:$dst),
(VMOVAPSmr addr:$dst, VR128:$src)>;
def : Pat<(alignedstore (v4i32 VR128:$src), addr:$dst),
(VMOVAPSmr addr:$dst, VR128:$src)>;
def : Pat<(alignedstore (v8i16 VR128:$src), addr:$dst),
(VMOVAPSmr addr:$dst, VR128:$src)>;
def : Pat<(alignedstore (v16i8 VR128:$src), addr:$dst),
(VMOVAPSmr addr:$dst, VR128:$src)>;
def : Pat<(store (v2i64 VR128:$src), addr:$dst),
(VMOVUPSmr addr:$dst, VR128:$src)>;
def : Pat<(store (v4i32 VR128:$src), addr:$dst),
(VMOVUPSmr addr:$dst, VR128:$src)>;
def : Pat<(store (v8i16 VR128:$src), addr:$dst),
(VMOVUPSmr addr:$dst, VR128:$src)>;
def : Pat<(store (v16i8 VR128:$src), addr:$dst),
(VMOVUPSmr addr:$dst, VR128:$src)>;
// 256-bit load/store
def : Pat<(alignedloadv4i64 addr:$src),
(VMOVAPSYrm addr:$src)>;
def : Pat<(loadv4i64 addr:$src),
(VMOVUPSYrm addr:$src)>;
def : Pat<(alignedstore256 (v4i64 VR256:$src), addr:$dst),
(VMOVAPSYmr addr:$dst, VR256:$src)>;
def : Pat<(alignedstore256 (v8i32 VR256:$src), addr:$dst),
(VMOVAPSYmr addr:$dst, VR256:$src)>;
def : Pat<(alignedstore256 (v16i16 VR256:$src), addr:$dst),
(VMOVAPSYmr addr:$dst, VR256:$src)>;
def : Pat<(alignedstore256 (v32i8 VR256:$src), addr:$dst),
(VMOVAPSYmr addr:$dst, VR256:$src)>;
def : Pat<(store (v4i64 VR256:$src), addr:$dst),
(VMOVUPSYmr addr:$dst, VR256:$src)>;
def : Pat<(store (v8i32 VR256:$src), addr:$dst),
(VMOVUPSYmr addr:$dst, VR256:$src)>;
def : Pat<(store (v16i16 VR256:$src), addr:$dst),
(VMOVUPSYmr addr:$dst, VR256:$src)>;
def : Pat<(store (v32i8 VR256:$src), addr:$dst),
(VMOVUPSYmr addr:$dst, VR256:$src)>;
// Special patterns for storing subvector extracts of lower 128-bits
// Its cheaper to just use VMOVAPS/VMOVUPS instead of VEXTRACTF128mr
def : Pat<(alignedstore (v2f64 (extract_subvector
(v4f64 VR256:$src), (iPTR 0))), addr:$dst),
(VMOVAPDmr addr:$dst, (v2f64 (EXTRACT_SUBREG VR256:$src,sub_xmm)))>;
def : Pat<(alignedstore (v4f32 (extract_subvector
(v8f32 VR256:$src), (iPTR 0))), addr:$dst),
(VMOVAPSmr addr:$dst, (v4f32 (EXTRACT_SUBREG VR256:$src,sub_xmm)))>;
def : Pat<(alignedstore (v2i64 (extract_subvector
(v4i64 VR256:$src), (iPTR 0))), addr:$dst),
(VMOVAPDmr addr:$dst, (v2i64 (EXTRACT_SUBREG VR256:$src,sub_xmm)))>;
def : Pat<(alignedstore (v4i32 (extract_subvector
(v8i32 VR256:$src), (iPTR 0))), addr:$dst),
(VMOVAPSmr addr:$dst, (v4i32 (EXTRACT_SUBREG VR256:$src,sub_xmm)))>;
def : Pat<(alignedstore (v8i16 (extract_subvector
(v16i16 VR256:$src), (iPTR 0))), addr:$dst),
(VMOVAPSmr addr:$dst, (v8i16 (EXTRACT_SUBREG VR256:$src,sub_xmm)))>;
def : Pat<(alignedstore (v16i8 (extract_subvector
(v32i8 VR256:$src), (iPTR 0))), addr:$dst),
(VMOVAPSmr addr:$dst, (v16i8 (EXTRACT_SUBREG VR256:$src,sub_xmm)))>;
def : Pat<(store (v2f64 (extract_subvector
(v4f64 VR256:$src), (iPTR 0))), addr:$dst),
(VMOVUPDmr addr:$dst, (v2f64 (EXTRACT_SUBREG VR256:$src,sub_xmm)))>;
def : Pat<(store (v4f32 (extract_subvector
(v8f32 VR256:$src), (iPTR 0))), addr:$dst),
(VMOVUPSmr addr:$dst, (v4f32 (EXTRACT_SUBREG VR256:$src,sub_xmm)))>;
def : Pat<(store (v2i64 (extract_subvector
(v4i64 VR256:$src), (iPTR 0))), addr:$dst),
(VMOVUPDmr addr:$dst, (v2i64 (EXTRACT_SUBREG VR256:$src,sub_xmm)))>;
def : Pat<(store (v4i32 (extract_subvector
(v8i32 VR256:$src), (iPTR 0))), addr:$dst),
(VMOVUPSmr addr:$dst, (v4i32 (EXTRACT_SUBREG VR256:$src,sub_xmm)))>;
def : Pat<(store (v8i16 (extract_subvector
(v16i16 VR256:$src), (iPTR 0))), addr:$dst),
(VMOVUPSmr addr:$dst, (v8i16 (EXTRACT_SUBREG VR256:$src,sub_xmm)))>;
def : Pat<(store (v16i8 (extract_subvector
(v32i8 VR256:$src), (iPTR 0))), addr:$dst),
(VMOVUPSmr addr:$dst, (v16i8 (EXTRACT_SUBREG VR256:$src,sub_xmm)))>;
}
// Use movaps / movups for SSE integer load / store (one byte shorter).
// The instructions selected below are then converted to MOVDQA/MOVDQU
// during the SSE domain pass.
let Predicates = [UseSSE1] in {
def : Pat<(alignedloadv2i64 addr:$src),
(MOVAPSrm addr:$src)>;
def : Pat<(loadv2i64 addr:$src),
(MOVUPSrm addr:$src)>;
def : Pat<(alignedstore (v2i64 VR128:$src), addr:$dst),
(MOVAPSmr addr:$dst, VR128:$src)>;
def : Pat<(alignedstore (v4i32 VR128:$src), addr:$dst),
(MOVAPSmr addr:$dst, VR128:$src)>;
def : Pat<(alignedstore (v8i16 VR128:$src), addr:$dst),
(MOVAPSmr addr:$dst, VR128:$src)>;
def : Pat<(alignedstore (v16i8 VR128:$src), addr:$dst),
(MOVAPSmr addr:$dst, VR128:$src)>;
def : Pat<(store (v2i64 VR128:$src), addr:$dst),
(MOVUPSmr addr:$dst, VR128:$src)>;
def : Pat<(store (v4i32 VR128:$src), addr:$dst),
(MOVUPSmr addr:$dst, VR128:$src)>;
def : Pat<(store (v8i16 VR128:$src), addr:$dst),
(MOVUPSmr addr:$dst, VR128:$src)>;
def : Pat<(store (v16i8 VR128:$src), addr:$dst),
(MOVUPSmr addr:$dst, VR128:$src)>;
}
// Alias instruction to load FR32 or FR64 from f128mem using movaps. Upper
// bits are disregarded. FIXME: Set encoding to pseudo!
let canFoldAsLoad = 1, isReMaterializable = 1, SchedRW = [WriteLoad] in {
let isCodeGenOnly = 1 in {
def FsVMOVAPSrm : VPSI<0x28, MRMSrcMem, (outs FR32:$dst), (ins f128mem:$src),
"movaps\t{$src, $dst|$dst, $src}",
[(set FR32:$dst, (alignedloadfsf32 addr:$src))],
IIC_SSE_MOVA_P_RM>, VEX;
def FsVMOVAPDrm : VPDI<0x28, MRMSrcMem, (outs FR64:$dst), (ins f128mem:$src),
"movapd\t{$src, $dst|$dst, $src}",
[(set FR64:$dst, (alignedloadfsf64 addr:$src))],
IIC_SSE_MOVA_P_RM>, VEX;
def FsMOVAPSrm : PSI<0x28, MRMSrcMem, (outs FR32:$dst), (ins f128mem:$src),
"movaps\t{$src, $dst|$dst, $src}",
[(set FR32:$dst, (alignedloadfsf32 addr:$src))],
IIC_SSE_MOVA_P_RM>;
def FsMOVAPDrm : PDI<0x28, MRMSrcMem, (outs FR64:$dst), (ins f128mem:$src),
"movapd\t{$src, $dst|$dst, $src}",
[(set FR64:$dst, (alignedloadfsf64 addr:$src))],
IIC_SSE_MOVA_P_RM>;
}
}
//===----------------------------------------------------------------------===//
// SSE 1 & 2 - Move Low packed FP Instructions
//===----------------------------------------------------------------------===//
multiclass sse12_mov_hilo_packed_base<bits<8>opc, SDNode psnode, SDNode pdnode,
string base_opc, string asm_opr,
InstrItinClass itin> {
def PSrm : PI<opc, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, f64mem:$src2),
!strconcat(base_opc, "s", asm_opr),
[(set VR128:$dst,
(psnode VR128:$src1,
(bc_v4f32 (v2f64 (scalar_to_vector (loadf64 addr:$src2))))))],
itin, SSEPackedSingle>, PS,
Sched<[WriteFShuffleLd, ReadAfterLd]>;
def PDrm : PI<opc, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, f64mem:$src2),
!strconcat(base_opc, "d", asm_opr),
[(set VR128:$dst, (v2f64 (pdnode VR128:$src1,
(scalar_to_vector (loadf64 addr:$src2)))))],
itin, SSEPackedDouble>, PD,
Sched<[WriteFShuffleLd, ReadAfterLd]>;
}
multiclass sse12_mov_hilo_packed<bits<8>opc, SDNode psnode, SDNode pdnode,
string base_opc, InstrItinClass itin> {
defm V#NAME : sse12_mov_hilo_packed_base<opc, psnode, pdnode, base_opc,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}",
itin>, VEX_4V;
let Constraints = "$src1 = $dst" in
defm NAME : sse12_mov_hilo_packed_base<opc, psnode, pdnode, base_opc,
"\t{$src2, $dst|$dst, $src2}",
itin>;
}
let AddedComplexity = 20 in {
defm MOVL : sse12_mov_hilo_packed<0x12, X86Movlps, X86Movlpd, "movlp",
IIC_SSE_MOV_LH>;
}
let SchedRW = [WriteStore] in {
def VMOVLPSmr : VPSI<0x13, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src),
"movlps\t{$src, $dst|$dst, $src}",
[(store (f64 (vector_extract (bc_v2f64 (v4f32 VR128:$src)),
(iPTR 0))), addr:$dst)],
IIC_SSE_MOV_LH>, VEX;
def VMOVLPDmr : VPDI<0x13, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src),
"movlpd\t{$src, $dst|$dst, $src}",
[(store (f64 (vector_extract (v2f64 VR128:$src),
(iPTR 0))), addr:$dst)],
IIC_SSE_MOV_LH>, VEX;
def MOVLPSmr : PSI<0x13, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src),
"movlps\t{$src, $dst|$dst, $src}",
[(store (f64 (vector_extract (bc_v2f64 (v4f32 VR128:$src)),
(iPTR 0))), addr:$dst)],
IIC_SSE_MOV_LH>;
def MOVLPDmr : PDI<0x13, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src),
"movlpd\t{$src, $dst|$dst, $src}",
[(store (f64 (vector_extract (v2f64 VR128:$src),
(iPTR 0))), addr:$dst)],
IIC_SSE_MOV_LH>;
} // SchedRW
let Predicates = [HasAVX] in {
// Shuffle with VMOVLPS
def : Pat<(v4f32 (X86Movlps VR128:$src1, (load addr:$src2))),
(VMOVLPSrm VR128:$src1, addr:$src2)>;
def : Pat<(v4i32 (X86Movlps VR128:$src1, (load addr:$src2))),
(VMOVLPSrm VR128:$src1, addr:$src2)>;
// Shuffle with VMOVLPD
def : Pat<(v2f64 (X86Movlpd VR128:$src1, (load addr:$src2))),
(VMOVLPDrm VR128:$src1, addr:$src2)>;
def : Pat<(v2i64 (X86Movlpd VR128:$src1, (load addr:$src2))),
(VMOVLPDrm VR128:$src1, addr:$src2)>;
// Store patterns
def : Pat<(store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)),
addr:$src1),
(VMOVLPSmr addr:$src1, VR128:$src2)>;
def : Pat<(store (v4i32 (X86Movlps
(bc_v4i32 (loadv2i64 addr:$src1)), VR128:$src2)), addr:$src1),
(VMOVLPSmr addr:$src1, VR128:$src2)>;
def : Pat<(store (v2f64 (X86Movlpd (load addr:$src1), VR128:$src2)),
addr:$src1),
(VMOVLPDmr addr:$src1, VR128:$src2)>;
def : Pat<(store (v2i64 (X86Movlpd (load addr:$src1), VR128:$src2)),
addr:$src1),
(VMOVLPDmr addr:$src1, VR128:$src2)>;
}
let Predicates = [UseSSE1] in {
// (store (vector_shuffle (load addr), v2, <4, 5, 2, 3>), addr) using MOVLPS
def : Pat<(store (i64 (vector_extract (bc_v2i64 (v4f32 VR128:$src2)),
(iPTR 0))), addr:$src1),
(MOVLPSmr addr:$src1, VR128:$src2)>;
// Shuffle with MOVLPS
def : Pat<(v4f32 (X86Movlps VR128:$src1, (load addr:$src2))),
(MOVLPSrm VR128:$src1, addr:$src2)>;
def : Pat<(v4i32 (X86Movlps VR128:$src1, (load addr:$src2))),
(MOVLPSrm VR128:$src1, addr:$src2)>;
def : Pat<(X86Movlps VR128:$src1,
(bc_v4f32 (v2i64 (scalar_to_vector (loadi64 addr:$src2))))),
(MOVLPSrm VR128:$src1, addr:$src2)>;
// Store patterns
def : Pat<(store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)),
addr:$src1),
(MOVLPSmr addr:$src1, VR128:$src2)>;
def : Pat<(store (v4i32 (X86Movlps
(bc_v4i32 (loadv2i64 addr:$src1)), VR128:$src2)),
addr:$src1),
(MOVLPSmr addr:$src1, VR128:$src2)>;
}
let Predicates = [UseSSE2] in {
// Shuffle with MOVLPD
def : Pat<(v2f64 (X86Movlpd VR128:$src1, (load addr:$src2))),
(MOVLPDrm VR128:$src1, addr:$src2)>;
def : Pat<(v2i64 (X86Movlpd VR128:$src1, (load addr:$src2))),
(MOVLPDrm VR128:$src1, addr:$src2)>;
// Store patterns
def : Pat<(store (v2f64 (X86Movlpd (load addr:$src1), VR128:$src2)),
addr:$src1),
(MOVLPDmr addr:$src1, VR128:$src2)>;
def : Pat<(store (v2i64 (X86Movlpd (load addr:$src1), VR128:$src2)),
addr:$src1),
(MOVLPDmr addr:$src1, VR128:$src2)>;
}
//===----------------------------------------------------------------------===//
// SSE 1 & 2 - Move Hi packed FP Instructions
//===----------------------------------------------------------------------===//
let AddedComplexity = 20 in {
defm MOVH : sse12_mov_hilo_packed<0x16, X86Movlhps, X86Movlhpd, "movhp",
IIC_SSE_MOV_LH>;
}
let SchedRW = [WriteStore] in {
// v2f64 extract element 1 is always custom lowered to unpack high to low
// and extract element 0 so the non-store version isn't too horrible.
def VMOVHPSmr : VPSI<0x17, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src),
"movhps\t{$src, $dst|$dst, $src}",
[(store (f64 (vector_extract
(X86Unpckh (bc_v2f64 (v4f32 VR128:$src)),
(bc_v2f64 (v4f32 VR128:$src))),
(iPTR 0))), addr:$dst)], IIC_SSE_MOV_LH>, VEX;
def VMOVHPDmr : VPDI<0x17, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src),
"movhpd\t{$src, $dst|$dst, $src}",
[(store (f64 (vector_extract
(v2f64 (X86Unpckh VR128:$src, VR128:$src)),
(iPTR 0))), addr:$dst)], IIC_SSE_MOV_LH>, VEX;
def MOVHPSmr : PSI<0x17, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src),
"movhps\t{$src, $dst|$dst, $src}",
[(store (f64 (vector_extract
(X86Unpckh (bc_v2f64 (v4f32 VR128:$src)),
(bc_v2f64 (v4f32 VR128:$src))),
(iPTR 0))), addr:$dst)], IIC_SSE_MOV_LH>;
def MOVHPDmr : PDI<0x17, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src),
"movhpd\t{$src, $dst|$dst, $src}",
[(store (f64 (vector_extract
(v2f64 (X86Unpckh VR128:$src, VR128:$src)),
(iPTR 0))), addr:$dst)], IIC_SSE_MOV_LH>;
} // SchedRW
let Predicates = [HasAVX] in {
// VMOVHPS patterns
def : Pat<(X86Movlhps VR128:$src1,
(bc_v4f32 (v2i64 (scalar_to_vector (loadi64 addr:$src2))))),
(VMOVHPSrm VR128:$src1, addr:$src2)>;
def : Pat<(X86Movlhps VR128:$src1,
(bc_v4i32 (v2i64 (X86vzload addr:$src2)))),
(VMOVHPSrm VR128:$src1, addr:$src2)>;
// FIXME: Instead of X86Unpckl, there should be a X86Movlhpd here, the problem
// is during lowering, where it's not possible to recognize the load fold
// cause it has two uses through a bitcast. One use disappears at isel time
// and the fold opportunity reappears.
def : Pat<(v2f64 (X86Unpckl VR128:$src1,
(scalar_to_vector (loadf64 addr:$src2)))),
(VMOVHPDrm VR128:$src1, addr:$src2)>;
}
let Predicates = [UseSSE1] in {
// MOVHPS patterns
def : Pat<(X86Movlhps VR128:$src1,
(bc_v4f32 (v2i64 (scalar_to_vector (loadi64 addr:$src2))))),
(MOVHPSrm VR128:$src1, addr:$src2)>;
def : Pat<(X86Movlhps VR128:$src1,
(bc_v4f32 (v2i64 (X86vzload addr:$src2)))),
(MOVHPSrm VR128:$src1, addr:$src2)>;
}
let Predicates = [UseSSE2] in {
// FIXME: Instead of X86Unpckl, there should be a X86Movlhpd here, the problem
// is during lowering, where it's not possible to recognize the load fold
// cause it has two uses through a bitcast. One use disappears at isel time
// and the fold opportunity reappears.
def : Pat<(v2f64 (X86Unpckl VR128:$src1,
(scalar_to_vector (loadf64 addr:$src2)))),
(MOVHPDrm VR128:$src1, addr:$src2)>;
}
//===----------------------------------------------------------------------===//
// SSE 1 & 2 - Move Low to High and High to Low packed FP Instructions
//===----------------------------------------------------------------------===//
let AddedComplexity = 20, Predicates = [UseAVX] in {
def VMOVLHPSrr : VPSI<0x16, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2),
"movlhps\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set VR128:$dst,
(v4f32 (X86Movlhps VR128:$src1, VR128:$src2)))],
IIC_SSE_MOV_LH>,
VEX_4V, Sched<[WriteFShuffle]>;
def VMOVHLPSrr : VPSI<0x12, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2),
"movhlps\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set VR128:$dst,
(v4f32 (X86Movhlps VR128:$src1, VR128:$src2)))],
IIC_SSE_MOV_LH>,
VEX_4V, Sched<[WriteFShuffle]>;
}
let Constraints = "$src1 = $dst", AddedComplexity = 20 in {
def MOVLHPSrr : PSI<0x16, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2),
"movlhps\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v4f32 (X86Movlhps VR128:$src1, VR128:$src2)))],
IIC_SSE_MOV_LH>, Sched<[WriteFShuffle]>;
def MOVHLPSrr : PSI<0x12, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2),
"movhlps\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v4f32 (X86Movhlps VR128:$src1, VR128:$src2)))],
IIC_SSE_MOV_LH>, Sched<[WriteFShuffle]>;
}
let Predicates = [UseAVX] in {
// MOVLHPS patterns
def : Pat<(v4i32 (X86Movlhps VR128:$src1, VR128:$src2)),
(VMOVLHPSrr VR128:$src1, VR128:$src2)>;
def : Pat<(v2i64 (X86Movlhps VR128:$src1, VR128:$src2)),
(VMOVLHPSrr (v2i64 VR128:$src1), VR128:$src2)>;
// MOVHLPS patterns
def : Pat<(v4i32 (X86Movhlps VR128:$src1, VR128:$src2)),
(VMOVHLPSrr VR128:$src1, VR128:$src2)>;
}
let Predicates = [UseSSE1] in {
// MOVLHPS patterns
def : Pat<(v4i32 (X86Movlhps VR128:$src1, VR128:$src2)),
(MOVLHPSrr VR128:$src1, VR128:$src2)>;
def : Pat<(v2i64 (X86Movlhps VR128:$src1, VR128:$src2)),
(MOVLHPSrr (v2i64 VR128:$src1), VR128:$src2)>;
// MOVHLPS patterns
def : Pat<(v4i32 (X86Movhlps VR128:$src1, VR128:$src2)),
(MOVHLPSrr VR128:$src1, VR128:$src2)>;
}
//===----------------------------------------------------------------------===//
// SSE 1 & 2 - Conversion Instructions
//===----------------------------------------------------------------------===//
def SSE_CVT_PD : OpndItins<
IIC_SSE_CVT_PD_RR, IIC_SSE_CVT_PD_RM
>;
let Sched = WriteCvtI2F in
def SSE_CVT_PS : OpndItins<
IIC_SSE_CVT_PS_RR, IIC_SSE_CVT_PS_RM
>;
let Sched = WriteCvtI2F in
def SSE_CVT_Scalar : OpndItins<
IIC_SSE_CVT_Scalar_RR, IIC_SSE_CVT_Scalar_RM
>;
let Sched = WriteCvtF2I in
def SSE_CVT_SS2SI_32 : OpndItins<
IIC_SSE_CVT_SS2SI32_RR, IIC_SSE_CVT_SS2SI32_RM
>;
let Sched = WriteCvtF2I in
def SSE_CVT_SS2SI_64 : OpndItins<
IIC_SSE_CVT_SS2SI64_RR, IIC_SSE_CVT_SS2SI64_RM
>;
let Sched = WriteCvtF2I in
def SSE_CVT_SD2SI : OpndItins<
IIC_SSE_CVT_SD2SI_RR, IIC_SSE_CVT_SD2SI_RM
>;
multiclass sse12_cvt_s<bits<8> opc, RegisterClass SrcRC, RegisterClass DstRC,
SDNode OpNode, X86MemOperand x86memop, PatFrag ld_frag,
string asm, OpndItins itins> {
def rr : SI<opc, MRMSrcReg, (outs DstRC:$dst), (ins SrcRC:$src), asm,
[(set DstRC:$dst, (OpNode SrcRC:$src))],
itins.rr>, Sched<[itins.Sched]>;
def rm : SI<opc, MRMSrcMem, (outs DstRC:$dst), (ins x86memop:$src), asm,
[(set DstRC:$dst, (OpNode (ld_frag addr:$src)))],
itins.rm>, Sched<[itins.Sched.Folded]>;
}
multiclass sse12_cvt_p<bits<8> opc, RegisterClass SrcRC, RegisterClass DstRC,
X86MemOperand x86memop, string asm, Domain d,
OpndItins itins> {
let neverHasSideEffects = 1 in {
def rr : I<opc, MRMSrcReg, (outs DstRC:$dst), (ins SrcRC:$src), asm,
[], itins.rr, d>, Sched<[itins.Sched]>;
let mayLoad = 1 in
def rm : I<opc, MRMSrcMem, (outs DstRC:$dst), (ins x86memop:$src), asm,
[], itins.rm, d>, Sched<[itins.Sched.Folded]>;
}
}
multiclass sse12_vcvt_avx<bits<8> opc, RegisterClass SrcRC, RegisterClass DstRC,
X86MemOperand x86memop, string asm> {
let neverHasSideEffects = 1, Predicates = [UseAVX] in {
def rr : SI<opc, MRMSrcReg, (outs DstRC:$dst), (ins DstRC:$src1, SrcRC:$src),
!strconcat(asm,"\t{$src, $src1, $dst|$dst, $src1, $src}"), []>,
Sched<[WriteCvtI2F]>;
let mayLoad = 1 in
def rm : SI<opc, MRMSrcMem, (outs DstRC:$dst),
(ins DstRC:$src1, x86memop:$src),
!strconcat(asm,"\t{$src, $src1, $dst|$dst, $src1, $src}"), []>,
Sched<[WriteCvtI2FLd, ReadAfterLd]>;
} // neverHasSideEffects = 1
}
let Predicates = [UseAVX] in {
defm VCVTTSS2SI : sse12_cvt_s<0x2C, FR32, GR32, fp_to_sint, f32mem, loadf32,
"cvttss2si\t{$src, $dst|$dst, $src}",
SSE_CVT_SS2SI_32>,
XS, VEX, VEX_LIG;
defm VCVTTSS2SI64 : sse12_cvt_s<0x2C, FR32, GR64, fp_to_sint, f32mem, loadf32,
"cvttss2si\t{$src, $dst|$dst, $src}",
SSE_CVT_SS2SI_64>,
XS, VEX, VEX_W, VEX_LIG;
defm VCVTTSD2SI : sse12_cvt_s<0x2C, FR64, GR32, fp_to_sint, f64mem, loadf64,
"cvttsd2si\t{$src, $dst|$dst, $src}",
SSE_CVT_SD2SI>,
XD, VEX, VEX_LIG;
defm VCVTTSD2SI64 : sse12_cvt_s<0x2C, FR64, GR64, fp_to_sint, f64mem, loadf64,
"cvttsd2si\t{$src, $dst|$dst, $src}",
SSE_CVT_SD2SI>,
XD, VEX, VEX_W, VEX_LIG;
def : InstAlias<"vcvttss2si{l}\t{$src, $dst|$dst, $src}",
(VCVTTSS2SIrr GR32:$dst, FR32:$src), 0>;
def : InstAlias<"vcvttss2si{l}\t{$src, $dst|$dst, $src}",
(VCVTTSS2SIrm GR32:$dst, f32mem:$src), 0>;
def : InstAlias<"vcvttsd2si{l}\t{$src, $dst|$dst, $src}",
(VCVTTSD2SIrr GR32:$dst, FR64:$src), 0>;
def : InstAlias<"vcvttsd2si{l}\t{$src, $dst|$dst, $src}",
(VCVTTSD2SIrm GR32:$dst, f64mem:$src), 0>;
def : InstAlias<"vcvttss2si{q}\t{$src, $dst|$dst, $src}",
(VCVTTSS2SI64rr GR64:$dst, FR32:$src), 0>;
def : InstAlias<"vcvttss2si{q}\t{$src, $dst|$dst, $src}",
(VCVTTSS2SI64rm GR64:$dst, f32mem:$src), 0>;
def : InstAlias<"vcvttsd2si{q}\t{$src, $dst|$dst, $src}",
(VCVTTSD2SI64rr GR64:$dst, FR64:$src), 0>;
def : InstAlias<"vcvttsd2si{q}\t{$src, $dst|$dst, $src}",
(VCVTTSD2SI64rm GR64:$dst, f64mem:$src), 0>;
}
// The assembler can recognize rr 64-bit instructions by seeing a rxx
// register, but the same isn't true when only using memory operands,
// provide other assembly "l" and "q" forms to address this explicitly
// where appropriate to do so.
defm VCVTSI2SS : sse12_vcvt_avx<0x2A, GR32, FR32, i32mem, "cvtsi2ss{l}">,
XS, VEX_4V, VEX_LIG;
defm VCVTSI2SS64 : sse12_vcvt_avx<0x2A, GR64, FR32, i64mem, "cvtsi2ss{q}">,
XS, VEX_4V, VEX_W, VEX_LIG;
defm VCVTSI2SD : sse12_vcvt_avx<0x2A, GR32, FR64, i32mem, "cvtsi2sd{l}">,
XD, VEX_4V, VEX_LIG;
defm VCVTSI2SD64 : sse12_vcvt_avx<0x2A, GR64, FR64, i64mem, "cvtsi2sd{q}">,
XD, VEX_4V, VEX_W, VEX_LIG;
let Predicates = [UseAVX] in {
def : InstAlias<"vcvtsi2ss\t{$src, $src1, $dst|$dst, $src1, $src}",
(VCVTSI2SSrm FR64:$dst, FR64:$src1, i32mem:$src), 0>;
def : InstAlias<"vcvtsi2sd\t{$src, $src1, $dst|$dst, $src1, $src}",
(VCVTSI2SDrm FR64:$dst, FR64:$src1, i32mem:$src), 0>;
def : Pat<(f32 (sint_to_fp (loadi32 addr:$src))),
(VCVTSI2SSrm (f32 (IMPLICIT_DEF)), addr:$src)>;
def : Pat<(f32 (sint_to_fp (loadi64 addr:$src))),
(VCVTSI2SS64rm (f32 (IMPLICIT_DEF)), addr:$src)>;
def : Pat<(f64 (sint_to_fp (loadi32 addr:$src))),
(VCVTSI2SDrm (f64 (IMPLICIT_DEF)), addr:$src)>;
def : Pat<(f64 (sint_to_fp (loadi64 addr:$src))),
(VCVTSI2SD64rm (f64 (IMPLICIT_DEF)), addr:$src)>;
def : Pat<(f32 (sint_to_fp GR32:$src)),
(VCVTSI2SSrr (f32 (IMPLICIT_DEF)), GR32:$src)>;
def : Pat<(f32 (sint_to_fp GR64:$src)),
(VCVTSI2SS64rr (f32 (IMPLICIT_DEF)), GR64:$src)>;
def : Pat<(f64 (sint_to_fp GR32:$src)),
(VCVTSI2SDrr (f64 (IMPLICIT_DEF)), GR32:$src)>;
def : Pat<(f64 (sint_to_fp GR64:$src)),
(VCVTSI2SD64rr (f64 (IMPLICIT_DEF)), GR64:$src)>;
}
defm CVTTSS2SI : sse12_cvt_s<0x2C, FR32, GR32, fp_to_sint, f32mem, loadf32,
"cvttss2si\t{$src, $dst|$dst, $src}",
SSE_CVT_SS2SI_32>, XS;
defm CVTTSS2SI64 : sse12_cvt_s<0x2C, FR32, GR64, fp_to_sint, f32mem, loadf32,
"cvttss2si\t{$src, $dst|$dst, $src}",
SSE_CVT_SS2SI_64>, XS, REX_W;
defm CVTTSD2SI : sse12_cvt_s<0x2C, FR64, GR32, fp_to_sint, f64mem, loadf64,
"cvttsd2si\t{$src, $dst|$dst, $src}",
SSE_CVT_SD2SI>, XD;
defm CVTTSD2SI64 : sse12_cvt_s<0x2C, FR64, GR64, fp_to_sint, f64mem, loadf64,
"cvttsd2si\t{$src, $dst|$dst, $src}",
SSE_CVT_SD2SI>, XD, REX_W;
defm CVTSI2SS : sse12_cvt_s<0x2A, GR32, FR32, sint_to_fp, i32mem, loadi32,
"cvtsi2ss{l}\t{$src, $dst|$dst, $src}",
SSE_CVT_Scalar>, XS;
defm CVTSI2SS64 : sse12_cvt_s<0x2A, GR64, FR32, sint_to_fp, i64mem, loadi64,
"cvtsi2ss{q}\t{$src, $dst|$dst, $src}",
SSE_CVT_Scalar>, XS, REX_W;
defm CVTSI2SD : sse12_cvt_s<0x2A, GR32, FR64, sint_to_fp, i32mem, loadi32,
"cvtsi2sd{l}\t{$src, $dst|$dst, $src}",
SSE_CVT_Scalar>, XD;
defm CVTSI2SD64 : sse12_cvt_s<0x2A, GR64, FR64, sint_to_fp, i64mem, loadi64,
"cvtsi2sd{q}\t{$src, $dst|$dst, $src}",
SSE_CVT_Scalar>, XD, REX_W;
def : InstAlias<"cvttss2si{l}\t{$src, $dst|$dst, $src}",
(CVTTSS2SIrr GR32:$dst, FR32:$src), 0>;
def : InstAlias<"cvttss2si{l}\t{$src, $dst|$dst, $src}",
(CVTTSS2SIrm GR32:$dst, f32mem:$src), 0>;
def : InstAlias<"cvttsd2si{l}\t{$src, $dst|$dst, $src}",
(CVTTSD2SIrr GR32:$dst, FR64:$src), 0>;
def : InstAlias<"cvttsd2si{l}\t{$src, $dst|$dst, $src}",
(CVTTSD2SIrm GR32:$dst, f64mem:$src), 0>;
def : InstAlias<"cvttss2si{q}\t{$src, $dst|$dst, $src}",
(CVTTSS2SI64rr GR64:$dst, FR32:$src), 0>;
def : InstAlias<"cvttss2si{q}\t{$src, $dst|$dst, $src}",
(CVTTSS2SI64rm GR64:$dst, f32mem:$src), 0>;
def : InstAlias<"cvttsd2si{q}\t{$src, $dst|$dst, $src}",
(CVTTSD2SI64rr GR64:$dst, FR64:$src), 0>;
def : InstAlias<"cvttsd2si{q}\t{$src, $dst|$dst, $src}",
(CVTTSD2SI64rm GR64:$dst, f64mem:$src), 0>;
def : InstAlias<"cvtsi2ss\t{$src, $dst|$dst, $src}",
(CVTSI2SSrm FR64:$dst, i32mem:$src), 0>;
def : InstAlias<"cvtsi2sd\t{$src, $dst|$dst, $src}",
(CVTSI2SDrm FR64:$dst, i32mem:$src), 0>;
// Conversion Instructions Intrinsics - Match intrinsics which expect MM
// and/or XMM operand(s).
multiclass sse12_cvt_sint<bits<8> opc, RegisterClass SrcRC, RegisterClass DstRC,
Intrinsic Int, Operand memop, ComplexPattern mem_cpat,
string asm, OpndItins itins> {
def rr : SI<opc, MRMSrcReg, (outs DstRC:$dst), (ins SrcRC:$src),
!strconcat(asm, "\t{$src, $dst|$dst, $src}"),
[(set DstRC:$dst, (Int SrcRC:$src))], itins.rr>,
Sched<[itins.Sched]>;
def rm : SI<opc, MRMSrcMem, (outs DstRC:$dst), (ins memop:$src),
!strconcat(asm, "\t{$src, $dst|$dst, $src}"),
[(set DstRC:$dst, (Int mem_cpat:$src))], itins.rm>,
Sched<[itins.Sched.Folded]>;
}
multiclass sse12_cvt_sint_3addr<bits<8> opc, RegisterClass SrcRC,
RegisterClass DstRC, Intrinsic Int, X86MemOperand x86memop,
PatFrag ld_frag, string asm, OpndItins itins,
bit Is2Addr = 1> {
def rr : SI<opc, MRMSrcReg, (outs DstRC:$dst), (ins DstRC:$src1, SrcRC:$src2),
!if(Is2Addr,
!strconcat(asm, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(asm, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set DstRC:$dst, (Int DstRC:$src1, SrcRC:$src2))],
itins.rr>, Sched<[itins.Sched]>;
def rm : SI<opc, MRMSrcMem, (outs DstRC:$dst),
(ins DstRC:$src1, x86memop:$src2),
!if(Is2Addr,
!strconcat(asm, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(asm, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set DstRC:$dst, (Int DstRC:$src1, (ld_frag addr:$src2)))],
itins.rm>, Sched<[itins.Sched.Folded, ReadAfterLd]>;
}
let Predicates = [UseAVX] in {
defm VCVTSD2SI : sse12_cvt_sint<0x2D, VR128, GR32,
int_x86_sse2_cvtsd2si, sdmem, sse_load_f64, "cvtsd2si",
SSE_CVT_SD2SI>, XD, VEX, VEX_LIG;
defm VCVTSD2SI64 : sse12_cvt_sint<0x2D, VR128, GR64,
int_x86_sse2_cvtsd2si64, sdmem, sse_load_f64, "cvtsd2si",
SSE_CVT_SD2SI>, XD, VEX, VEX_W, VEX_LIG;
}
defm CVTSD2SI : sse12_cvt_sint<0x2D, VR128, GR32, int_x86_sse2_cvtsd2si,
sdmem, sse_load_f64, "cvtsd2si", SSE_CVT_SD2SI>, XD;
defm CVTSD2SI64 : sse12_cvt_sint<0x2D, VR128, GR64, int_x86_sse2_cvtsd2si64,
sdmem, sse_load_f64, "cvtsd2si", SSE_CVT_SD2SI>, XD, REX_W;
let isCodeGenOnly = 1 in {
let Predicates = [UseAVX] in {
defm Int_VCVTSI2SS : sse12_cvt_sint_3addr<0x2A, GR32, VR128,
int_x86_sse_cvtsi2ss, i32mem, loadi32, "cvtsi2ss{l}",
SSE_CVT_Scalar, 0>, XS, VEX_4V;
defm Int_VCVTSI2SS64 : sse12_cvt_sint_3addr<0x2A, GR64, VR128,
int_x86_sse_cvtsi642ss, i64mem, loadi64, "cvtsi2ss{q}",
SSE_CVT_Scalar, 0>, XS, VEX_4V,
VEX_W;
defm Int_VCVTSI2SD : sse12_cvt_sint_3addr<0x2A, GR32, VR128,
int_x86_sse2_cvtsi2sd, i32mem, loadi32, "cvtsi2sd{l}",
SSE_CVT_Scalar, 0>, XD, VEX_4V;
defm Int_VCVTSI2SD64 : sse12_cvt_sint_3addr<0x2A, GR64, VR128,
int_x86_sse2_cvtsi642sd, i64mem, loadi64, "cvtsi2sd{q}",
SSE_CVT_Scalar, 0>, XD,
VEX_4V, VEX_W;
}
let Constraints = "$src1 = $dst" in {
defm Int_CVTSI2SS : sse12_cvt_sint_3addr<0x2A, GR32, VR128,
int_x86_sse_cvtsi2ss, i32mem, loadi32,
"cvtsi2ss{l}", SSE_CVT_Scalar>, XS;
defm Int_CVTSI2SS64 : sse12_cvt_sint_3addr<0x2A, GR64, VR128,
int_x86_sse_cvtsi642ss, i64mem, loadi64,
"cvtsi2ss{q}", SSE_CVT_Scalar>, XS, REX_W;
defm Int_CVTSI2SD : sse12_cvt_sint_3addr<0x2A, GR32, VR128,
int_x86_sse2_cvtsi2sd, i32mem, loadi32,
"cvtsi2sd{l}", SSE_CVT_Scalar>, XD;
defm Int_CVTSI2SD64 : sse12_cvt_sint_3addr<0x2A, GR64, VR128,
int_x86_sse2_cvtsi642sd, i64mem, loadi64,
"cvtsi2sd{q}", SSE_CVT_Scalar>, XD, REX_W;
}
} // isCodeGenOnly = 1
/// SSE 1 Only
// Aliases for intrinsics
let isCodeGenOnly = 1 in {
let Predicates = [UseAVX] in {
defm Int_VCVTTSS2SI : sse12_cvt_sint<0x2C, VR128, GR32, int_x86_sse_cvttss2si,
ssmem, sse_load_f32, "cvttss2si",
SSE_CVT_SS2SI_32>, XS, VEX;
defm Int_VCVTTSS2SI64 : sse12_cvt_sint<0x2C, VR128, GR64,
int_x86_sse_cvttss2si64, ssmem, sse_load_f32,
"cvttss2si", SSE_CVT_SS2SI_64>,
XS, VEX, VEX_W;
defm Int_VCVTTSD2SI : sse12_cvt_sint<0x2C, VR128, GR32, int_x86_sse2_cvttsd2si,
sdmem, sse_load_f64, "cvttsd2si",
SSE_CVT_SD2SI>, XD, VEX;
defm Int_VCVTTSD2SI64 : sse12_cvt_sint<0x2C, VR128, GR64,
int_x86_sse2_cvttsd2si64, sdmem, sse_load_f64,
"cvttsd2si", SSE_CVT_SD2SI>,
XD, VEX, VEX_W;
}
defm Int_CVTTSS2SI : sse12_cvt_sint<0x2C, VR128, GR32, int_x86_sse_cvttss2si,
ssmem, sse_load_f32, "cvttss2si",
SSE_CVT_SS2SI_32>, XS;
defm Int_CVTTSS2SI64 : sse12_cvt_sint<0x2C, VR128, GR64,
int_x86_sse_cvttss2si64, ssmem, sse_load_f32,
"cvttss2si", SSE_CVT_SS2SI_64>, XS, REX_W;
defm Int_CVTTSD2SI : sse12_cvt_sint<0x2C, VR128, GR32, int_x86_sse2_cvttsd2si,
sdmem, sse_load_f64, "cvttsd2si",
SSE_CVT_SD2SI>, XD;
defm Int_CVTTSD2SI64 : sse12_cvt_sint<0x2C, VR128, GR64,
int_x86_sse2_cvttsd2si64, sdmem, sse_load_f64,
"cvttsd2si", SSE_CVT_SD2SI>, XD, REX_W;
} // isCodeGenOnly = 1
let Predicates = [UseAVX] in {
defm VCVTSS2SI : sse12_cvt_sint<0x2D, VR128, GR32, int_x86_sse_cvtss2si,
ssmem, sse_load_f32, "cvtss2si",
SSE_CVT_SS2SI_32>, XS, VEX, VEX_LIG;
defm VCVTSS2SI64 : sse12_cvt_sint<0x2D, VR128, GR64, int_x86_sse_cvtss2si64,
ssmem, sse_load_f32, "cvtss2si",
SSE_CVT_SS2SI_64>, XS, VEX, VEX_W, VEX_LIG;
}
defm CVTSS2SI : sse12_cvt_sint<0x2D, VR128, GR32, int_x86_sse_cvtss2si,
ssmem, sse_load_f32, "cvtss2si",
SSE_CVT_SS2SI_32>, XS;
defm CVTSS2SI64 : sse12_cvt_sint<0x2D, VR128, GR64, int_x86_sse_cvtss2si64,
ssmem, sse_load_f32, "cvtss2si",
SSE_CVT_SS2SI_64>, XS, REX_W;
defm VCVTDQ2PS : sse12_cvt_p<0x5B, VR128, VR128, i128mem,
"vcvtdq2ps\t{$src, $dst|$dst, $src}",
SSEPackedSingle, SSE_CVT_PS>,
PS, VEX, Requires<[HasAVX]>;
defm VCVTDQ2PSY : sse12_cvt_p<0x5B, VR256, VR256, i256mem,
"vcvtdq2ps\t{$src, $dst|$dst, $src}",
SSEPackedSingle, SSE_CVT_PS>,
PS, VEX, VEX_L, Requires<[HasAVX]>;
defm CVTDQ2PS : sse12_cvt_p<0x5B, VR128, VR128, i128mem,
"cvtdq2ps\t{$src, $dst|$dst, $src}",
SSEPackedSingle, SSE_CVT_PS>,
PS, Requires<[UseSSE2]>;
let Predicates = [UseAVX] in {
def : InstAlias<"vcvtss2si{l}\t{$src, $dst|$dst, $src}",
(VCVTSS2SIrr GR32:$dst, VR128:$src), 0>;
def : InstAlias<"vcvtss2si{l}\t{$src, $dst|$dst, $src}",
(VCVTSS2SIrm GR32:$dst, ssmem:$src), 0>;
def : InstAlias<"vcvtsd2si{l}\t{$src, $dst|$dst, $src}",
(VCVTSD2SIrr GR32:$dst, VR128:$src), 0>;
def : InstAlias<"vcvtsd2si{l}\t{$src, $dst|$dst, $src}",
(VCVTSD2SIrm GR32:$dst, sdmem:$src), 0>;
def : InstAlias<"vcvtss2si{q}\t{$src, $dst|$dst, $src}",
(VCVTSS2SI64rr GR64:$dst, VR128:$src), 0>;
def : InstAlias<"vcvtss2si{q}\t{$src, $dst|$dst, $src}",
(VCVTSS2SI64rm GR64:$dst, ssmem:$src), 0>;
def : InstAlias<"vcvtsd2si{q}\t{$src, $dst|$dst, $src}",
(VCVTSD2SI64rr GR64:$dst, VR128:$src), 0>;
def : InstAlias<"vcvtsd2si{q}\t{$src, $dst|$dst, $src}",
(VCVTSD2SI64rm GR64:$dst, sdmem:$src), 0>;
}
def : InstAlias<"cvtss2si{l}\t{$src, $dst|$dst, $src}",
(CVTSS2SIrr GR32:$dst, VR128:$src), 0>;
def : InstAlias<"cvtss2si{l}\t{$src, $dst|$dst, $src}",
(CVTSS2SIrm GR32:$dst, ssmem:$src), 0>;
def : InstAlias<"cvtsd2si{l}\t{$src, $dst|$dst, $src}",
(CVTSD2SIrr GR32:$dst, VR128:$src), 0>;
def : InstAlias<"cvtsd2si{l}\t{$src, $dst|$dst, $src}",
(CVTSD2SIrm GR32:$dst, sdmem:$src), 0>;
def : InstAlias<"cvtss2si{q}\t{$src, $dst|$dst, $src}",
(CVTSS2SI64rr GR64:$dst, VR128:$src), 0>;
def : InstAlias<"cvtss2si{q}\t{$src, $dst|$dst, $src}",
(CVTSS2SI64rm GR64:$dst, ssmem:$src), 0>;
def : InstAlias<"cvtsd2si{q}\t{$src, $dst|$dst, $src}",
(CVTSD2SI64rr GR64:$dst, VR128:$src), 0>;
def : InstAlias<"cvtsd2si{q}\t{$src, $dst|$dst, $src}",
(CVTSD2SI64rm GR64:$dst, sdmem:$src)>;
/// SSE 2 Only
// Convert scalar double to scalar single
let neverHasSideEffects = 1, Predicates = [UseAVX] in {
def VCVTSD2SSrr : VSDI<0x5A, MRMSrcReg, (outs FR32:$dst),
(ins FR64:$src1, FR64:$src2),
"cvtsd2ss\t{$src2, $src1, $dst|$dst, $src1, $src2}", [],
IIC_SSE_CVT_Scalar_RR>, VEX_4V, VEX_LIG,
Sched<[WriteCvtF2F]>;
let mayLoad = 1 in
def VCVTSD2SSrm : I<0x5A, MRMSrcMem, (outs FR32:$dst),
(ins FR64:$src1, f64mem:$src2),
"vcvtsd2ss\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[], IIC_SSE_CVT_Scalar_RM>,
XD, Requires<[HasAVX, OptForSize]>, VEX_4V, VEX_LIG,
Sched<[WriteCvtF2FLd, ReadAfterLd]>;
}
def : Pat<(f32 (fround FR64:$src)), (VCVTSD2SSrr FR64:$src, FR64:$src)>,
Requires<[UseAVX]>;
def CVTSD2SSrr : SDI<0x5A, MRMSrcReg, (outs FR32:$dst), (ins FR64:$src),
"cvtsd2ss\t{$src, $dst|$dst, $src}",
[(set FR32:$dst, (fround FR64:$src))],
IIC_SSE_CVT_Scalar_RR>, Sched<[WriteCvtF2F]>;
def CVTSD2SSrm : I<0x5A, MRMSrcMem, (outs FR32:$dst), (ins f64mem:$src),
"cvtsd2ss\t{$src, $dst|$dst, $src}",
[(set FR32:$dst, (fround (loadf64 addr:$src)))],
IIC_SSE_CVT_Scalar_RM>,
XD,
Requires<[UseSSE2, OptForSize]>, Sched<[WriteCvtF2FLd]>;
let isCodeGenOnly = 1 in {
def Int_VCVTSD2SSrr: I<0x5A, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
"vcvtsd2ss\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set VR128:$dst,
(int_x86_sse2_cvtsd2ss VR128:$src1, VR128:$src2))],
IIC_SSE_CVT_Scalar_RR>, XD, VEX_4V, Requires<[UseAVX]>,
Sched<[WriteCvtF2F]>;
def Int_VCVTSD2SSrm: I<0x5A, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, sdmem:$src2),
"vcvtsd2ss\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set VR128:$dst, (int_x86_sse2_cvtsd2ss
VR128:$src1, sse_load_f64:$src2))],
IIC_SSE_CVT_Scalar_RM>, XD, VEX_4V, Requires<[UseAVX]>,
Sched<[WriteCvtF2FLd, ReadAfterLd]>;
let Constraints = "$src1 = $dst" in {
def Int_CVTSD2SSrr: I<0x5A, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
"cvtsd2ss\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(int_x86_sse2_cvtsd2ss VR128:$src1, VR128:$src2))],
IIC_SSE_CVT_Scalar_RR>, XD, Requires<[UseSSE2]>,
Sched<[WriteCvtF2F]>;
def Int_CVTSD2SSrm: I<0x5A, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, sdmem:$src2),
"cvtsd2ss\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst, (int_x86_sse2_cvtsd2ss
VR128:$src1, sse_load_f64:$src2))],
IIC_SSE_CVT_Scalar_RM>, XD, Requires<[UseSSE2]>,
Sched<[WriteCvtF2FLd, ReadAfterLd]>;
}
} // isCodeGenOnly = 1
// Convert scalar single to scalar double
// SSE2 instructions with XS prefix
let neverHasSideEffects = 1, Predicates = [UseAVX] in {
def VCVTSS2SDrr : I<0x5A, MRMSrcReg, (outs FR64:$dst),
(ins FR32:$src1, FR32:$src2),
"vcvtss2sd\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[], IIC_SSE_CVT_Scalar_RR>,
XS, Requires<[HasAVX]>, VEX_4V, VEX_LIG,
Sched<[WriteCvtF2F]>;
let mayLoad = 1 in
def VCVTSS2SDrm : I<0x5A, MRMSrcMem, (outs FR64:$dst),
(ins FR32:$src1, f32mem:$src2),
"vcvtss2sd\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[], IIC_SSE_CVT_Scalar_RM>,
XS, VEX_4V, VEX_LIG, Requires<[HasAVX, OptForSize]>,
Sched<[WriteCvtF2FLd, ReadAfterLd]>;
}
def : Pat<(f64 (fextend FR32:$src)),
(VCVTSS2SDrr FR32:$src, FR32:$src)>, Requires<[UseAVX]>;
def : Pat<(fextend (loadf32 addr:$src)),
(VCVTSS2SDrm (f32 (IMPLICIT_DEF)), addr:$src)>, Requires<[UseAVX]>;
def : Pat<(extloadf32 addr:$src),
(VCVTSS2SDrm (f32 (IMPLICIT_DEF)), addr:$src)>,
Requires<[UseAVX, OptForSize]>;
def : Pat<(extloadf32 addr:$src),
(VCVTSS2SDrr (f32 (IMPLICIT_DEF)), (VMOVSSrm addr:$src))>,
Requires<[UseAVX, OptForSpeed]>;
def CVTSS2SDrr : I<0x5A, MRMSrcReg, (outs FR64:$dst), (ins FR32:$src),
"cvtss2sd\t{$src, $dst|$dst, $src}",
[(set FR64:$dst, (fextend FR32:$src))],
IIC_SSE_CVT_Scalar_RR>, XS,
Requires<[UseSSE2]>, Sched<[WriteCvtF2F]>;
def CVTSS2SDrm : I<0x5A, MRMSrcMem, (outs FR64:$dst), (ins f32mem:$src),
"cvtss2sd\t{$src, $dst|$dst, $src}",
[(set FR64:$dst, (extloadf32 addr:$src))],
IIC_SSE_CVT_Scalar_RM>, XS,
Requires<[UseSSE2, OptForSize]>, Sched<[WriteCvtF2FLd]>;
// extload f32 -> f64. This matches load+fextend because we have a hack in
// the isel (PreprocessForFPConvert) that can introduce loads after dag
// combine.
// Since these loads aren't folded into the fextend, we have to match it
// explicitly here.
def : Pat<(fextend (loadf32 addr:$src)),
(CVTSS2SDrm addr:$src)>, Requires<[UseSSE2]>;
def : Pat<(extloadf32 addr:$src),
(CVTSS2SDrr (MOVSSrm addr:$src))>, Requires<[UseSSE2, OptForSpeed]>;
let isCodeGenOnly = 1 in {
def Int_VCVTSS2SDrr: I<0x5A, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
"vcvtss2sd\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set VR128:$dst,
(int_x86_sse2_cvtss2sd VR128:$src1, VR128:$src2))],
IIC_SSE_CVT_Scalar_RR>, XS, VEX_4V, Requires<[UseAVX]>,
Sched<[WriteCvtF2F]>;
def Int_VCVTSS2SDrm: I<0x5A, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, ssmem:$src2),
"vcvtss2sd\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set VR128:$dst,
(int_x86_sse2_cvtss2sd VR128:$src1, sse_load_f32:$src2))],
IIC_SSE_CVT_Scalar_RM>, XS, VEX_4V, Requires<[UseAVX]>,
Sched<[WriteCvtF2FLd, ReadAfterLd]>;
let Constraints = "$src1 = $dst" in { // SSE2 instructions with XS prefix
def Int_CVTSS2SDrr: I<0x5A, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
"cvtss2sd\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(int_x86_sse2_cvtss2sd VR128:$src1, VR128:$src2))],
IIC_SSE_CVT_Scalar_RR>, XS, Requires<[UseSSE2]>,
Sched<[WriteCvtF2F]>;
def Int_CVTSS2SDrm: I<0x5A, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, ssmem:$src2),
"cvtss2sd\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(int_x86_sse2_cvtss2sd VR128:$src1, sse_load_f32:$src2))],
IIC_SSE_CVT_Scalar_RM>, XS, Requires<[UseSSE2]>,
Sched<[WriteCvtF2FLd, ReadAfterLd]>;
}
} // isCodeGenOnly = 1
// Convert packed single/double fp to doubleword
def VCVTPS2DQrr : VPDI<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"cvtps2dq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cvtps2dq VR128:$src))],
IIC_SSE_CVT_PS_RR>, VEX, Sched<[WriteCvtF2I]>;
def VCVTPS2DQrm : VPDI<0x5B, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
"cvtps2dq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(int_x86_sse2_cvtps2dq (loadv4f32 addr:$src)))],
IIC_SSE_CVT_PS_RM>, VEX, Sched<[WriteCvtF2ILd]>;
def VCVTPS2DQYrr : VPDI<0x5B, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src),
"cvtps2dq\t{$src, $dst|$dst, $src}",
[(set VR256:$dst,
(int_x86_avx_cvt_ps2dq_256 VR256:$src))],
IIC_SSE_CVT_PS_RR>, VEX, VEX_L, Sched<[WriteCvtF2I]>;
def VCVTPS2DQYrm : VPDI<0x5B, MRMSrcMem, (outs VR256:$dst), (ins f256mem:$src),
"cvtps2dq\t{$src, $dst|$dst, $src}",
[(set VR256:$dst,
(int_x86_avx_cvt_ps2dq_256 (loadv8f32 addr:$src)))],
IIC_SSE_CVT_PS_RM>, VEX, VEX_L, Sched<[WriteCvtF2ILd]>;
def CVTPS2DQrr : PDI<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"cvtps2dq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cvtps2dq VR128:$src))],
IIC_SSE_CVT_PS_RR>, Sched<[WriteCvtF2I]>;
def CVTPS2DQrm : PDI<0x5B, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
"cvtps2dq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(int_x86_sse2_cvtps2dq (memopv4f32 addr:$src)))],
IIC_SSE_CVT_PS_RM>, Sched<[WriteCvtF2ILd]>;
// Convert Packed Double FP to Packed DW Integers
let Predicates = [HasAVX] in {
// The assembler can recognize rr 256-bit instructions by seeing a ymm
// register, but the same isn't true when using memory operands instead.
// Provide other assembly rr and rm forms to address this explicitly.
def VCVTPD2DQrr : SDI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"vcvtpd2dq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cvtpd2dq VR128:$src))]>,
VEX, Sched<[WriteCvtF2I]>;
// XMM only
def : InstAlias<"vcvtpd2dqx\t{$src, $dst|$dst, $src}",
(VCVTPD2DQrr VR128:$dst, VR128:$src), 0>;
def VCVTPD2DQXrm : SDI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
"vcvtpd2dqx\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(int_x86_sse2_cvtpd2dq (loadv2f64 addr:$src)))]>, VEX,
Sched<[WriteCvtF2ILd]>;
// YMM only
def VCVTPD2DQYrr : SDI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR256:$src),
"vcvtpd2dq{y}\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(int_x86_avx_cvt_pd2dq_256 VR256:$src))]>, VEX, VEX_L,
Sched<[WriteCvtF2I]>;
def VCVTPD2DQYrm : SDI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f256mem:$src),
"vcvtpd2dq{y}\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(int_x86_avx_cvt_pd2dq_256 (loadv4f64 addr:$src)))]>,
VEX, VEX_L, Sched<[WriteCvtF2ILd]>;
def : InstAlias<"vcvtpd2dq\t{$src, $dst|$dst, $src}",
(VCVTPD2DQYrr VR128:$dst, VR256:$src), 0>;
}
def CVTPD2DQrm : SDI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
"cvtpd2dq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(int_x86_sse2_cvtpd2dq (memopv2f64 addr:$src)))],
IIC_SSE_CVT_PD_RM>, Sched<[WriteCvtF2ILd]>;
def CVTPD2DQrr : SDI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"cvtpd2dq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cvtpd2dq VR128:$src))],
IIC_SSE_CVT_PD_RR>, Sched<[WriteCvtF2I]>;
// Convert with truncation packed single/double fp to doubleword
// SSE2 packed instructions with XS prefix
def VCVTTPS2DQrr : VS2SI<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"cvttps2dq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(int_x86_sse2_cvttps2dq VR128:$src))],
IIC_SSE_CVT_PS_RR>, VEX, Sched<[WriteCvtF2I]>;
def VCVTTPS2DQrm : VS2SI<0x5B, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
"cvttps2dq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cvttps2dq
(loadv4f32 addr:$src)))],
IIC_SSE_CVT_PS_RM>, VEX, Sched<[WriteCvtF2ILd]>;
def VCVTTPS2DQYrr : VS2SI<0x5B, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src),
"cvttps2dq\t{$src, $dst|$dst, $src}",
[(set VR256:$dst,
(int_x86_avx_cvtt_ps2dq_256 VR256:$src))],
IIC_SSE_CVT_PS_RR>, VEX, VEX_L, Sched<[WriteCvtF2I]>;
def VCVTTPS2DQYrm : VS2SI<0x5B, MRMSrcMem, (outs VR256:$dst), (ins f256mem:$src),
"cvttps2dq\t{$src, $dst|$dst, $src}",
[(set VR256:$dst, (int_x86_avx_cvtt_ps2dq_256
(loadv8f32 addr:$src)))],
IIC_SSE_CVT_PS_RM>, VEX, VEX_L,
Sched<[WriteCvtF2ILd]>;
def CVTTPS2DQrr : S2SI<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"cvttps2dq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cvttps2dq VR128:$src))],
IIC_SSE_CVT_PS_RR>, Sched<[WriteCvtF2I]>;
def CVTTPS2DQrm : S2SI<0x5B, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
"cvttps2dq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(int_x86_sse2_cvttps2dq (memopv4f32 addr:$src)))],
IIC_SSE_CVT_PS_RM>, Sched<[WriteCvtF2ILd]>;
let Predicates = [HasAVX] in {
def : Pat<(v4f32 (sint_to_fp (v4i32 VR128:$src))),
(VCVTDQ2PSrr VR128:$src)>;
def : Pat<(v4f32 (sint_to_fp (bc_v4i32 (loadv2i64 addr:$src)))),
(VCVTDQ2PSrm addr:$src)>;
def : Pat<(int_x86_sse2_cvtdq2ps VR128:$src),
(VCVTDQ2PSrr VR128:$src)>;
def : Pat<(int_x86_sse2_cvtdq2ps (bc_v4i32 (loadv2i64 addr:$src))),
(VCVTDQ2PSrm addr:$src)>;
def : Pat<(v4i32 (fp_to_sint (v4f32 VR128:$src))),
(VCVTTPS2DQrr VR128:$src)>;
def : Pat<(v4i32 (fp_to_sint (loadv4f32 addr:$src))),
(VCVTTPS2DQrm addr:$src)>;
def : Pat<(v8f32 (sint_to_fp (v8i32 VR256:$src))),
(VCVTDQ2PSYrr VR256:$src)>;
def : Pat<(v8f32 (sint_to_fp (bc_v8i32 (loadv4i64 addr:$src)))),
(VCVTDQ2PSYrm addr:$src)>;
def : Pat<(v8i32 (fp_to_sint (v8f32 VR256:$src))),
(VCVTTPS2DQYrr VR256:$src)>;
def : Pat<(v8i32 (fp_to_sint (loadv8f32 addr:$src))),
(VCVTTPS2DQYrm addr:$src)>;
}
let Predicates = [UseSSE2] in {
def : Pat<(v4f32 (sint_to_fp (v4i32 VR128:$src))),
(CVTDQ2PSrr VR128:$src)>;
def : Pat<(v4f32 (sint_to_fp (bc_v4i32 (memopv2i64 addr:$src)))),
(CVTDQ2PSrm addr:$src)>;
def : Pat<(int_x86_sse2_cvtdq2ps VR128:$src),
(CVTDQ2PSrr VR128:$src)>;
def : Pat<(int_x86_sse2_cvtdq2ps (bc_v4i32 (memopv2i64 addr:$src))),
(CVTDQ2PSrm addr:$src)>;
def : Pat<(v4i32 (fp_to_sint (v4f32 VR128:$src))),
(CVTTPS2DQrr VR128:$src)>;
def : Pat<(v4i32 (fp_to_sint (memopv4f32 addr:$src))),
(CVTTPS2DQrm addr:$src)>;
}
def VCVTTPD2DQrr : VPDI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"cvttpd2dq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(int_x86_sse2_cvttpd2dq VR128:$src))],
IIC_SSE_CVT_PD_RR>, VEX, Sched<[WriteCvtF2I]>;
// The assembler can recognize rr 256-bit instructions by seeing a ymm
// register, but the same isn't true when using memory operands instead.
// Provide other assembly rr and rm forms to address this explicitly.
// XMM only
def : InstAlias<"vcvttpd2dqx\t{$src, $dst|$dst, $src}",
(VCVTTPD2DQrr VR128:$dst, VR128:$src), 0>;
def VCVTTPD2DQXrm : VPDI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
"cvttpd2dqx\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cvttpd2dq
(loadv2f64 addr:$src)))],
IIC_SSE_CVT_PD_RM>, VEX, Sched<[WriteCvtF2ILd]>;
// YMM only
def VCVTTPD2DQYrr : VPDI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR256:$src),
"cvttpd2dq{y}\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(int_x86_avx_cvtt_pd2dq_256 VR256:$src))],
IIC_SSE_CVT_PD_RR>, VEX, VEX_L, Sched<[WriteCvtF2I]>;
def VCVTTPD2DQYrm : VPDI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f256mem:$src),
"cvttpd2dq{y}\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(int_x86_avx_cvtt_pd2dq_256 (loadv4f64 addr:$src)))],
IIC_SSE_CVT_PD_RM>, VEX, VEX_L, Sched<[WriteCvtF2ILd]>;
def : InstAlias<"vcvttpd2dq\t{$src, $dst|$dst, $src}",
(VCVTTPD2DQYrr VR128:$dst, VR256:$src), 0>;
let Predicates = [HasAVX] in {
def : Pat<(v4i32 (fp_to_sint (v4f64 VR256:$src))),
(VCVTTPD2DQYrr VR256:$src)>;
def : Pat<(v4i32 (fp_to_sint (loadv4f64 addr:$src))),
(VCVTTPD2DQYrm addr:$src)>;
} // Predicates = [HasAVX]
def CVTTPD2DQrr : PDI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"cvttpd2dq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cvttpd2dq VR128:$src))],
IIC_SSE_CVT_PD_RR>, Sched<[WriteCvtF2I]>;
def CVTTPD2DQrm : PDI<0xE6, MRMSrcMem, (outs VR128:$dst),(ins f128mem:$src),
"cvttpd2dq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cvttpd2dq
(memopv2f64 addr:$src)))],
IIC_SSE_CVT_PD_RM>,
Sched<[WriteCvtF2ILd]>;
// Convert packed single to packed double
let Predicates = [HasAVX] in {
// SSE2 instructions without OpSize prefix
def VCVTPS2PDrr : I<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"vcvtps2pd\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cvtps2pd VR128:$src))],
IIC_SSE_CVT_PD_RR>, PS, VEX, Sched<[WriteCvtF2F]>;
def VCVTPS2PDrm : I<0x5A, MRMSrcMem, (outs VR128:$dst), (ins f64mem:$src),
"vcvtps2pd\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (v2f64 (extloadv2f32 addr:$src)))],
IIC_SSE_CVT_PD_RM>, PS, VEX, Sched<[WriteCvtF2FLd]>;
def VCVTPS2PDYrr : I<0x5A, MRMSrcReg, (outs VR256:$dst), (ins VR128:$src),
"vcvtps2pd\t{$src, $dst|$dst, $src}",
[(set VR256:$dst,
(int_x86_avx_cvt_ps2_pd_256 VR128:$src))],
IIC_SSE_CVT_PD_RR>, PS, VEX, VEX_L, Sched<[WriteCvtF2F]>;
def VCVTPS2PDYrm : I<0x5A, MRMSrcMem, (outs VR256:$dst), (ins f128mem:$src),
"vcvtps2pd\t{$src, $dst|$dst, $src}",
[(set VR256:$dst,
(int_x86_avx_cvt_ps2_pd_256 (loadv4f32 addr:$src)))],
IIC_SSE_CVT_PD_RM>, PS, VEX, VEX_L, Sched<[WriteCvtF2FLd]>;
}
let Predicates = [UseSSE2] in {
def CVTPS2PDrr : I<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"cvtps2pd\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cvtps2pd VR128:$src))],
IIC_SSE_CVT_PD_RR>, PS, Sched<[WriteCvtF2F]>;
def CVTPS2PDrm : I<0x5A, MRMSrcMem, (outs VR128:$dst), (ins f64mem:$src),
"cvtps2pd\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (v2f64 (extloadv2f32 addr:$src)))],
IIC_SSE_CVT_PD_RM>, PS, Sched<[WriteCvtF2FLd]>;
}
// Convert Packed DW Integers to Packed Double FP
let Predicates = [HasAVX] in {
let neverHasSideEffects = 1, mayLoad = 1 in
def VCVTDQ2PDrm : S2SI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src),
"vcvtdq2pd\t{$src, $dst|$dst, $src}",
[]>, VEX, Sched<[WriteCvtI2FLd]>;
def VCVTDQ2PDrr : S2SI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"vcvtdq2pd\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(int_x86_sse2_cvtdq2pd VR128:$src))]>, VEX,
Sched<[WriteCvtI2F]>;
def VCVTDQ2PDYrm : S2SI<0xE6, MRMSrcMem, (outs VR256:$dst), (ins i128mem:$src),
"vcvtdq2pd\t{$src, $dst|$dst, $src}",
[(set VR256:$dst,
(int_x86_avx_cvtdq2_pd_256
(bitconvert (loadv2i64 addr:$src))))]>, VEX, VEX_L,
Sched<[WriteCvtI2FLd]>;
def VCVTDQ2PDYrr : S2SI<0xE6, MRMSrcReg, (outs VR256:$dst), (ins VR128:$src),
"vcvtdq2pd\t{$src, $dst|$dst, $src}",
[(set VR256:$dst,
(int_x86_avx_cvtdq2_pd_256 VR128:$src))]>, VEX, VEX_L,
Sched<[WriteCvtI2F]>;
}
let neverHasSideEffects = 1, mayLoad = 1 in
def CVTDQ2PDrm : S2SI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src),
"cvtdq2pd\t{$src, $dst|$dst, $src}", [],
IIC_SSE_CVT_PD_RR>, Sched<[WriteCvtI2FLd]>;
def CVTDQ2PDrr : S2SI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"cvtdq2pd\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cvtdq2pd VR128:$src))],
IIC_SSE_CVT_PD_RM>, Sched<[WriteCvtI2F]>;
// AVX 256-bit register conversion intrinsics
let Predicates = [HasAVX] in {
def : Pat<(v4f64 (sint_to_fp (v4i32 VR128:$src))),
(VCVTDQ2PDYrr VR128:$src)>;
def : Pat<(v4f64 (sint_to_fp (bc_v4i32 (loadv2i64 addr:$src)))),
(VCVTDQ2PDYrm addr:$src)>;
} // Predicates = [HasAVX]
// Convert packed double to packed single
// The assembler can recognize rr 256-bit instructions by seeing a ymm
// register, but the same isn't true when using memory operands instead.
// Provide other assembly rr and rm forms to address this explicitly.
def VCVTPD2PSrr : VPDI<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"cvtpd2ps\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cvtpd2ps VR128:$src))],
IIC_SSE_CVT_PD_RR>, VEX, Sched<[WriteCvtF2F]>;
// XMM only
def : InstAlias<"vcvtpd2psx\t{$src, $dst|$dst, $src}",
(VCVTPD2PSrr VR128:$dst, VR128:$src), 0>;
def VCVTPD2PSXrm : VPDI<0x5A, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
"cvtpd2psx\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(int_x86_sse2_cvtpd2ps (loadv2f64 addr:$src)))],
IIC_SSE_CVT_PD_RM>, VEX, Sched<[WriteCvtF2FLd]>;
// YMM only
def VCVTPD2PSYrr : VPDI<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR256:$src),
"cvtpd2ps{y}\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(int_x86_avx_cvt_pd2_ps_256 VR256:$src))],
IIC_SSE_CVT_PD_RR>, VEX, VEX_L, Sched<[WriteCvtF2F]>;
def VCVTPD2PSYrm : VPDI<0x5A, MRMSrcMem, (outs VR128:$dst), (ins f256mem:$src),
"cvtpd2ps{y}\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(int_x86_avx_cvt_pd2_ps_256 (loadv4f64 addr:$src)))],
IIC_SSE_CVT_PD_RM>, VEX, VEX_L, Sched<[WriteCvtF2FLd]>;
def : InstAlias<"vcvtpd2ps\t{$src, $dst|$dst, $src}",
(VCVTPD2PSYrr VR128:$dst, VR256:$src), 0>;
def CVTPD2PSrr : PDI<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"cvtpd2ps\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cvtpd2ps VR128:$src))],
IIC_SSE_CVT_PD_RR>, Sched<[WriteCvtF2F]>;
def CVTPD2PSrm : PDI<0x5A, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
"cvtpd2ps\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(int_x86_sse2_cvtpd2ps (memopv2f64 addr:$src)))],
IIC_SSE_CVT_PD_RM>, Sched<[WriteCvtF2FLd]>;
// AVX 256-bit register conversion intrinsics
// FIXME: Migrate SSE conversion intrinsics matching to use patterns as below
// whenever possible to avoid declaring two versions of each one.
let Predicates = [HasAVX] in {
def : Pat<(int_x86_avx_cvtdq2_ps_256 VR256:$src),
(VCVTDQ2PSYrr VR256:$src)>;
def : Pat<(int_x86_avx_cvtdq2_ps_256 (bitconvert (loadv4i64 addr:$src))),
(VCVTDQ2PSYrm addr:$src)>;
// Match fround and fextend for 128/256-bit conversions
def : Pat<(v4f32 (X86vfpround (v2f64 VR128:$src))),
(VCVTPD2PSrr VR128:$src)>;
def : Pat<(v4f32 (X86vfpround (loadv2f64 addr:$src))),
(VCVTPD2PSXrm addr:$src)>;
def : Pat<(v4f32 (fround (v4f64 VR256:$src))),
(VCVTPD2PSYrr VR256:$src)>;
def : Pat<(v4f32 (fround (loadv4f64 addr:$src))),
(VCVTPD2PSYrm addr:$src)>;
def : Pat<(v2f64 (X86vfpext (v4f32 VR128:$src))),
(VCVTPS2PDrr VR128:$src)>;
def : Pat<(v4f64 (fextend (v4f32 VR128:$src))),
(VCVTPS2PDYrr VR128:$src)>;
def : Pat<(v4f64 (extloadv4f32 addr:$src)),
(VCVTPS2PDYrm addr:$src)>;
}
let Predicates = [UseSSE2] in {
// Match fround and fextend for 128 conversions
def : Pat<(v4f32 (X86vfpround (v2f64 VR128:$src))),
(CVTPD2PSrr VR128:$src)>;
def : Pat<(v4f32 (X86vfpround (memopv2f64 addr:$src))),
(CVTPD2PSrm addr:$src)>;
def : Pat<(v2f64 (X86vfpext (v4f32 VR128:$src))),
(CVTPS2PDrr VR128:$src)>;
}
//===----------------------------------------------------------------------===//
// SSE 1 & 2 - Compare Instructions
//===----------------------------------------------------------------------===//
// sse12_cmp_scalar - sse 1 & 2 compare scalar instructions
multiclass sse12_cmp_scalar<RegisterClass RC, X86MemOperand x86memop,
Operand CC, SDNode OpNode, ValueType VT,
PatFrag ld_frag, string asm, string asm_alt,
OpndItins itins> {
def rr : SIi8<0xC2, MRMSrcReg,
(outs RC:$dst), (ins RC:$src1, RC:$src2, CC:$cc), asm,
[(set RC:$dst, (OpNode (VT RC:$src1), RC:$src2, imm:$cc))],
itins.rr>, Sched<[itins.Sched]>;
def rm : SIi8<0xC2, MRMSrcMem,
(outs RC:$dst), (ins RC:$src1, x86memop:$src2, CC:$cc), asm,
[(set RC:$dst, (OpNode (VT RC:$src1),
(ld_frag addr:$src2), imm:$cc))],
itins.rm>,
Sched<[itins.Sched.Folded, ReadAfterLd]>;
// Accept explicit immediate argument form instead of comparison code.
let isAsmParserOnly = 1, hasSideEffects = 0 in {
def rr_alt : SIi8<0xC2, MRMSrcReg, (outs RC:$dst),
(ins RC:$src1, RC:$src2, i8imm:$cc), asm_alt, [],
IIC_SSE_ALU_F32S_RR>, Sched<[itins.Sched]>;
let mayLoad = 1 in
def rm_alt : SIi8<0xC2, MRMSrcMem, (outs RC:$dst),
(ins RC:$src1, x86memop:$src2, i8imm:$cc), asm_alt, [],
IIC_SSE_ALU_F32S_RM>,
Sched<[itins.Sched.Folded, ReadAfterLd]>;
}
}
defm VCMPSS : sse12_cmp_scalar<FR32, f32mem, AVXCC, X86cmps, f32, loadf32,
"cmp${cc}ss\t{$src2, $src1, $dst|$dst, $src1, $src2}",
"cmpss\t{$cc, $src2, $src1, $dst|$dst, $src1, $src2, $cc}",
SSE_ALU_F32S>,
XS, VEX_4V, VEX_LIG;
defm VCMPSD : sse12_cmp_scalar<FR64, f64mem, AVXCC, X86cmps, f64, loadf64,
"cmp${cc}sd\t{$src2, $src1, $dst|$dst, $src1, $src2}",
"cmpsd\t{$cc, $src2, $src1, $dst|$dst, $src1, $src2, $cc}",
SSE_ALU_F32S>, // same latency as 32 bit compare
XD, VEX_4V, VEX_LIG;
let Constraints = "$src1 = $dst" in {
defm CMPSS : sse12_cmp_scalar<FR32, f32mem, SSECC, X86cmps, f32, loadf32,
"cmp${cc}ss\t{$src2, $dst|$dst, $src2}",
"cmpss\t{$cc, $src2, $dst|$dst, $src2, $cc}", SSE_ALU_F32S>,
XS;
defm CMPSD : sse12_cmp_scalar<FR64, f64mem, SSECC, X86cmps, f64, loadf64,
"cmp${cc}sd\t{$src2, $dst|$dst, $src2}",
"cmpsd\t{$cc, $src2, $dst|$dst, $src2, $cc}",
SSE_ALU_F64S>,
XD;
}
multiclass sse12_cmp_scalar_int<X86MemOperand x86memop, Operand CC,
Intrinsic Int, string asm, OpndItins itins> {
def rr : SIi8<0xC2, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src, CC:$cc), asm,
[(set VR128:$dst, (Int VR128:$src1,
VR128:$src, imm:$cc))],
itins.rr>,
Sched<[itins.Sched]>;
def rm : SIi8<0xC2, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, x86memop:$src, CC:$cc), asm,
[(set VR128:$dst, (Int VR128:$src1,
(load addr:$src), imm:$cc))],
itins.rm>,
Sched<[itins.Sched.Folded, ReadAfterLd]>;
}
let isCodeGenOnly = 1 in {
// Aliases to match intrinsics which expect XMM operand(s).
defm Int_VCMPSS : sse12_cmp_scalar_int<f32mem, AVXCC, int_x86_sse_cmp_ss,
"cmp${cc}ss\t{$src, $src1, $dst|$dst, $src1, $src}",
SSE_ALU_F32S>,
XS, VEX_4V;
defm Int_VCMPSD : sse12_cmp_scalar_int<f64mem, AVXCC, int_x86_sse2_cmp_sd,
"cmp${cc}sd\t{$src, $src1, $dst|$dst, $src1, $src}",
SSE_ALU_F32S>, // same latency as f32
XD, VEX_4V;
let Constraints = "$src1 = $dst" in {
defm Int_CMPSS : sse12_cmp_scalar_int<f32mem, SSECC, int_x86_sse_cmp_ss,
"cmp${cc}ss\t{$src, $dst|$dst, $src}",
SSE_ALU_F32S>, XS;
defm Int_CMPSD : sse12_cmp_scalar_int<f64mem, SSECC, int_x86_sse2_cmp_sd,
"cmp${cc}sd\t{$src, $dst|$dst, $src}",
SSE_ALU_F64S>,
XD;
}
}
// sse12_ord_cmp - Unordered/Ordered scalar fp compare and set EFLAGS
multiclass sse12_ord_cmp<bits<8> opc, RegisterClass RC, SDNode OpNode,
ValueType vt, X86MemOperand x86memop,
PatFrag ld_frag, string OpcodeStr> {
def rr: SI<opc, MRMSrcReg, (outs), (ins RC:$src1, RC:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1|$src1, $src2}"),
[(set EFLAGS, (OpNode (vt RC:$src1), RC:$src2))],
IIC_SSE_COMIS_RR>,
Sched<[WriteFAdd]>;
def rm: SI<opc, MRMSrcMem, (outs), (ins RC:$src1, x86memop:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1|$src1, $src2}"),
[(set EFLAGS, (OpNode (vt RC:$src1),
(ld_frag addr:$src2)))],
IIC_SSE_COMIS_RM>,
Sched<[WriteFAddLd, ReadAfterLd]>;
}
let Defs = [EFLAGS] in {
defm VUCOMISS : sse12_ord_cmp<0x2E, FR32, X86cmp, f32, f32mem, loadf32,
"ucomiss">, PS, VEX, VEX_LIG;
defm VUCOMISD : sse12_ord_cmp<0x2E, FR64, X86cmp, f64, f64mem, loadf64,
"ucomisd">, PD, VEX, VEX_LIG;
let Pattern = []<dag> in {
defm VCOMISS : sse12_ord_cmp<0x2F, VR128, undef, v4f32, f128mem, load,
"comiss">, PS, VEX, VEX_LIG;
defm VCOMISD : sse12_ord_cmp<0x2F, VR128, undef, v2f64, f128mem, load,
"comisd">, PD, VEX, VEX_LIG;
}
let isCodeGenOnly = 1 in {
defm Int_VUCOMISS : sse12_ord_cmp<0x2E, VR128, X86ucomi, v4f32, f128mem,
load, "ucomiss">, PS, VEX;
defm Int_VUCOMISD : sse12_ord_cmp<0x2E, VR128, X86ucomi, v2f64, f128mem,
load, "ucomisd">, PD, VEX;
defm Int_VCOMISS : sse12_ord_cmp<0x2F, VR128, X86comi, v4f32, f128mem,
load, "comiss">, PS, VEX;
defm Int_VCOMISD : sse12_ord_cmp<0x2F, VR128, X86comi, v2f64, f128mem,
load, "comisd">, PD, VEX;
}
defm UCOMISS : sse12_ord_cmp<0x2E, FR32, X86cmp, f32, f32mem, loadf32,
"ucomiss">, PS;
defm UCOMISD : sse12_ord_cmp<0x2E, FR64, X86cmp, f64, f64mem, loadf64,
"ucomisd">, PD;
let Pattern = []<dag> in {
defm COMISS : sse12_ord_cmp<0x2F, VR128, undef, v4f32, f128mem, load,
"comiss">, PS;
defm COMISD : sse12_ord_cmp<0x2F, VR128, undef, v2f64, f128mem, load,
"comisd">, PD;
}
let isCodeGenOnly = 1 in {
defm Int_UCOMISS : sse12_ord_cmp<0x2E, VR128, X86ucomi, v4f32, f128mem,
load, "ucomiss">, PS;
defm Int_UCOMISD : sse12_ord_cmp<0x2E, VR128, X86ucomi, v2f64, f128mem,
load, "ucomisd">, PD;
defm Int_COMISS : sse12_ord_cmp<0x2F, VR128, X86comi, v4f32, f128mem, load,
"comiss">, PS;
defm Int_COMISD : sse12_ord_cmp<0x2F, VR128, X86comi, v2f64, f128mem, load,
"comisd">, PD;
}
} // Defs = [EFLAGS]
// sse12_cmp_packed - sse 1 & 2 compare packed instructions
multiclass sse12_cmp_packed<RegisterClass RC, X86MemOperand x86memop,
Operand CC, Intrinsic Int, string asm,
string asm_alt, Domain d,
OpndItins itins = SSE_ALU_F32P> {
def rri : PIi8<0xC2, MRMSrcReg,
(outs RC:$dst), (ins RC:$src1, RC:$src2, CC:$cc), asm,
[(set RC:$dst, (Int RC:$src1, RC:$src2, imm:$cc))],
itins.rr, d>,
Sched<[WriteFAdd]>;
def rmi : PIi8<0xC2, MRMSrcMem,
(outs RC:$dst), (ins RC:$src1, x86memop:$src2, CC:$cc), asm,
[(set RC:$dst, (Int RC:$src1, (memop addr:$src2), imm:$cc))],
itins.rm, d>,
Sched<[WriteFAddLd, ReadAfterLd]>;
// Accept explicit immediate argument form instead of comparison code.
let isAsmParserOnly = 1, hasSideEffects = 0 in {
def rri_alt : PIi8<0xC2, MRMSrcReg,
(outs RC:$dst), (ins RC:$src1, RC:$src2, i8imm:$cc),
asm_alt, [], itins.rr, d>, Sched<[WriteFAdd]>;
def rmi_alt : PIi8<0xC2, MRMSrcMem,
(outs RC:$dst), (ins RC:$src1, x86memop:$src2, i8imm:$cc),
asm_alt, [], itins.rm, d>,
Sched<[WriteFAddLd, ReadAfterLd]>;
}
}
defm VCMPPS : sse12_cmp_packed<VR128, f128mem, AVXCC, int_x86_sse_cmp_ps,
"cmp${cc}ps\t{$src2, $src1, $dst|$dst, $src1, $src2}",
"cmpps\t{$cc, $src2, $src1, $dst|$dst, $src1, $src2, $cc}",
SSEPackedSingle>, PS, VEX_4V;
defm VCMPPD : sse12_cmp_packed<VR128, f128mem, AVXCC, int_x86_sse2_cmp_pd,
"cmp${cc}pd\t{$src2, $src1, $dst|$dst, $src1, $src2}",
"cmppd\t{$cc, $src2, $src1, $dst|$dst, $src1, $src2, $cc}",
SSEPackedDouble>, PD, VEX_4V;
defm VCMPPSY : sse12_cmp_packed<VR256, f256mem, AVXCC, int_x86_avx_cmp_ps_256,
"cmp${cc}ps\t{$src2, $src1, $dst|$dst, $src1, $src2}",
"cmpps\t{$cc, $src2, $src1, $dst|$dst, $src1, $src2, $cc}",
SSEPackedSingle>, PS, VEX_4V, VEX_L;
defm VCMPPDY : sse12_cmp_packed<VR256, f256mem, AVXCC, int_x86_avx_cmp_pd_256,
"cmp${cc}pd\t{$src2, $src1, $dst|$dst, $src1, $src2}",
"cmppd\t{$cc, $src2, $src1, $dst|$dst, $src1, $src2, $cc}",
SSEPackedDouble>, PD, VEX_4V, VEX_L;
let Constraints = "$src1 = $dst" in {
defm CMPPS : sse12_cmp_packed<VR128, f128mem, SSECC, int_x86_sse_cmp_ps,
"cmp${cc}ps\t{$src2, $dst|$dst, $src2}",
"cmpps\t{$cc, $src2, $dst|$dst, $src2, $cc}",
SSEPackedSingle, SSE_ALU_F32P>, PS;
defm CMPPD : sse12_cmp_packed<VR128, f128mem, SSECC, int_x86_sse2_cmp_pd,
"cmp${cc}pd\t{$src2, $dst|$dst, $src2}",
"cmppd\t{$cc, $src2, $dst|$dst, $src2, $cc}",
SSEPackedDouble, SSE_ALU_F64P>, PD;
}
let Predicates = [HasAVX] in {
def : Pat<(v4i32 (X86cmpp (v4f32 VR128:$src1), VR128:$src2, imm:$cc)),
(VCMPPSrri (v4f32 VR128:$src1), (v4f32 VR128:$src2), imm:$cc)>;
def : Pat<(v4i32 (X86cmpp (v4f32 VR128:$src1), (memop addr:$src2), imm:$cc)),
(VCMPPSrmi (v4f32 VR128:$src1), addr:$src2, imm:$cc)>;
def : Pat<(v2i64 (X86cmpp (v2f64 VR128:$src1), VR128:$src2, imm:$cc)),
(VCMPPDrri VR128:$src1, VR128:$src2, imm:$cc)>;
def : Pat<(v2i64 (X86cmpp (v2f64 VR128:$src1), (memop addr:$src2), imm:$cc)),
(VCMPPDrmi VR128:$src1, addr:$src2, imm:$cc)>;
def : Pat<(v8i32 (X86cmpp (v8f32 VR256:$src1), VR256:$src2, imm:$cc)),
(VCMPPSYrri (v8f32 VR256:$src1), (v8f32 VR256:$src2), imm:$cc)>;
def : Pat<(v8i32 (X86cmpp (v8f32 VR256:$src1), (memop addr:$src2), imm:$cc)),
(VCMPPSYrmi (v8f32 VR256:$src1), addr:$src2, imm:$cc)>;
def : Pat<(v4i64 (X86cmpp (v4f64 VR256:$src1), VR256:$src2, imm:$cc)),
(VCMPPDYrri VR256:$src1, VR256:$src2, imm:$cc)>;
def : Pat<(v4i64 (X86cmpp (v4f64 VR256:$src1), (memop addr:$src2), imm:$cc)),
(VCMPPDYrmi VR256:$src1, addr:$src2, imm:$cc)>;
}
let Predicates = [UseSSE1] in {
def : Pat<(v4i32 (X86cmpp (v4f32 VR128:$src1), VR128:$src2, imm:$cc)),
(CMPPSrri (v4f32 VR128:$src1), (v4f32 VR128:$src2), imm:$cc)>;
def : Pat<(v4i32 (X86cmpp (v4f32 VR128:$src1), (memop addr:$src2), imm:$cc)),
(CMPPSrmi (v4f32 VR128:$src1), addr:$src2, imm:$cc)>;
}
let Predicates = [UseSSE2] in {
def : Pat<(v2i64 (X86cmpp (v2f64 VR128:$src1), VR128:$src2, imm:$cc)),
(CMPPDrri VR128:$src1, VR128:$src2, imm:$cc)>;
def : Pat<(v2i64 (X86cmpp (v2f64 VR128:$src1), (memop addr:$src2), imm:$cc)),
(CMPPDrmi VR128:$src1, addr:$src2, imm:$cc)>;
}
//===----------------------------------------------------------------------===//
// SSE 1 & 2 - Shuffle Instructions
//===----------------------------------------------------------------------===//
/// sse12_shuffle - sse 1 & 2 fp shuffle instructions
multiclass sse12_shuffle<RegisterClass RC, X86MemOperand x86memop,
ValueType vt, string asm, PatFrag mem_frag,
Domain d, bit IsConvertibleToThreeAddress = 0> {
def rmi : PIi8<0xC6, MRMSrcMem, (outs RC:$dst),
(ins RC:$src1, x86memop:$src2, i8imm:$src3), asm,
[(set RC:$dst, (vt (X86Shufp RC:$src1, (mem_frag addr:$src2),
(i8 imm:$src3))))], IIC_SSE_SHUFP, d>,
Sched<[WriteFShuffleLd, ReadAfterLd]>;
let isConvertibleToThreeAddress = IsConvertibleToThreeAddress in
def rri : PIi8<0xC6, MRMSrcReg, (outs RC:$dst),
(ins RC:$src1, RC:$src2, i8imm:$src3), asm,
[(set RC:$dst, (vt (X86Shufp RC:$src1, RC:$src2,
(i8 imm:$src3))))], IIC_SSE_SHUFP, d>,
Sched<[WriteFShuffle]>;
}
defm VSHUFPS : sse12_shuffle<VR128, f128mem, v4f32,
"shufps\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
loadv4f32, SSEPackedSingle>, PS, VEX_4V;
defm VSHUFPSY : sse12_shuffle<VR256, f256mem, v8f32,
"shufps\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
loadv8f32, SSEPackedSingle>, PS, VEX_4V, VEX_L;
defm VSHUFPD : sse12_shuffle<VR128, f128mem, v2f64,
"shufpd\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
loadv2f64, SSEPackedDouble>, PD, VEX_4V;
defm VSHUFPDY : sse12_shuffle<VR256, f256mem, v4f64,
"shufpd\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
loadv4f64, SSEPackedDouble>, PD, VEX_4V, VEX_L;
let Constraints = "$src1 = $dst" in {
defm SHUFPS : sse12_shuffle<VR128, f128mem, v4f32,
"shufps\t{$src3, $src2, $dst|$dst, $src2, $src3}",
memopv4f32, SSEPackedSingle, 1 /* cvt to pshufd */>, PS;
defm SHUFPD : sse12_shuffle<VR128, f128mem, v2f64,
"shufpd\t{$src3, $src2, $dst|$dst, $src2, $src3}",
memopv2f64, SSEPackedDouble, 1 /* cvt to pshufd */>, PD;
}
let Predicates = [HasAVX] in {
def : Pat<(v4i32 (X86Shufp VR128:$src1,
(bc_v4i32 (loadv2i64 addr:$src2)), (i8 imm:$imm))),
(VSHUFPSrmi VR128:$src1, addr:$src2, imm:$imm)>;
def : Pat<(v4i32 (X86Shufp VR128:$src1, VR128:$src2, (i8 imm:$imm))),
(VSHUFPSrri VR128:$src1, VR128:$src2, imm:$imm)>;
def : Pat<(v2i64 (X86Shufp VR128:$src1,
(loadv2i64 addr:$src2), (i8 imm:$imm))),
(VSHUFPDrmi VR128:$src1, addr:$src2, imm:$imm)>;
def : Pat<(v2i64 (X86Shufp VR128:$src1, VR128:$src2, (i8 imm:$imm))),
(VSHUFPDrri VR128:$src1, VR128:$src2, imm:$imm)>;
// 256-bit patterns
def : Pat<(v8i32 (X86Shufp VR256:$src1, VR256:$src2, (i8 imm:$imm))),
(VSHUFPSYrri VR256:$src1, VR256:$src2, imm:$imm)>;
def : Pat<(v8i32 (X86Shufp VR256:$src1,
(bc_v8i32 (loadv4i64 addr:$src2)), (i8 imm:$imm))),
(VSHUFPSYrmi VR256:$src1, addr:$src2, imm:$imm)>;
def : Pat<(v4i64 (X86Shufp VR256:$src1, VR256:$src2, (i8 imm:$imm))),
(VSHUFPDYrri VR256:$src1, VR256:$src2, imm:$imm)>;
def : Pat<(v4i64 (X86Shufp VR256:$src1,
(loadv4i64 addr:$src2), (i8 imm:$imm))),
(VSHUFPDYrmi VR256:$src1, addr:$src2, imm:$imm)>;
}
let Predicates = [UseSSE1] in {
def : Pat<(v4i32 (X86Shufp VR128:$src1,
(bc_v4i32 (memopv2i64 addr:$src2)), (i8 imm:$imm))),
(SHUFPSrmi VR128:$src1, addr:$src2, imm:$imm)>;
def : Pat<(v4i32 (X86Shufp VR128:$src1, VR128:$src2, (i8 imm:$imm))),
(SHUFPSrri VR128:$src1, VR128:$src2, imm:$imm)>;
}
let Predicates = [UseSSE2] in {
// Generic SHUFPD patterns
def : Pat<(v2i64 (X86Shufp VR128:$src1,
(memopv2i64 addr:$src2), (i8 imm:$imm))),
(SHUFPDrmi VR128:$src1, addr:$src2, imm:$imm)>;
def : Pat<(v2i64 (X86Shufp VR128:$src1, VR128:$src2, (i8 imm:$imm))),
(SHUFPDrri VR128:$src1, VR128:$src2, imm:$imm)>;
}
//===----------------------------------------------------------------------===//
// SSE 1 & 2 - Unpack FP Instructions
//===----------------------------------------------------------------------===//
/// sse12_unpack_interleave - sse 1 & 2 fp unpack and interleave
multiclass sse12_unpack_interleave<bits<8> opc, SDNode OpNode, ValueType vt,
PatFrag mem_frag, RegisterClass RC,
X86MemOperand x86memop, string asm,
Domain d> {
def rr : PI<opc, MRMSrcReg,
(outs RC:$dst), (ins RC:$src1, RC:$src2),
asm, [(set RC:$dst,
(vt (OpNode RC:$src1, RC:$src2)))],
IIC_SSE_UNPCK, d>, Sched<[WriteFShuffle]>;
def rm : PI<opc, MRMSrcMem,
(outs RC:$dst), (ins RC:$src1, x86memop:$src2),
asm, [(set RC:$dst,
(vt (OpNode RC:$src1,
(mem_frag addr:$src2))))],
IIC_SSE_UNPCK, d>,
Sched<[WriteFShuffleLd, ReadAfterLd]>;
}
defm VUNPCKHPS: sse12_unpack_interleave<0x15, X86Unpckh, v4f32, loadv4f32,
VR128, f128mem, "unpckhps\t{$src2, $src1, $dst|$dst, $src1, $src2}",
SSEPackedSingle>, PS, VEX_4V;
defm VUNPCKHPD: sse12_unpack_interleave<0x15, X86Unpckh, v2f64, loadv2f64,
VR128, f128mem, "unpckhpd\t{$src2, $src1, $dst|$dst, $src1, $src2}",
SSEPackedDouble>, PD, VEX_4V;
defm VUNPCKLPS: sse12_unpack_interleave<0x14, X86Unpckl, v4f32, loadv4f32,
VR128, f128mem, "unpcklps\t{$src2, $src1, $dst|$dst, $src1, $src2}",
SSEPackedSingle>, PS, VEX_4V;
defm VUNPCKLPD: sse12_unpack_interleave<0x14, X86Unpckl, v2f64, loadv2f64,
VR128, f128mem, "unpcklpd\t{$src2, $src1, $dst|$dst, $src1, $src2}",
SSEPackedDouble>, PD, VEX_4V;
defm VUNPCKHPSY: sse12_unpack_interleave<0x15, X86Unpckh, v8f32, loadv8f32,
VR256, f256mem, "unpckhps\t{$src2, $src1, $dst|$dst, $src1, $src2}",
SSEPackedSingle>, PS, VEX_4V, VEX_L;
defm VUNPCKHPDY: sse12_unpack_interleave<0x15, X86Unpckh, v4f64, loadv4f64,
VR256, f256mem, "unpckhpd\t{$src2, $src1, $dst|$dst, $src1, $src2}",
SSEPackedDouble>, PD, VEX_4V, VEX_L;
defm VUNPCKLPSY: sse12_unpack_interleave<0x14, X86Unpckl, v8f32, loadv8f32,
VR256, f256mem, "unpcklps\t{$src2, $src1, $dst|$dst, $src1, $src2}",
SSEPackedSingle>, PS, VEX_4V, VEX_L;
defm VUNPCKLPDY: sse12_unpack_interleave<0x14, X86Unpckl, v4f64, loadv4f64,
VR256, f256mem, "unpcklpd\t{$src2, $src1, $dst|$dst, $src1, $src2}",
SSEPackedDouble>, PD, VEX_4V, VEX_L;
let Constraints = "$src1 = $dst" in {
defm UNPCKHPS: sse12_unpack_interleave<0x15, X86Unpckh, v4f32, memopv4f32,
VR128, f128mem, "unpckhps\t{$src2, $dst|$dst, $src2}",
SSEPackedSingle>, PS;
defm UNPCKHPD: sse12_unpack_interleave<0x15, X86Unpckh, v2f64, memopv2f64,
VR128, f128mem, "unpckhpd\t{$src2, $dst|$dst, $src2}",
SSEPackedDouble>, PD;
defm UNPCKLPS: sse12_unpack_interleave<0x14, X86Unpckl, v4f32, memopv4f32,
VR128, f128mem, "unpcklps\t{$src2, $dst|$dst, $src2}",
SSEPackedSingle>, PS;
defm UNPCKLPD: sse12_unpack_interleave<0x14, X86Unpckl, v2f64, memopv2f64,
VR128, f128mem, "unpcklpd\t{$src2, $dst|$dst, $src2}",
SSEPackedDouble>, PD;
} // Constraints = "$src1 = $dst"
let Predicates = [HasAVX1Only] in {
def : Pat<(v8i32 (X86Unpckl VR256:$src1, (bc_v8i32 (loadv4i64 addr:$src2)))),
(VUNPCKLPSYrm VR256:$src1, addr:$src2)>;
def : Pat<(v8i32 (X86Unpckl VR256:$src1, VR256:$src2)),
(VUNPCKLPSYrr VR256:$src1, VR256:$src2)>;
def : Pat<(v8i32 (X86Unpckh VR256:$src1, (bc_v8i32 (loadv4i64 addr:$src2)))),
(VUNPCKHPSYrm VR256:$src1, addr:$src2)>;
def : Pat<(v8i32 (X86Unpckh VR256:$src1, VR256:$src2)),
(VUNPCKHPSYrr VR256:$src1, VR256:$src2)>;
def : Pat<(v4i64 (X86Unpckl VR256:$src1, (loadv4i64 addr:$src2))),
(VUNPCKLPDYrm VR256:$src1, addr:$src2)>;
def : Pat<(v4i64 (X86Unpckl VR256:$src1, VR256:$src2)),
(VUNPCKLPDYrr VR256:$src1, VR256:$src2)>;
def : Pat<(v4i64 (X86Unpckh VR256:$src1, (loadv4i64 addr:$src2))),
(VUNPCKHPDYrm VR256:$src1, addr:$src2)>;
def : Pat<(v4i64 (X86Unpckh VR256:$src1, VR256:$src2)),
(VUNPCKHPDYrr VR256:$src1, VR256:$src2)>;
}
let Predicates = [HasAVX] in {
// FIXME: Instead of X86Movddup, there should be a X86Unpckl here, the
// problem is during lowering, where it's not possible to recognize the load
// fold cause it has two uses through a bitcast. One use disappears at isel
// time and the fold opportunity reappears.
def : Pat<(v2f64 (X86Movddup VR128:$src)),
(VUNPCKLPDrr VR128:$src, VR128:$src)>;
}
let Predicates = [UseSSE2] in {
// FIXME: Instead of X86Movddup, there should be a X86Unpckl here, the
// problem is during lowering, where it's not possible to recognize the load
// fold cause it has two uses through a bitcast. One use disappears at isel
// time and the fold opportunity reappears.
def : Pat<(v2f64 (X86Movddup VR128:$src)),
(UNPCKLPDrr VR128:$src, VR128:$src)>;
}
//===----------------------------------------------------------------------===//
// SSE 1 & 2 - Extract Floating-Point Sign mask
//===----------------------------------------------------------------------===//
/// sse12_extr_sign_mask - sse 1 & 2 unpack and interleave
multiclass sse12_extr_sign_mask<RegisterClass RC, Intrinsic Int, string asm,
Domain d> {
def rr : PI<0x50, MRMSrcReg, (outs GR32orGR64:$dst), (ins RC:$src),
!strconcat(asm, "\t{$src, $dst|$dst, $src}"),
[(set GR32orGR64:$dst, (Int RC:$src))], IIC_SSE_MOVMSK, d>,
Sched<[WriteVecLogic]>;
}
let Predicates = [HasAVX] in {
defm VMOVMSKPS : sse12_extr_sign_mask<VR128, int_x86_sse_movmsk_ps,
"movmskps", SSEPackedSingle>, PS, VEX;
defm VMOVMSKPD : sse12_extr_sign_mask<VR128, int_x86_sse2_movmsk_pd,
"movmskpd", SSEPackedDouble>, PD, VEX;
defm VMOVMSKPSY : sse12_extr_sign_mask<VR256, int_x86_avx_movmsk_ps_256,
"movmskps", SSEPackedSingle>, PS,
VEX, VEX_L;
defm VMOVMSKPDY : sse12_extr_sign_mask<VR256, int_x86_avx_movmsk_pd_256,
"movmskpd", SSEPackedDouble>, PD,
VEX, VEX_L;
def : Pat<(i32 (X86fgetsign FR32:$src)),
(VMOVMSKPSrr (COPY_TO_REGCLASS FR32:$src, VR128))>;
def : Pat<(i64 (X86fgetsign FR32:$src)),
(SUBREG_TO_REG (i64 0),
(VMOVMSKPSrr (COPY_TO_REGCLASS FR32:$src, VR128)), sub_32bit)>;
def : Pat<(i32 (X86fgetsign FR64:$src)),
(VMOVMSKPDrr (COPY_TO_REGCLASS FR64:$src, VR128))>;
def : Pat<(i64 (X86fgetsign FR64:$src)),
(SUBREG_TO_REG (i64 0),
(VMOVMSKPDrr (COPY_TO_REGCLASS FR64:$src, VR128)), sub_32bit)>;
}
defm MOVMSKPS : sse12_extr_sign_mask<VR128, int_x86_sse_movmsk_ps, "movmskps",
SSEPackedSingle>, PS;
defm MOVMSKPD : sse12_extr_sign_mask<VR128, int_x86_sse2_movmsk_pd, "movmskpd",
SSEPackedDouble>, PD;
def : Pat<(i32 (X86fgetsign FR32:$src)),
(MOVMSKPSrr (COPY_TO_REGCLASS FR32:$src, VR128))>,
Requires<[UseSSE1]>;
def : Pat<(i64 (X86fgetsign FR32:$src)),
(SUBREG_TO_REG (i64 0),
(MOVMSKPSrr (COPY_TO_REGCLASS FR32:$src, VR128)), sub_32bit)>,
Requires<[UseSSE1]>;
def : Pat<(i32 (X86fgetsign FR64:$src)),
(MOVMSKPDrr (COPY_TO_REGCLASS FR64:$src, VR128))>,
Requires<[UseSSE2]>;
def : Pat<(i64 (X86fgetsign FR64:$src)),
(SUBREG_TO_REG (i64 0),
(MOVMSKPDrr (COPY_TO_REGCLASS FR64:$src, VR128)), sub_32bit)>,
Requires<[UseSSE2]>;
//===---------------------------------------------------------------------===//
// SSE2 - Packed Integer Logical Instructions
//===---------------------------------------------------------------------===//
let ExeDomain = SSEPackedInt in { // SSE integer instructions
/// PDI_binop_rm - Simple SSE2 binary operator.
multiclass PDI_binop_rm<bits<8> opc, string OpcodeStr, SDNode OpNode,
ValueType OpVT, RegisterClass RC, PatFrag memop_frag,
X86MemOperand x86memop, OpndItins itins,
bit IsCommutable, bit Is2Addr> {
let isCommutable = IsCommutable in
def rr : PDI<opc, MRMSrcReg, (outs RC:$dst),
(ins RC:$src1, RC:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set RC:$dst, (OpVT (OpNode RC:$src1, RC:$src2)))], itins.rr>,
Sched<[itins.Sched]>;
def rm : PDI<opc, MRMSrcMem, (outs RC:$dst),
(ins RC:$src1, x86memop:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set RC:$dst, (OpVT (OpNode RC:$src1,
(bitconvert (memop_frag addr:$src2)))))],
itins.rm>,
Sched<[itins.Sched.Folded, ReadAfterLd]>;
}
} // ExeDomain = SSEPackedInt
multiclass PDI_binop_all<bits<8> opc, string OpcodeStr, SDNode Opcode,
ValueType OpVT128, ValueType OpVT256,
OpndItins itins, bit IsCommutable = 0> {
let Predicates = [HasAVX] in
defm V#NAME : PDI_binop_rm<opc, !strconcat("v", OpcodeStr), Opcode, OpVT128,
VR128, loadv2i64, i128mem, itins, IsCommutable, 0>, VEX_4V;
let Constraints = "$src1 = $dst" in
defm NAME : PDI_binop_rm<opc, OpcodeStr, Opcode, OpVT128, VR128,
memopv2i64, i128mem, itins, IsCommutable, 1>;
let Predicates = [HasAVX2] in
defm V#NAME#Y : PDI_binop_rm<opc, !strconcat("v", OpcodeStr), Opcode,
OpVT256, VR256, loadv4i64, i256mem, itins,
IsCommutable, 0>, VEX_4V, VEX_L;
}
// These are ordered here for pattern ordering requirements with the fp versions
defm PAND : PDI_binop_all<0xDB, "pand", and, v2i64, v4i64,
SSE_VEC_BIT_ITINS_P, 1>;
defm POR : PDI_binop_all<0xEB, "por", or, v2i64, v4i64,
SSE_VEC_BIT_ITINS_P, 1>;
defm PXOR : PDI_binop_all<0xEF, "pxor", xor, v2i64, v4i64,
SSE_VEC_BIT_ITINS_P, 1>;
defm PANDN : PDI_binop_all<0xDF, "pandn", X86andnp, v2i64, v4i64,
SSE_VEC_BIT_ITINS_P, 0>;
//===----------------------------------------------------------------------===//
// SSE 1 & 2 - Logical Instructions
//===----------------------------------------------------------------------===//
/// sse12_fp_alias_pack_logical - SSE 1 & 2 aliased packed FP logical ops
///
multiclass sse12_fp_alias_pack_logical<bits<8> opc, string OpcodeStr,
SDNode OpNode, OpndItins itins> {
defm V#NAME#PS : sse12_fp_packed<opc, !strconcat(OpcodeStr, "ps"), OpNode,
FR32, f32, f128mem, memopfsf32, SSEPackedSingle, itins, 0>,
PS, VEX_4V;
defm V#NAME#PD : sse12_fp_packed<opc, !strconcat(OpcodeStr, "pd"), OpNode,
FR64, f64, f128mem, memopfsf64, SSEPackedDouble, itins, 0>,
PD, VEX_4V;
let Constraints = "$src1 = $dst" in {
defm PS : sse12_fp_packed<opc, !strconcat(OpcodeStr, "ps"), OpNode, FR32,
f32, f128mem, memopfsf32, SSEPackedSingle, itins>,
PS;
defm PD : sse12_fp_packed<opc, !strconcat(OpcodeStr, "pd"), OpNode, FR64,
f64, f128mem, memopfsf64, SSEPackedDouble, itins>,
PD;
}
}
// Alias bitwise logical operations using SSE logical ops on packed FP values.
let isCodeGenOnly = 1 in {
defm FsAND : sse12_fp_alias_pack_logical<0x54, "and", X86fand,
SSE_BIT_ITINS_P>;
defm FsOR : sse12_fp_alias_pack_logical<0x56, "or", X86for,
SSE_BIT_ITINS_P>;
defm FsXOR : sse12_fp_alias_pack_logical<0x57, "xor", X86fxor,
SSE_BIT_ITINS_P>;
let isCommutable = 0 in
defm FsANDN : sse12_fp_alias_pack_logical<0x55, "andn", X86fandn,
SSE_BIT_ITINS_P>;
}
/// sse12_fp_packed_logical - SSE 1 & 2 packed FP logical ops
///
multiclass sse12_fp_packed_logical<bits<8> opc, string OpcodeStr,
SDNode OpNode> {
defm V#NAME#PSY : sse12_fp_packed_logical_rm<opc, VR256, SSEPackedSingle,
!strconcat(OpcodeStr, "ps"), f256mem,
[(set VR256:$dst, (v4i64 (OpNode VR256:$src1, VR256:$src2)))],
[(set VR256:$dst, (OpNode (bc_v4i64 (v8f32 VR256:$src1)),
(loadv4i64 addr:$src2)))], 0>, PS, VEX_4V, VEX_L;
defm V#NAME#PDY : sse12_fp_packed_logical_rm<opc, VR256, SSEPackedDouble,
!strconcat(OpcodeStr, "pd"), f256mem,
[(set VR256:$dst, (OpNode (bc_v4i64 (v4f64 VR256:$src1)),
(bc_v4i64 (v4f64 VR256:$src2))))],
[(set VR256:$dst, (OpNode (bc_v4i64 (v4f64 VR256:$src1)),
(loadv4i64 addr:$src2)))], 0>,
PD, VEX_4V, VEX_L;
// In AVX no need to add a pattern for 128-bit logical rr ps, because they
// are all promoted to v2i64, and the patterns are covered by the int
// version. This is needed in SSE only, because v2i64 isn't supported on
// SSE1, but only on SSE2.
defm V#NAME#PS : sse12_fp_packed_logical_rm<opc, VR128, SSEPackedSingle,
!strconcat(OpcodeStr, "ps"), f128mem, [],
[(set VR128:$dst, (OpNode (bc_v2i64 (v4f32 VR128:$src1)),
(loadv2i64 addr:$src2)))], 0>, PS, VEX_4V;
defm V#NAME#PD : sse12_fp_packed_logical_rm<opc, VR128, SSEPackedDouble,
!strconcat(OpcodeStr, "pd"), f128mem,
[(set VR128:$dst, (OpNode (bc_v2i64 (v2f64 VR128:$src1)),
(bc_v2i64 (v2f64 VR128:$src2))))],
[(set VR128:$dst, (OpNode (bc_v2i64 (v2f64 VR128:$src1)),
(loadv2i64 addr:$src2)))], 0>,
PD, VEX_4V;
let Constraints = "$src1 = $dst" in {
defm PS : sse12_fp_packed_logical_rm<opc, VR128, SSEPackedSingle,
!strconcat(OpcodeStr, "ps"), f128mem,
[(set VR128:$dst, (v2i64 (OpNode VR128:$src1, VR128:$src2)))],
[(set VR128:$dst, (OpNode (bc_v2i64 (v4f32 VR128:$src1)),
(memopv2i64 addr:$src2)))]>, PS;
defm PD : sse12_fp_packed_logical_rm<opc, VR128, SSEPackedDouble,
!strconcat(OpcodeStr, "pd"), f128mem,
[(set VR128:$dst, (OpNode (bc_v2i64 (v2f64 VR128:$src1)),
(bc_v2i64 (v2f64 VR128:$src2))))],
[(set VR128:$dst, (OpNode (bc_v2i64 (v2f64 VR128:$src1)),
(memopv2i64 addr:$src2)))]>, PD;
}
}
defm AND : sse12_fp_packed_logical<0x54, "and", and>;
defm OR : sse12_fp_packed_logical<0x56, "or", or>;
defm XOR : sse12_fp_packed_logical<0x57, "xor", xor>;
let isCommutable = 0 in
defm ANDN : sse12_fp_packed_logical<0x55, "andn", X86andnp>;
// AVX1 requires type coercions in order to fold loads directly into logical
// operations.
let Predicates = [HasAVX1Only] in {
def : Pat<(bc_v8f32 (and VR256:$src1, (loadv4i64 addr:$src2))),
(VANDPSYrm VR256:$src1, addr:$src2)>;
def : Pat<(bc_v8f32 (or VR256:$src1, (loadv4i64 addr:$src2))),
(VORPSYrm VR256:$src1, addr:$src2)>;
def : Pat<(bc_v8f32 (xor VR256:$src1, (loadv4i64 addr:$src2))),
(VXORPSYrm VR256:$src1, addr:$src2)>;
def : Pat<(bc_v8f32 (X86andnp VR256:$src1, (loadv4i64 addr:$src2))),
(VANDNPSYrm VR256:$src1, addr:$src2)>;
}
//===----------------------------------------------------------------------===//
// SSE 1 & 2 - Arithmetic Instructions
//===----------------------------------------------------------------------===//
/// basic_sse12_fp_binop_xxx - SSE 1 & 2 binops come in both scalar and
/// vector forms.
///
/// In addition, we also have a special variant of the scalar form here to
/// represent the associated intrinsic operation. This form is unlike the
/// plain scalar form, in that it takes an entire vector (instead of a scalar)
/// and leaves the top elements unmodified (therefore these cannot be commuted).
///
/// These three forms can each be reg+reg or reg+mem.
///
/// FIXME: once all 256-bit intrinsics are matched, cleanup and refactor those
/// classes below
multiclass basic_sse12_fp_binop_p<bits<8> opc, string OpcodeStr,
SDNode OpNode, SizeItins itins> {
defm V#NAME#PS : sse12_fp_packed<opc, !strconcat(OpcodeStr, "ps"), OpNode,
VR128, v4f32, f128mem, loadv4f32,
SSEPackedSingle, itins.s, 0>, PS, VEX_4V;
defm V#NAME#PD : sse12_fp_packed<opc, !strconcat(OpcodeStr, "pd"), OpNode,
VR128, v2f64, f128mem, loadv2f64,
SSEPackedDouble, itins.d, 0>, PD, VEX_4V;
defm V#NAME#PSY : sse12_fp_packed<opc, !strconcat(OpcodeStr, "ps"),
OpNode, VR256, v8f32, f256mem, loadv8f32,
SSEPackedSingle, itins.s, 0>, PS, VEX_4V, VEX_L;
defm V#NAME#PDY : sse12_fp_packed<opc, !strconcat(OpcodeStr, "pd"),
OpNode, VR256, v4f64, f256mem, loadv4f64,
SSEPackedDouble, itins.d, 0>, PD, VEX_4V, VEX_L;
let Constraints = "$src1 = $dst" in {
defm PS : sse12_fp_packed<opc, !strconcat(OpcodeStr, "ps"), OpNode, VR128,
v4f32, f128mem, memopv4f32, SSEPackedSingle,
itins.s>, PS;
defm PD : sse12_fp_packed<opc, !strconcat(OpcodeStr, "pd"), OpNode, VR128,
v2f64, f128mem, memopv2f64, SSEPackedDouble,
itins.d>, PD;
}
}
multiclass basic_sse12_fp_binop_s<bits<8> opc, string OpcodeStr, SDNode OpNode,
SizeItins itins> {
defm V#NAME#SS : sse12_fp_scalar<opc, !strconcat(OpcodeStr, "ss"),
OpNode, FR32, f32mem, itins.s, 0>, XS, VEX_4V, VEX_LIG;
defm V#NAME#SD : sse12_fp_scalar<opc, !strconcat(OpcodeStr, "sd"),
OpNode, FR64, f64mem, itins.d, 0>, XD, VEX_4V, VEX_LIG;
let Constraints = "$src1 = $dst" in {
defm SS : sse12_fp_scalar<opc, !strconcat(OpcodeStr, "ss"),
OpNode, FR32, f32mem, itins.s>, XS;
defm SD : sse12_fp_scalar<opc, !strconcat(OpcodeStr, "sd"),
OpNode, FR64, f64mem, itins.d>, XD;
}
}
multiclass basic_sse12_fp_binop_s_int<bits<8> opc, string OpcodeStr,
SizeItins itins> {
defm V#NAME#SS : sse12_fp_scalar_int<opc, OpcodeStr, VR128,
!strconcat(OpcodeStr, "ss"), "", "_ss", ssmem, sse_load_f32,
itins.s, 0>, XS, VEX_4V, VEX_LIG;
defm V#NAME#SD : sse12_fp_scalar_int<opc, OpcodeStr, VR128,
!strconcat(OpcodeStr, "sd"), "2", "_sd", sdmem, sse_load_f64,
itins.d, 0>, XD, VEX_4V, VEX_LIG;
let Constraints = "$src1 = $dst" in {
defm SS : sse12_fp_scalar_int<opc, OpcodeStr, VR128,
!strconcat(OpcodeStr, "ss"), "", "_ss", ssmem, sse_load_f32,
itins.s>, XS;
defm SD : sse12_fp_scalar_int<opc, OpcodeStr, VR128,
!strconcat(OpcodeStr, "sd"), "2", "_sd", sdmem, sse_load_f64,
itins.d>, XD;
}
}
// Binary Arithmetic instructions
defm ADD : basic_sse12_fp_binop_p<0x58, "add", fadd, SSE_ALU_ITINS_P>,
basic_sse12_fp_binop_s<0x58, "add", fadd, SSE_ALU_ITINS_S>,
basic_sse12_fp_binop_s_int<0x58, "add", SSE_ALU_ITINS_S>;
defm MUL : basic_sse12_fp_binop_p<0x59, "mul", fmul, SSE_MUL_ITINS_P>,
basic_sse12_fp_binop_s<0x59, "mul", fmul, SSE_MUL_ITINS_S>,
basic_sse12_fp_binop_s_int<0x59, "mul", SSE_MUL_ITINS_S>;
let isCommutable = 0 in {
defm SUB : basic_sse12_fp_binop_p<0x5C, "sub", fsub, SSE_ALU_ITINS_P>,
basic_sse12_fp_binop_s<0x5C, "sub", fsub, SSE_ALU_ITINS_S>,
basic_sse12_fp_binop_s_int<0x5C, "sub", SSE_ALU_ITINS_S>;
defm DIV : basic_sse12_fp_binop_p<0x5E, "div", fdiv, SSE_DIV_ITINS_P>,
basic_sse12_fp_binop_s<0x5E, "div", fdiv, SSE_DIV_ITINS_S>,
basic_sse12_fp_binop_s_int<0x5E, "div", SSE_DIV_ITINS_S>;
defm MAX : basic_sse12_fp_binop_p<0x5F, "max", X86fmax, SSE_ALU_ITINS_P>,
basic_sse12_fp_binop_s<0x5F, "max", X86fmax, SSE_ALU_ITINS_S>,
basic_sse12_fp_binop_s_int<0x5F, "max", SSE_ALU_ITINS_S>;
defm MIN : basic_sse12_fp_binop_p<0x5D, "min", X86fmin, SSE_ALU_ITINS_P>,
basic_sse12_fp_binop_s<0x5D, "min", X86fmin, SSE_ALU_ITINS_S>,
basic_sse12_fp_binop_s_int<0x5D, "min", SSE_ALU_ITINS_S>;
}
let isCodeGenOnly = 1 in {
defm MAXC: basic_sse12_fp_binop_p<0x5F, "max", X86fmaxc, SSE_ALU_ITINS_P>,
basic_sse12_fp_binop_s<0x5F, "max", X86fmaxc, SSE_ALU_ITINS_S>;
defm MINC: basic_sse12_fp_binop_p<0x5D, "min", X86fminc, SSE_ALU_ITINS_P>,
basic_sse12_fp_binop_s<0x5D, "min", X86fminc, SSE_ALU_ITINS_S>;
}
// Patterns used to select SSE scalar fp arithmetic instructions from
// a scalar fp operation followed by a blend.
//
// These patterns know, for example, how to select an ADDSS from a
// float add plus vector insert.
//
// The effect is that the backend no longer emits unnecessary vector
// insert instructions immediately after SSE scalar fp instructions
// like addss or mulss.
//
// For example, given the following code:
// __m128 foo(__m128 A, __m128 B) {
// A[0] += B[0];
// return A;
// }
//
// previously we generated:
// addss %xmm0, %xmm1
// movss %xmm1, %xmm0
//
// we now generate:
// addss %xmm1, %xmm0
let Predicates = [UseSSE1] in {
def : Pat<(v4f32 (X86Movss (v4f32 VR128:$dst), (v4f32 (scalar_to_vector (fadd
(f32 (vector_extract (v4f32 VR128:$dst), (iPTR 0))),
FR32:$src))))),
(ADDSSrr_Int v4f32:$dst, (COPY_TO_REGCLASS FR32:$src, VR128))>;
def : Pat<(v4f32 (X86Movss (v4f32 VR128:$dst), (v4f32 (scalar_to_vector (fsub
(f32 (vector_extract (v4f32 VR128:$dst), (iPTR 0))),
FR32:$src))))),
(SUBSSrr_Int v4f32:$dst, (COPY_TO_REGCLASS FR32:$src, VR128))>;
def : Pat<(v4f32 (X86Movss (v4f32 VR128:$dst), (v4f32 (scalar_to_vector (fmul
(f32 (vector_extract (v4f32 VR128:$dst), (iPTR 0))),
FR32:$src))))),
(MULSSrr_Int v4f32:$dst, (COPY_TO_REGCLASS FR32:$src, VR128))>;
def : Pat<(v4f32 (X86Movss (v4f32 VR128:$dst), (v4f32 (scalar_to_vector (fdiv
(f32 (vector_extract (v4f32 VR128:$dst), (iPTR 0))),
FR32:$src))))),
(DIVSSrr_Int v4f32:$dst, (COPY_TO_REGCLASS FR32:$src, VR128))>;
}
let Predicates = [UseSSE2] in {
// SSE2 patterns to select scalar double-precision fp arithmetic instructions
def : Pat<(v2f64 (X86Movsd (v2f64 VR128:$dst), (v2f64 (scalar_to_vector (fadd
(f64 (vector_extract (v2f64 VR128:$dst), (iPTR 0))),
FR64:$src))))),
(ADDSDrr_Int v2f64:$dst, (COPY_TO_REGCLASS FR64:$src, VR128))>;
def : Pat<(v2f64 (X86Movsd (v2f64 VR128:$dst), (v2f64 (scalar_to_vector (fsub
(f64 (vector_extract (v2f64 VR128:$dst), (iPTR 0))),
FR64:$src))))),
(SUBSDrr_Int v2f64:$dst, (COPY_TO_REGCLASS FR64:$src, VR128))>;
def : Pat<(v2f64 (X86Movsd (v2f64 VR128:$dst), (v2f64 (scalar_to_vector (fmul
(f64 (vector_extract (v2f64 VR128:$dst), (iPTR 0))),
FR64:$src))))),
(MULSDrr_Int v2f64:$dst, (COPY_TO_REGCLASS FR64:$src, VR128))>;
def : Pat<(v2f64 (X86Movsd (v2f64 VR128:$dst), (v2f64 (scalar_to_vector (fdiv
(f64 (vector_extract (v2f64 VR128:$dst), (iPTR 0))),
FR64:$src))))),
(DIVSDrr_Int v2f64:$dst, (COPY_TO_REGCLASS FR64:$src, VR128))>;
}
let Predicates = [UseSSE41] in {
// If the subtarget has SSE4.1 but not AVX, the vector insert
// instruction is lowered into a X86insertps rather than a X86Movss.
// When selecting SSE scalar single-precision fp arithmetic instructions,
// make sure that we correctly match the X86insertps.
def : Pat<(v4f32 (X86insertps (v4f32 VR128:$dst), (v4f32 (scalar_to_vector
(fadd (f32 (vector_extract (v4f32 VR128:$dst), (iPTR 0))),
FR32:$src))), (iPTR 0))),
(ADDSSrr_Int v4f32:$dst, (COPY_TO_REGCLASS FR32:$src, VR128))>;
def : Pat<(v4f32 (X86insertps (v4f32 VR128:$dst), (v4f32 (scalar_to_vector
(fsub (f32 (vector_extract (v4f32 VR128:$dst), (iPTR 0))),
FR32:$src))), (iPTR 0))),
(SUBSSrr_Int v4f32:$dst, (COPY_TO_REGCLASS FR32:$src, VR128))>;
def : Pat<(v4f32 (X86insertps (v4f32 VR128:$dst), (v4f32 (scalar_to_vector
(fmul (f32 (vector_extract (v4f32 VR128:$dst), (iPTR 0))),
FR32:$src))), (iPTR 0))),
(MULSSrr_Int v4f32:$dst, (COPY_TO_REGCLASS FR32:$src, VR128))>;
def : Pat<(v4f32 (X86insertps (v4f32 VR128:$dst), (v4f32 (scalar_to_vector
(fdiv (f32 (vector_extract (v4f32 VR128:$dst), (iPTR 0))),
FR32:$src))), (iPTR 0))),
(DIVSSrr_Int v4f32:$dst, (COPY_TO_REGCLASS FR32:$src, VR128))>;
}
let Predicates = [HasAVX] in {
// The following patterns select AVX Scalar single/double precision fp
// arithmetic instructions.
def : Pat<(v2f64 (X86Movsd (v2f64 VR128:$dst), (v2f64 (scalar_to_vector (fadd
(f64 (vector_extract (v2f64 VR128:$dst), (iPTR 0))),
FR64:$src))))),
(VADDSDrr_Int v2f64:$dst, (COPY_TO_REGCLASS FR64:$src, VR128))>;
def : Pat<(v2f64 (X86Movsd (v2f64 VR128:$dst), (v2f64 (scalar_to_vector (fsub
(f64 (vector_extract (v2f64 VR128:$dst), (iPTR 0))),
FR64:$src))))),
(VSUBSDrr_Int v2f64:$dst, (COPY_TO_REGCLASS FR64:$src, VR128))>;
def : Pat<(v2f64 (X86Movsd (v2f64 VR128:$dst), (v2f64 (scalar_to_vector (fmul
(f64 (vector_extract (v2f64 VR128:$dst), (iPTR 0))),
FR64:$src))))),
(VMULSDrr_Int v2f64:$dst, (COPY_TO_REGCLASS FR64:$src, VR128))>;
def : Pat<(v2f64 (X86Movsd (v2f64 VR128:$dst), (v2f64 (scalar_to_vector (fdiv
(f64 (vector_extract (v2f64 VR128:$dst), (iPTR 0))),
FR64:$src))))),
(VDIVSDrr_Int v2f64:$dst, (COPY_TO_REGCLASS FR64:$src, VR128))>;
def : Pat<(v4f32 (X86insertps (v4f32 VR128:$dst), (v4f32 (scalar_to_vector
(fadd (f32 (vector_extract (v4f32 VR128:$dst), (iPTR 0))),
FR32:$src))), (iPTR 0))),
(VADDSSrr_Int v4f32:$dst, (COPY_TO_REGCLASS FR32:$src, VR128))>;
def : Pat<(v4f32 (X86insertps (v4f32 VR128:$dst), (v4f32 (scalar_to_vector
(fsub (f32 (vector_extract (v4f32 VR128:$dst), (iPTR 0))),
FR32:$src))), (iPTR 0))),
(VSUBSSrr_Int v4f32:$dst, (COPY_TO_REGCLASS FR32:$src, VR128))>;
def : Pat<(v4f32 (X86insertps (v4f32 VR128:$dst), (v4f32 (scalar_to_vector
(fmul (f32 (vector_extract (v4f32 VR128:$dst), (iPTR 0))),
FR32:$src))), (iPTR 0))),
(VMULSSrr_Int v4f32:$dst, (COPY_TO_REGCLASS FR32:$src, VR128))>;
def : Pat<(v4f32 (X86insertps (v4f32 VR128:$dst), (v4f32 (scalar_to_vector
(fdiv (f32 (vector_extract (v4f32 VR128:$dst), (iPTR 0))),
FR32:$src))), (iPTR 0))),
(VDIVSSrr_Int v4f32:$dst, (COPY_TO_REGCLASS FR32:$src, VR128))>;
}
// Patterns used to select SSE scalar fp arithmetic instructions from
// a vector packed single/double fp operation followed by a vector insert.
//
// The effect is that the backend converts the packed fp instruction
// followed by a vector insert into a single SSE scalar fp instruction.
//
// For example, given the following code:
// __m128 foo(__m128 A, __m128 B) {
// __m128 C = A + B;
// return (__m128) {c[0], a[1], a[2], a[3]};
// }
//
// previously we generated:
// addps %xmm0, %xmm1
// movss %xmm1, %xmm0
//
// we now generate:
// addss %xmm1, %xmm0
let Predicates = [UseSSE1] in {
def : Pat<(v4f32 (X86Movss (v4f32 VR128:$dst),
(fadd (v4f32 VR128:$dst), (v4f32 VR128:$src)))),
(ADDSSrr_Int v4f32:$dst, v4f32:$src)>;
def : Pat<(v4f32 (X86Movss (v4f32 VR128:$dst),
(fsub (v4f32 VR128:$dst), (v4f32 VR128:$src)))),
(SUBSSrr_Int v4f32:$dst, v4f32:$src)>;
def : Pat<(v4f32 (X86Movss (v4f32 VR128:$dst),
(fmul (v4f32 VR128:$dst), (v4f32 VR128:$src)))),
(MULSSrr_Int v4f32:$dst, v4f32:$src)>;
def : Pat<(v4f32 (X86Movss (v4f32 VR128:$dst),
(fdiv (v4f32 VR128:$dst), (v4f32 VR128:$src)))),
(DIVSSrr_Int v4f32:$dst, v4f32:$src)>;
}
let Predicates = [UseSSE2] in {
// SSE2 patterns to select scalar double-precision fp arithmetic instructions
// from a packed double-precision fp instruction plus movsd.
def : Pat<(v2f64 (X86Movsd (v2f64 VR128:$dst),
(fadd (v2f64 VR128:$dst), (v2f64 VR128:$src)))),
(ADDSDrr_Int v2f64:$dst, v2f64:$src)>;
def : Pat<(v2f64 (X86Movsd (v2f64 VR128:$dst),
(fsub (v2f64 VR128:$dst), (v2f64 VR128:$src)))),
(SUBSDrr_Int v2f64:$dst, v2f64:$src)>;
def : Pat<(v2f64 (X86Movsd (v2f64 VR128:$dst),
(fmul (v2f64 VR128:$dst), (v2f64 VR128:$src)))),
(MULSDrr_Int v2f64:$dst, v2f64:$src)>;
def : Pat<(v2f64 (X86Movsd (v2f64 VR128:$dst),
(fdiv (v2f64 VR128:$dst), (v2f64 VR128:$src)))),
(DIVSDrr_Int v2f64:$dst, v2f64:$src)>;
}
let Predicates = [HasAVX] in {
// The following patterns select AVX Scalar single/double precision fp
// arithmetic instructions from a packed single precision fp instruction
// plus movss/movsd.
def : Pat<(v4f32 (X86Movss (v4f32 VR128:$dst),
(fadd (v4f32 VR128:$dst), (v4f32 VR128:$src)))),
(VADDSSrr_Int v4f32:$dst, v4f32:$src)>;
def : Pat<(v4f32 (X86Movss (v4f32 VR128:$dst),
(fsub (v4f32 VR128:$dst), (v4f32 VR128:$src)))),
(VSUBSSrr_Int v4f32:$dst, v4f32:$src)>;
def : Pat<(v4f32 (X86Movss (v4f32 VR128:$dst),
(fmul (v4f32 VR128:$dst), (v4f32 VR128:$src)))),
(VMULSSrr_Int v4f32:$dst, v4f32:$src)>;
def : Pat<(v4f32 (X86Movss (v4f32 VR128:$dst),
(fdiv (v4f32 VR128:$dst), (v4f32 VR128:$src)))),
(VDIVSSrr_Int v4f32:$dst, v4f32:$src)>;
def : Pat<(v2f64 (X86Movsd (v2f64 VR128:$dst),
(fadd (v2f64 VR128:$dst), (v2f64 VR128:$src)))),
(VADDSDrr_Int v2f64:$dst, v2f64:$src)>;
def : Pat<(v2f64 (X86Movsd (v2f64 VR128:$dst),
(fsub (v2f64 VR128:$dst), (v2f64 VR128:$src)))),
(VSUBSDrr_Int v2f64:$dst, v2f64:$src)>;
def : Pat<(v2f64 (X86Movsd (v2f64 VR128:$dst),
(fmul (v2f64 VR128:$dst), (v2f64 VR128:$src)))),
(VMULSDrr_Int v2f64:$dst, v2f64:$src)>;
def : Pat<(v2f64 (X86Movsd (v2f64 VR128:$dst),
(fdiv (v2f64 VR128:$dst), (v2f64 VR128:$src)))),
(VDIVSDrr_Int v2f64:$dst, v2f64:$src)>;
}
/// Unop Arithmetic
/// In addition, we also have a special variant of the scalar form here to
/// represent the associated intrinsic operation. This form is unlike the
/// plain scalar form, in that it takes an entire vector (instead of a
/// scalar) and leaves the top elements undefined.
///
/// And, we have a special variant form for a full-vector intrinsic form.
let Sched = WriteFSqrt in {
def SSE_SQRTPS : OpndItins<
IIC_SSE_SQRTPS_RR, IIC_SSE_SQRTPS_RM
>;
def SSE_SQRTSS : OpndItins<
IIC_SSE_SQRTSS_RR, IIC_SSE_SQRTSS_RM
>;
def SSE_SQRTPD : OpndItins<
IIC_SSE_SQRTPD_RR, IIC_SSE_SQRTPD_RM
>;
def SSE_SQRTSD : OpndItins<
IIC_SSE_SQRTSD_RR, IIC_SSE_SQRTSD_RM
>;
}
let Sched = WriteFRcp in {
def SSE_RCPP : OpndItins<
IIC_SSE_RCPP_RR, IIC_SSE_RCPP_RM
>;
def SSE_RCPS : OpndItins<
IIC_SSE_RCPS_RR, IIC_SSE_RCPS_RM
>;
}
/// sse1_fp_unop_s - SSE1 unops in scalar form.
multiclass sse1_fp_unop_s<bits<8> opc, string OpcodeStr,
SDNode OpNode, Intrinsic F32Int, OpndItins itins> {
let Predicates = [HasAVX], hasSideEffects = 0 in {
def V#NAME#SSr : SSI<opc, MRMSrcReg, (outs FR32:$dst),
(ins FR32:$src1, FR32:$src2),
!strconcat("v", OpcodeStr,
"ss\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[]>, VEX_4V, VEX_LIG, Sched<[itins.Sched]>;
let mayLoad = 1 in {
def V#NAME#SSm : SSI<opc, MRMSrcMem, (outs FR32:$dst),
(ins FR32:$src1,f32mem:$src2),
!strconcat("v", OpcodeStr,
"ss\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[]>, VEX_4V, VEX_LIG,
Sched<[itins.Sched.Folded, ReadAfterLd]>;
let isCodeGenOnly = 1 in
def V#NAME#SSm_Int : SSI<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, ssmem:$src2),
!strconcat("v", OpcodeStr,
"ss\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[]>, VEX_4V, VEX_LIG,
Sched<[itins.Sched.Folded, ReadAfterLd]>;
}
}
def SSr : SSI<opc, MRMSrcReg, (outs FR32:$dst), (ins FR32:$src),
!strconcat(OpcodeStr, "ss\t{$src, $dst|$dst, $src}"),
[(set FR32:$dst, (OpNode FR32:$src))]>, Sched<[itins.Sched]>;
// For scalar unary operations, fold a load into the operation
// only in OptForSize mode. It eliminates an instruction, but it also
// eliminates a whole-register clobber (the load), so it introduces a
// partial register update condition.
def SSm : I<opc, MRMSrcMem, (outs FR32:$dst), (ins f32mem:$src),
!strconcat(OpcodeStr, "ss\t{$src, $dst|$dst, $src}"),
[(set FR32:$dst, (OpNode (load addr:$src)))], itins.rm>, XS,
Requires<[UseSSE1, OptForSize]>, Sched<[itins.Sched.Folded]>;
let isCodeGenOnly = 1 in {
def SSr_Int : SSI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
!strconcat(OpcodeStr, "ss\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (F32Int VR128:$src))], itins.rr>,
Sched<[itins.Sched]>;
def SSm_Int : SSI<opc, MRMSrcMem, (outs VR128:$dst), (ins ssmem:$src),
!strconcat(OpcodeStr, "ss\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (F32Int sse_load_f32:$src))], itins.rm>,
Sched<[itins.Sched.Folded]>;
}
}
/// sse1_fp_unop_s_rw - SSE1 unops where vector form has a read-write operand.
multiclass sse1_fp_unop_rw<bits<8> opc, string OpcodeStr, SDNode OpNode,
OpndItins itins> {
let Predicates = [HasAVX], hasSideEffects = 0 in {
def V#NAME#SSr : SSI<opc, MRMSrcReg, (outs FR32:$dst),
(ins FR32:$src1, FR32:$src2),
!strconcat("v", OpcodeStr,
"ss\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[]>, VEX_4V, VEX_LIG, Sched<[itins.Sched]>;
let mayLoad = 1 in {
def V#NAME#SSm : SSI<opc, MRMSrcMem, (outs FR32:$dst),
(ins FR32:$src1,f32mem:$src2),
!strconcat("v", OpcodeStr,
"ss\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[]>, VEX_4V, VEX_LIG,
Sched<[itins.Sched.Folded, ReadAfterLd]>;
let isCodeGenOnly = 1 in
def V#NAME#SSm_Int : SSI<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, ssmem:$src2),
!strconcat("v", OpcodeStr,
"ss\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[]>, VEX_4V, VEX_LIG,
Sched<[itins.Sched.Folded, ReadAfterLd]>;
}
}
def SSr : SSI<opc, MRMSrcReg, (outs FR32:$dst), (ins FR32:$src),
!strconcat(OpcodeStr, "ss\t{$src, $dst|$dst, $src}"),
[(set FR32:$dst, (OpNode FR32:$src))]>, Sched<[itins.Sched]>;
// For scalar unary operations, fold a load into the operation
// only in OptForSize mode. It eliminates an instruction, but it also
// eliminates a whole-register clobber (the load), so it introduces a
// partial register update condition.
def SSm : I<opc, MRMSrcMem, (outs FR32:$dst), (ins f32mem:$src),
!strconcat(OpcodeStr, "ss\t{$src, $dst|$dst, $src}"),
[(set FR32:$dst, (OpNode (load addr:$src)))], itins.rm>, XS,
Requires<[UseSSE1, OptForSize]>, Sched<[itins.Sched.Folded]>;
let isCodeGenOnly = 1, Constraints = "$src1 = $dst" in {
def SSr_Int : SSI<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2),
!strconcat(OpcodeStr, "ss\t{$src2, $dst|$dst, $src2}"),
[], itins.rr>, Sched<[itins.Sched]>;
let mayLoad = 1, hasSideEffects = 0 in
def SSm_Int : SSI<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, ssmem:$src2),
!strconcat(OpcodeStr, "ss\t{$src2, $dst|$dst, $src2}"),
[], itins.rm>, Sched<[itins.Sched.Folded, ReadAfterLd]>;
}
}
/// sse1_fp_unop_p - SSE1 unops in packed form.
multiclass sse1_fp_unop_p<bits<8> opc, string OpcodeStr, SDNode OpNode,
OpndItins itins> {
let Predicates = [HasAVX] in {
def V#NAME#PSr : PSI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
!strconcat("v", OpcodeStr,
"ps\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (v4f32 (OpNode VR128:$src)))],
itins.rr>, VEX, Sched<[itins.Sched]>;
def V#NAME#PSm : PSI<opc, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
!strconcat("v", OpcodeStr,
"ps\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (OpNode (loadv4f32 addr:$src)))],
itins.rm>, VEX, Sched<[itins.Sched.Folded]>;
def V#NAME#PSYr : PSI<opc, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src),
!strconcat("v", OpcodeStr,
"ps\t{$src, $dst|$dst, $src}"),
[(set VR256:$dst, (v8f32 (OpNode VR256:$src)))],
itins.rr>, VEX, VEX_L, Sched<[itins.Sched]>;
def V#NAME#PSYm : PSI<opc, MRMSrcMem, (outs VR256:$dst), (ins f256mem:$src),
!strconcat("v", OpcodeStr,
"ps\t{$src, $dst|$dst, $src}"),
[(set VR256:$dst, (OpNode (loadv8f32 addr:$src)))],
itins.rm>, VEX, VEX_L, Sched<[itins.Sched.Folded]>;
}
def PSr : PSI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
!strconcat(OpcodeStr, "ps\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (v4f32 (OpNode VR128:$src)))], itins.rr>,
Sched<[itins.Sched]>;
def PSm : PSI<opc, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
!strconcat(OpcodeStr, "ps\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (OpNode (memopv4f32 addr:$src)))], itins.rm>,
Sched<[itins.Sched.Folded]>;
}
/// sse1_fp_unop_p_int - SSE1 intrinsics unops in packed forms.
multiclass sse1_fp_unop_p_int<bits<8> opc, string OpcodeStr,
Intrinsic V4F32Int, Intrinsic V8F32Int,
OpndItins itins> {
let isCodeGenOnly = 1 in {
let Predicates = [HasAVX] in {
def V#NAME#PSr_Int : PSI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
!strconcat("v", OpcodeStr,
"ps\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (V4F32Int VR128:$src))],
itins.rr>, VEX, Sched<[itins.Sched]>;
def V#NAME#PSm_Int : PSI<opc, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
!strconcat("v", OpcodeStr,
"ps\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (V4F32Int (loadv4f32 addr:$src)))],
itins.rm>, VEX, Sched<[itins.Sched.Folded]>;
def V#NAME#PSYr_Int : PSI<opc, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src),
!strconcat("v", OpcodeStr,
"ps\t{$src, $dst|$dst, $src}"),
[(set VR256:$dst, (V8F32Int VR256:$src))],
itins.rr>, VEX, VEX_L, Sched<[itins.Sched]>;
def V#NAME#PSYm_Int : PSI<opc, MRMSrcMem, (outs VR256:$dst),
(ins f256mem:$src),
!strconcat("v", OpcodeStr,
"ps\t{$src, $dst|$dst, $src}"),
[(set VR256:$dst, (V8F32Int (loadv8f32 addr:$src)))],
itins.rm>, VEX, VEX_L, Sched<[itins.Sched.Folded]>;
}
def PSr_Int : PSI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
!strconcat(OpcodeStr, "ps\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (V4F32Int VR128:$src))],
itins.rr>, Sched<[itins.Sched]>;
def PSm_Int : PSI<opc, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
!strconcat(OpcodeStr, "ps\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (V4F32Int (memopv4f32 addr:$src)))],
itins.rm>, Sched<[itins.Sched.Folded]>;
} // isCodeGenOnly = 1
}
/// sse2_fp_unop_s - SSE2 unops in scalar form.
multiclass sse2_fp_unop_s<bits<8> opc, string OpcodeStr,
SDNode OpNode, Intrinsic F64Int, OpndItins itins> {
let Predicates = [HasAVX], hasSideEffects = 0 in {
def V#NAME#SDr : SDI<opc, MRMSrcReg, (outs FR64:$dst),
(ins FR64:$src1, FR64:$src2),
!strconcat("v", OpcodeStr,
"sd\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[]>, VEX_4V, VEX_LIG, Sched<[itins.Sched]>;
let mayLoad = 1 in {
def V#NAME#SDm : SDI<opc, MRMSrcMem, (outs FR64:$dst),
(ins FR64:$src1,f64mem:$src2),
!strconcat("v", OpcodeStr,
"sd\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[]>, VEX_4V, VEX_LIG,
Sched<[itins.Sched.Folded, ReadAfterLd]>;
let isCodeGenOnly = 1 in
def V#NAME#SDm_Int : SDI<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, sdmem:$src2),
!strconcat("v", OpcodeStr,
"sd\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[]>, VEX_4V, VEX_LIG,
Sched<[itins.Sched.Folded, ReadAfterLd]>;
}
}
def SDr : SDI<opc, MRMSrcReg, (outs FR64:$dst), (ins FR64:$src),
!strconcat(OpcodeStr, "sd\t{$src, $dst|$dst, $src}"),
[(set FR64:$dst, (OpNode FR64:$src))], itins.rr>,
Sched<[itins.Sched]>;
// See the comments in sse1_fp_unop_s for why this is OptForSize.
def SDm : I<opc, MRMSrcMem, (outs FR64:$dst), (ins f64mem:$src),
!strconcat(OpcodeStr, "sd\t{$src, $dst|$dst, $src}"),
[(set FR64:$dst, (OpNode (load addr:$src)))], itins.rm>, XD,
Requires<[UseSSE2, OptForSize]>, Sched<[itins.Sched.Folded]>;
let isCodeGenOnly = 1 in {
def SDr_Int : SDI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
!strconcat(OpcodeStr, "sd\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (F64Int VR128:$src))], itins.rr>,
Sched<[itins.Sched]>;
def SDm_Int : SDI<opc, MRMSrcMem, (outs VR128:$dst), (ins sdmem:$src),
!strconcat(OpcodeStr, "sd\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (F64Int sse_load_f64:$src))], itins.rm>,
Sched<[itins.Sched.Folded]>;
}
}
/// sse2_fp_unop_p - SSE2 unops in vector forms.
multiclass sse2_fp_unop_p<bits<8> opc, string OpcodeStr,
SDNode OpNode, OpndItins itins> {
let Predicates = [HasAVX] in {
def V#NAME#PDr : PDI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
!strconcat("v", OpcodeStr,
"pd\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (v2f64 (OpNode VR128:$src)))],
itins.rr>, VEX, Sched<[itins.Sched]>;
def V#NAME#PDm : PDI<opc, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
!strconcat("v", OpcodeStr,
"pd\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (OpNode (loadv2f64 addr:$src)))],
itins.rm>, VEX, Sched<[itins.Sched.Folded]>;
def V#NAME#PDYr : PDI<opc, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src),
!strconcat("v", OpcodeStr,
"pd\t{$src, $dst|$dst, $src}"),
[(set VR256:$dst, (v4f64 (OpNode VR256:$src)))],
itins.rr>, VEX, VEX_L, Sched<[itins.Sched]>;
def V#NAME#PDYm : PDI<opc, MRMSrcMem, (outs VR256:$dst), (ins f256mem:$src),
!strconcat("v", OpcodeStr,
"pd\t{$src, $dst|$dst, $src}"),
[(set VR256:$dst, (OpNode (loadv4f64 addr:$src)))],
itins.rm>, VEX, VEX_L, Sched<[itins.Sched.Folded]>;
}
def PDr : PDI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
!strconcat(OpcodeStr, "pd\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (v2f64 (OpNode VR128:$src)))], itins.rr>,
Sched<[itins.Sched]>;
def PDm : PDI<opc, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
!strconcat(OpcodeStr, "pd\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (OpNode (memopv2f64 addr:$src)))], itins.rm>,
Sched<[itins.Sched.Folded]>;
}
// Square root.
defm SQRT : sse1_fp_unop_s<0x51, "sqrt", fsqrt, int_x86_sse_sqrt_ss,
SSE_SQRTSS>,
sse1_fp_unop_p<0x51, "sqrt", fsqrt, SSE_SQRTPS>,
sse2_fp_unop_s<0x51, "sqrt", fsqrt, int_x86_sse2_sqrt_sd,
SSE_SQRTSD>,
sse2_fp_unop_p<0x51, "sqrt", fsqrt, SSE_SQRTPD>;
// Reciprocal approximations. Note that these typically require refinement
// in order to obtain suitable precision.
defm RSQRT : sse1_fp_unop_rw<0x52, "rsqrt", X86frsqrt, SSE_SQRTSS>,
sse1_fp_unop_p<0x52, "rsqrt", X86frsqrt, SSE_SQRTPS>,
sse1_fp_unop_p_int<0x52, "rsqrt", int_x86_sse_rsqrt_ps,
int_x86_avx_rsqrt_ps_256, SSE_SQRTPS>;
defm RCP : sse1_fp_unop_rw<0x53, "rcp", X86frcp, SSE_RCPS>,
sse1_fp_unop_p<0x53, "rcp", X86frcp, SSE_RCPP>,
sse1_fp_unop_p_int<0x53, "rcp", int_x86_sse_rcp_ps,
int_x86_avx_rcp_ps_256, SSE_RCPP>;
let Predicates = [UseAVX] in {
def : Pat<(f32 (fsqrt FR32:$src)),
(VSQRTSSr (f32 (IMPLICIT_DEF)), FR32:$src)>, Requires<[HasAVX]>;
def : Pat<(f32 (fsqrt (load addr:$src))),
(VSQRTSSm (f32 (IMPLICIT_DEF)), addr:$src)>,
Requires<[HasAVX, OptForSize]>;
def : Pat<(f64 (fsqrt FR64:$src)),
(VSQRTSDr (f64 (IMPLICIT_DEF)), FR64:$src)>, Requires<[HasAVX]>;
def : Pat<(f64 (fsqrt (load addr:$src))),
(VSQRTSDm (f64 (IMPLICIT_DEF)), addr:$src)>,
Requires<[HasAVX, OptForSize]>;
def : Pat<(f32 (X86frsqrt FR32:$src)),
(VRSQRTSSr (f32 (IMPLICIT_DEF)), FR32:$src)>, Requires<[HasAVX]>;
def : Pat<(f32 (X86frsqrt (load addr:$src))),
(VRSQRTSSm (f32 (IMPLICIT_DEF)), addr:$src)>,
Requires<[HasAVX, OptForSize]>;
def : Pat<(f32 (X86frcp FR32:$src)),
(VRCPSSr (f32 (IMPLICIT_DEF)), FR32:$src)>, Requires<[HasAVX]>;
def : Pat<(f32 (X86frcp (load addr:$src))),
(VRCPSSm (f32 (IMPLICIT_DEF)), addr:$src)>,
Requires<[HasAVX, OptForSize]>;
}
let Predicates = [UseAVX] in {
def : Pat<(int_x86_sse_sqrt_ss VR128:$src),
(COPY_TO_REGCLASS (VSQRTSSr (f32 (IMPLICIT_DEF)),
(COPY_TO_REGCLASS VR128:$src, FR32)),
VR128)>;
def : Pat<(int_x86_sse_sqrt_ss sse_load_f32:$src),
(VSQRTSSm_Int (v4f32 (IMPLICIT_DEF)), sse_load_f32:$src)>;
def : Pat<(int_x86_sse2_sqrt_sd VR128:$src),
(COPY_TO_REGCLASS (VSQRTSDr (f64 (IMPLICIT_DEF)),
(COPY_TO_REGCLASS VR128:$src, FR64)),
VR128)>;
def : Pat<(int_x86_sse2_sqrt_sd sse_load_f64:$src),
(VSQRTSDm_Int (v2f64 (IMPLICIT_DEF)), sse_load_f64:$src)>;
}
let Predicates = [HasAVX] in {
def : Pat<(int_x86_sse_rsqrt_ss VR128:$src),
(COPY_TO_REGCLASS (VRSQRTSSr (f32 (IMPLICIT_DEF)),
(COPY_TO_REGCLASS VR128:$src, FR32)),
VR128)>;
def : Pat<(int_x86_sse_rsqrt_ss sse_load_f32:$src),
(VRSQRTSSm_Int (v4f32 (IMPLICIT_DEF)), sse_load_f32:$src)>;
def : Pat<(int_x86_sse_rcp_ss VR128:$src),
(COPY_TO_REGCLASS (VRCPSSr (f32 (IMPLICIT_DEF)),
(COPY_TO_REGCLASS VR128:$src, FR32)),
VR128)>;
def : Pat<(int_x86_sse_rcp_ss sse_load_f32:$src),
(VRCPSSm_Int (v4f32 (IMPLICIT_DEF)), sse_load_f32:$src)>;
}
// Reciprocal approximations. Note that these typically require refinement
// in order to obtain suitable precision.
let Predicates = [UseSSE1] in {
def : Pat<(int_x86_sse_rsqrt_ss VR128:$src),
(RSQRTSSr_Int VR128:$src, VR128:$src)>;
def : Pat<(int_x86_sse_rcp_ss VR128:$src),
(RCPSSr_Int VR128:$src, VR128:$src)>;
}
// There is no f64 version of the reciprocal approximation instructions.
//===----------------------------------------------------------------------===//
// SSE 1 & 2 - Non-temporal stores
//===----------------------------------------------------------------------===//
let AddedComplexity = 400 in { // Prefer non-temporal versions
let SchedRW = [WriteStore] in {
let Predicates = [HasAVX, NoVLX] in {
def VMOVNTPSmr : VPSI<0x2B, MRMDestMem, (outs),
(ins f128mem:$dst, VR128:$src),
"movntps\t{$src, $dst|$dst, $src}",
[(alignednontemporalstore (v4f32 VR128:$src),
addr:$dst)],
IIC_SSE_MOVNT>, VEX;
def VMOVNTPDmr : VPDI<0x2B, MRMDestMem, (outs),
(ins f128mem:$dst, VR128:$src),
"movntpd\t{$src, $dst|$dst, $src}",
[(alignednontemporalstore (v2f64 VR128:$src),
addr:$dst)],
IIC_SSE_MOVNT>, VEX;
let ExeDomain = SSEPackedInt in
def VMOVNTDQmr : VPDI<0xE7, MRMDestMem, (outs),
(ins f128mem:$dst, VR128:$src),
"movntdq\t{$src, $dst|$dst, $src}",
[(alignednontemporalstore (v2i64 VR128:$src),
addr:$dst)],
IIC_SSE_MOVNT>, VEX;
def VMOVNTPSYmr : VPSI<0x2B, MRMDestMem, (outs),
(ins f256mem:$dst, VR256:$src),
"movntps\t{$src, $dst|$dst, $src}",
[(alignednontemporalstore (v8f32 VR256:$src),
addr:$dst)],
IIC_SSE_MOVNT>, VEX, VEX_L;
def VMOVNTPDYmr : VPDI<0x2B, MRMDestMem, (outs),
(ins f256mem:$dst, VR256:$src),
"movntpd\t{$src, $dst|$dst, $src}",
[(alignednontemporalstore (v4f64 VR256:$src),
addr:$dst)],
IIC_SSE_MOVNT>, VEX, VEX_L;
let ExeDomain = SSEPackedInt in
def VMOVNTDQYmr : VPDI<0xE7, MRMDestMem, (outs),
(ins f256mem:$dst, VR256:$src),
"movntdq\t{$src, $dst|$dst, $src}",
[(alignednontemporalstore (v4i64 VR256:$src),
addr:$dst)],
IIC_SSE_MOVNT>, VEX, VEX_L;
}
def MOVNTPSmr : PSI<0x2B, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
"movntps\t{$src, $dst|$dst, $src}",
[(alignednontemporalstore (v4f32 VR128:$src), addr:$dst)],
IIC_SSE_MOVNT>;
def MOVNTPDmr : PDI<0x2B, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
"movntpd\t{$src, $dst|$dst, $src}",
[(alignednontemporalstore(v2f64 VR128:$src), addr:$dst)],
IIC_SSE_MOVNT>;
let ExeDomain = SSEPackedInt in
def MOVNTDQmr : PDI<0xE7, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
"movntdq\t{$src, $dst|$dst, $src}",
[(alignednontemporalstore (v2i64 VR128:$src), addr:$dst)],
IIC_SSE_MOVNT>;
// There is no AVX form for instructions below this point
def MOVNTImr : I<0xC3, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src),
"movnti{l}\t{$src, $dst|$dst, $src}",
[(nontemporalstore (i32 GR32:$src), addr:$dst)],
IIC_SSE_MOVNT>,
PS, Requires<[HasSSE2]>;
def MOVNTI_64mr : RI<0xC3, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src),
"movnti{q}\t{$src, $dst|$dst, $src}",
[(nontemporalstore (i64 GR64:$src), addr:$dst)],
IIC_SSE_MOVNT>,
PS, Requires<[HasSSE2]>;
} // SchedRW = [WriteStore]
} // AddedComplexity
//===----------------------------------------------------------------------===//
// SSE 1 & 2 - Prefetch and memory fence
//===----------------------------------------------------------------------===//
// Prefetch intrinsic.
let Predicates = [HasSSE1], SchedRW = [WriteLoad] in {
def PREFETCHT0 : I<0x18, MRM1m, (outs), (ins i8mem:$src),
"prefetcht0\t$src", [(prefetch addr:$src, imm, (i32 3), (i32 1))],
IIC_SSE_PREFETCH>, TB;
def PREFETCHT1 : I<0x18, MRM2m, (outs), (ins i8mem:$src),
"prefetcht1\t$src", [(prefetch addr:$src, imm, (i32 2), (i32 1))],
IIC_SSE_PREFETCH>, TB;
def PREFETCHT2 : I<0x18, MRM3m, (outs), (ins i8mem:$src),
"prefetcht2\t$src", [(prefetch addr:$src, imm, (i32 1), (i32 1))],
IIC_SSE_PREFETCH>, TB;
def PREFETCHNTA : I<0x18, MRM0m, (outs), (ins i8mem:$src),
"prefetchnta\t$src", [(prefetch addr:$src, imm, (i32 0), (i32 1))],
IIC_SSE_PREFETCH>, TB;
}
// FIXME: How should flush instruction be modeled?
let SchedRW = [WriteLoad] in {
// Flush cache
def CLFLUSH : I<0xAE, MRM7m, (outs), (ins i8mem:$src),
"clflush\t$src", [(int_x86_sse2_clflush addr:$src)],
IIC_SSE_PREFETCH>, TB, Requires<[HasSSE2]>;
}
let SchedRW = [WriteNop] in {
// Pause. This "instruction" is encoded as "rep; nop", so even though it
// was introduced with SSE2, it's backward compatible.
def PAUSE : I<0x90, RawFrm, (outs), (ins),
"pause", [(int_x86_sse2_pause)], IIC_SSE_PAUSE>,
OBXS, Requires<[HasSSE2]>;
}
let SchedRW = [WriteFence] in {
// Load, store, and memory fence
def SFENCE : I<0xAE, MRM_F8, (outs), (ins),
"sfence", [(int_x86_sse_sfence)], IIC_SSE_SFENCE>,
TB, Requires<[HasSSE1]>;
def LFENCE : I<0xAE, MRM_E8, (outs), (ins),
"lfence", [(int_x86_sse2_lfence)], IIC_SSE_LFENCE>,
TB, Requires<[HasSSE2]>;
def MFENCE : I<0xAE, MRM_F0, (outs), (ins),
"mfence", [(int_x86_sse2_mfence)], IIC_SSE_MFENCE>,
TB, Requires<[HasSSE2]>;
} // SchedRW
def : Pat<(X86SFence), (SFENCE)>;
def : Pat<(X86LFence), (LFENCE)>;
def : Pat<(X86MFence), (MFENCE)>;
//===----------------------------------------------------------------------===//
// SSE 1 & 2 - Load/Store XCSR register
//===----------------------------------------------------------------------===//
def VLDMXCSR : VPSI<0xAE, MRM2m, (outs), (ins i32mem:$src),
"ldmxcsr\t$src", [(int_x86_sse_ldmxcsr addr:$src)],
IIC_SSE_LDMXCSR>, VEX, Sched<[WriteLoad]>;
def VSTMXCSR : VPSI<0xAE, MRM3m, (outs), (ins i32mem:$dst),
"stmxcsr\t$dst", [(int_x86_sse_stmxcsr addr:$dst)],
IIC_SSE_STMXCSR>, VEX, Sched<[WriteStore]>;
def LDMXCSR : PSI<0xAE, MRM2m, (outs), (ins i32mem:$src),
"ldmxcsr\t$src", [(int_x86_sse_ldmxcsr addr:$src)],
IIC_SSE_LDMXCSR>, Sched<[WriteLoad]>;
def STMXCSR : PSI<0xAE, MRM3m, (outs), (ins i32mem:$dst),
"stmxcsr\t$dst", [(int_x86_sse_stmxcsr addr:$dst)],
IIC_SSE_STMXCSR>, Sched<[WriteStore]>;
//===---------------------------------------------------------------------===//
// SSE2 - Move Aligned/Unaligned Packed Integer Instructions
//===---------------------------------------------------------------------===//
let ExeDomain = SSEPackedInt in { // SSE integer instructions
let neverHasSideEffects = 1, SchedRW = [WriteMove] in {
def VMOVDQArr : VPDI<0x6F, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"movdqa\t{$src, $dst|$dst, $src}", [], IIC_SSE_MOVA_P_RR>,
VEX;
def VMOVDQAYrr : VPDI<0x6F, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src),
"movdqa\t{$src, $dst|$dst, $src}", [], IIC_SSE_MOVA_P_RR>,
VEX, VEX_L;
def VMOVDQUrr : VSSI<0x6F, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"movdqu\t{$src, $dst|$dst, $src}", [], IIC_SSE_MOVU_P_RR>,
VEX;
def VMOVDQUYrr : VSSI<0x6F, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src),
"movdqu\t{$src, $dst|$dst, $src}", [], IIC_SSE_MOVU_P_RR>,
VEX, VEX_L;
}
// For Disassembler
let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0,
SchedRW = [WriteMove] in {
def VMOVDQArr_REV : VPDI<0x7F, MRMDestReg, (outs VR128:$dst), (ins VR128:$src),
"movdqa\t{$src, $dst|$dst, $src}", [],
IIC_SSE_MOVA_P_RR>,
VEX;
def VMOVDQAYrr_REV : VPDI<0x7F, MRMDestReg, (outs VR256:$dst), (ins VR256:$src),
"movdqa\t{$src, $dst|$dst, $src}", [],
IIC_SSE_MOVA_P_RR>, VEX, VEX_L;
def VMOVDQUrr_REV : VSSI<0x7F, MRMDestReg, (outs VR128:$dst), (ins VR128:$src),
"movdqu\t{$src, $dst|$dst, $src}", [],
IIC_SSE_MOVU_P_RR>,
VEX;
def VMOVDQUYrr_REV : VSSI<0x7F, MRMDestReg, (outs VR256:$dst), (ins VR256:$src),
"movdqu\t{$src, $dst|$dst, $src}", [],
IIC_SSE_MOVU_P_RR>, VEX, VEX_L;
}
let canFoldAsLoad = 1, mayLoad = 1, isReMaterializable = 1,
neverHasSideEffects = 1, SchedRW = [WriteLoad] in {
def VMOVDQArm : VPDI<0x6F, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src),
"movdqa\t{$src, $dst|$dst, $src}", [], IIC_SSE_MOVA_P_RM>,
VEX;
def VMOVDQAYrm : VPDI<0x6F, MRMSrcMem, (outs VR256:$dst), (ins i256mem:$src),
"movdqa\t{$src, $dst|$dst, $src}", [], IIC_SSE_MOVA_P_RM>,
VEX, VEX_L;
let Predicates = [HasAVX] in {
def VMOVDQUrm : I<0x6F, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src),
"vmovdqu\t{$src, $dst|$dst, $src}",[], IIC_SSE_MOVU_P_RM>,
XS, VEX;
def VMOVDQUYrm : I<0x6F, MRMSrcMem, (outs VR256:$dst), (ins i256mem:$src),
"vmovdqu\t{$src, $dst|$dst, $src}",[], IIC_SSE_MOVU_P_RM>,
XS, VEX, VEX_L;
}
}
let mayStore = 1, neverHasSideEffects = 1, SchedRW = [WriteStore] in {
def VMOVDQAmr : VPDI<0x7F, MRMDestMem, (outs),
(ins i128mem:$dst, VR128:$src),
"movdqa\t{$src, $dst|$dst, $src}", [], IIC_SSE_MOVA_P_MR>,
VEX;
def VMOVDQAYmr : VPDI<0x7F, MRMDestMem, (outs),
(ins i256mem:$dst, VR256:$src),
"movdqa\t{$src, $dst|$dst, $src}", [], IIC_SSE_MOVA_P_MR>,
VEX, VEX_L;
let Predicates = [HasAVX] in {
def VMOVDQUmr : I<0x7F, MRMDestMem, (outs), (ins i128mem:$dst, VR128:$src),
"vmovdqu\t{$src, $dst|$dst, $src}",[], IIC_SSE_MOVU_P_MR>,
XS, VEX;
def VMOVDQUYmr : I<0x7F, MRMDestMem, (outs), (ins i256mem:$dst, VR256:$src),
"vmovdqu\t{$src, $dst|$dst, $src}",[], IIC_SSE_MOVU_P_MR>,
XS, VEX, VEX_L;
}
}
let SchedRW = [WriteMove] in {
let neverHasSideEffects = 1 in
def MOVDQArr : PDI<0x6F, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"movdqa\t{$src, $dst|$dst, $src}", [], IIC_SSE_MOVA_P_RR>;
def MOVDQUrr : I<0x6F, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"movdqu\t{$src, $dst|$dst, $src}",
[], IIC_SSE_MOVU_P_RR>, XS, Requires<[UseSSE2]>;
// For Disassembler
let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0 in {
def MOVDQArr_REV : PDI<0x7F, MRMDestReg, (outs VR128:$dst), (ins VR128:$src),
"movdqa\t{$src, $dst|$dst, $src}", [],
IIC_SSE_MOVA_P_RR>;
def MOVDQUrr_REV : I<0x7F, MRMDestReg, (outs VR128:$dst), (ins VR128:$src),
"movdqu\t{$src, $dst|$dst, $src}",
[], IIC_SSE_MOVU_P_RR>, XS, Requires<[UseSSE2]>;
}
} // SchedRW
let canFoldAsLoad = 1, mayLoad = 1, isReMaterializable = 1,
neverHasSideEffects = 1, SchedRW = [WriteLoad] in {
def MOVDQArm : PDI<0x6F, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src),
"movdqa\t{$src, $dst|$dst, $src}",
[/*(set VR128:$dst, (alignedloadv2i64 addr:$src))*/],
IIC_SSE_MOVA_P_RM>;
def MOVDQUrm : I<0x6F, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src),
"movdqu\t{$src, $dst|$dst, $src}",
[/*(set VR128:$dst, (loadv2i64 addr:$src))*/],
IIC_SSE_MOVU_P_RM>,
XS, Requires<[UseSSE2]>;
}
let mayStore = 1, neverHasSideEffects = 1, SchedRW = [WriteStore] in {
def MOVDQAmr : PDI<0x7F, MRMDestMem, (outs), (ins i128mem:$dst, VR128:$src),
"movdqa\t{$src, $dst|$dst, $src}",
[/*(alignedstore (v2i64 VR128:$src), addr:$dst)*/],
IIC_SSE_MOVA_P_MR>;
def MOVDQUmr : I<0x7F, MRMDestMem, (outs), (ins i128mem:$dst, VR128:$src),
"movdqu\t{$src, $dst|$dst, $src}",
[/*(store (v2i64 VR128:$src), addr:$dst)*/],
IIC_SSE_MOVU_P_MR>,
XS, Requires<[UseSSE2]>;
}
} // ExeDomain = SSEPackedInt
let Predicates = [HasAVX] in {
def : Pat<(int_x86_sse2_storeu_dq addr:$dst, VR128:$src),
(VMOVDQUmr addr:$dst, VR128:$src)>;
def : Pat<(int_x86_avx_storeu_dq_256 addr:$dst, VR256:$src),
(VMOVDQUYmr addr:$dst, VR256:$src)>;
}
let Predicates = [UseSSE2] in
def : Pat<(int_x86_sse2_storeu_dq addr:$dst, VR128:$src),
(MOVDQUmr addr:$dst, VR128:$src)>;
//===---------------------------------------------------------------------===//
// SSE2 - Packed Integer Arithmetic Instructions
//===---------------------------------------------------------------------===//
let Sched = WriteVecIMul in
def SSE_PMADD : OpndItins<
IIC_SSE_PMADD, IIC_SSE_PMADD
>;
let ExeDomain = SSEPackedInt in { // SSE integer instructions
multiclass PDI_binop_rm_int<bits<8> opc, string OpcodeStr, Intrinsic IntId,
RegisterClass RC, PatFrag memop_frag,
X86MemOperand x86memop,
OpndItins itins,
bit IsCommutable = 0,
bit Is2Addr = 1> {
let isCommutable = IsCommutable in
def rr : PDI<opc, MRMSrcReg, (outs RC:$dst),
(ins RC:$src1, RC:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set RC:$dst, (IntId RC:$src1, RC:$src2))], itins.rr>,
Sched<[itins.Sched]>;
def rm : PDI<opc, MRMSrcMem, (outs RC:$dst),
(ins RC:$src1, x86memop:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set RC:$dst, (IntId RC:$src1, (bitconvert (memop_frag addr:$src2))))],
itins.rm>, Sched<[itins.Sched.Folded, ReadAfterLd]>;
}
multiclass PDI_binop_all_int<bits<8> opc, string OpcodeStr, Intrinsic IntId128,
Intrinsic IntId256, OpndItins itins,
bit IsCommutable = 0> {
let Predicates = [HasAVX] in
defm V#NAME : PDI_binop_rm_int<opc, !strconcat("v", OpcodeStr), IntId128,
VR128, loadv2i64, i128mem, itins,
IsCommutable, 0>, VEX_4V;
let Constraints = "$src1 = $dst" in
defm NAME : PDI_binop_rm_int<opc, OpcodeStr, IntId128, VR128, memopv2i64,
i128mem, itins, IsCommutable, 1>;
let Predicates = [HasAVX2] in
defm V#NAME#Y : PDI_binop_rm_int<opc, !strconcat("v", OpcodeStr), IntId256,
VR256, loadv4i64, i256mem, itins,
IsCommutable, 0>, VEX_4V, VEX_L;
}
multiclass PDI_binop_rmi<bits<8> opc, bits<8> opc2, Format ImmForm,
string OpcodeStr, SDNode OpNode,
SDNode OpNode2, RegisterClass RC,
ValueType DstVT, ValueType SrcVT, PatFrag bc_frag,
ShiftOpndItins itins,
bit Is2Addr = 1> {
// src2 is always 128-bit
def rr : PDI<opc, MRMSrcReg, (outs RC:$dst),
(ins RC:$src1, VR128:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set RC:$dst, (DstVT (OpNode RC:$src1, (SrcVT VR128:$src2))))],
itins.rr>, Sched<[WriteVecShift]>;
def rm : PDI<opc, MRMSrcMem, (outs RC:$dst),
(ins RC:$src1, i128mem:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set RC:$dst, (DstVT (OpNode RC:$src1,
(bc_frag (memopv2i64 addr:$src2)))))], itins.rm>,
Sched<[WriteVecShiftLd, ReadAfterLd]>;
def ri : PDIi8<opc2, ImmForm, (outs RC:$dst),
(ins RC:$src1, i8imm:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set RC:$dst, (DstVT (OpNode2 RC:$src1, (i8 imm:$src2))))], itins.ri>,
Sched<[WriteVecShift]>;
}
/// PDI_binop_rm2 - Simple SSE2 binary operator with different src and dst types
multiclass PDI_binop_rm2<bits<8> opc, string OpcodeStr, SDNode OpNode,
ValueType DstVT, ValueType SrcVT, RegisterClass RC,
PatFrag memop_frag, X86MemOperand x86memop,
OpndItins itins,
bit IsCommutable = 0, bit Is2Addr = 1> {
let isCommutable = IsCommutable in
def rr : PDI<opc, MRMSrcReg, (outs RC:$dst),
(ins RC:$src1, RC:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set RC:$dst, (DstVT (OpNode (SrcVT RC:$src1), RC:$src2)))]>,
Sched<[itins.Sched]>;
def rm : PDI<opc, MRMSrcMem, (outs RC:$dst),
(ins RC:$src1, x86memop:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set RC:$dst, (DstVT (OpNode (SrcVT RC:$src1),
(bitconvert (memop_frag addr:$src2)))))]>,
Sched<[itins.Sched.Folded, ReadAfterLd]>;
}
} // ExeDomain = SSEPackedInt
defm PADDB : PDI_binop_all<0xFC, "paddb", add, v16i8, v32i8,
SSE_INTALU_ITINS_P, 1>;
defm PADDW : PDI_binop_all<0xFD, "paddw", add, v8i16, v16i16,
SSE_INTALU_ITINS_P, 1>;
defm PADDD : PDI_binop_all<0xFE, "paddd", add, v4i32, v8i32,
SSE_INTALU_ITINS_P, 1>;
defm PADDQ : PDI_binop_all<0xD4, "paddq", add, v2i64, v4i64,
SSE_INTALUQ_ITINS_P, 1>;
defm PMULLW : PDI_binop_all<0xD5, "pmullw", mul, v8i16, v16i16,
SSE_INTMUL_ITINS_P, 1>;
defm PMULHUW : PDI_binop_all<0xE4, "pmulhuw", mulhu, v8i16, v16i16,
SSE_INTMUL_ITINS_P, 1>;
defm PMULHW : PDI_binop_all<0xE5, "pmulhw", mulhs, v8i16, v16i16,
SSE_INTMUL_ITINS_P, 1>;
defm PSUBB : PDI_binop_all<0xF8, "psubb", sub, v16i8, v32i8,
SSE_INTALU_ITINS_P, 0>;
defm PSUBW : PDI_binop_all<0xF9, "psubw", sub, v8i16, v16i16,
SSE_INTALU_ITINS_P, 0>;
defm PSUBD : PDI_binop_all<0xFA, "psubd", sub, v4i32, v8i32,
SSE_INTALU_ITINS_P, 0>;
defm PSUBQ : PDI_binop_all<0xFB, "psubq", sub, v2i64, v4i64,
SSE_INTALUQ_ITINS_P, 0>;
defm PSUBUSB : PDI_binop_all<0xD8, "psubusb", X86subus, v16i8, v32i8,
SSE_INTALU_ITINS_P, 0>;
defm PSUBUSW : PDI_binop_all<0xD9, "psubusw", X86subus, v8i16, v16i16,
SSE_INTALU_ITINS_P, 0>;
defm PMINUB : PDI_binop_all<0xDA, "pminub", X86umin, v16i8, v32i8,
SSE_INTALU_ITINS_P, 1>;
defm PMINSW : PDI_binop_all<0xEA, "pminsw", X86smin, v8i16, v16i16,
SSE_INTALU_ITINS_P, 1>;
defm PMAXUB : PDI_binop_all<0xDE, "pmaxub", X86umax, v16i8, v32i8,
SSE_INTALU_ITINS_P, 1>;
defm PMAXSW : PDI_binop_all<0xEE, "pmaxsw", X86smax, v8i16, v16i16,
SSE_INTALU_ITINS_P, 1>;
// Intrinsic forms
defm PSUBSB : PDI_binop_all_int<0xE8, "psubsb", int_x86_sse2_psubs_b,
int_x86_avx2_psubs_b, SSE_INTALU_ITINS_P, 0>;
defm PSUBSW : PDI_binop_all_int<0xE9, "psubsw" , int_x86_sse2_psubs_w,
int_x86_avx2_psubs_w, SSE_INTALU_ITINS_P, 0>;
defm PADDSB : PDI_binop_all_int<0xEC, "paddsb" , int_x86_sse2_padds_b,
int_x86_avx2_padds_b, SSE_INTALU_ITINS_P, 1>;
defm PADDSW : PDI_binop_all_int<0xED, "paddsw" , int_x86_sse2_padds_w,
int_x86_avx2_padds_w, SSE_INTALU_ITINS_P, 1>;
defm PADDUSB : PDI_binop_all_int<0xDC, "paddusb", int_x86_sse2_paddus_b,
int_x86_avx2_paddus_b, SSE_INTALU_ITINS_P, 1>;
defm PADDUSW : PDI_binop_all_int<0xDD, "paddusw", int_x86_sse2_paddus_w,
int_x86_avx2_paddus_w, SSE_INTALU_ITINS_P, 1>;
defm PMADDWD : PDI_binop_all_int<0xF5, "pmaddwd", int_x86_sse2_pmadd_wd,
int_x86_avx2_pmadd_wd, SSE_PMADD, 1>;
defm PAVGB : PDI_binop_all_int<0xE0, "pavgb", int_x86_sse2_pavg_b,
int_x86_avx2_pavg_b, SSE_INTALU_ITINS_P, 1>;
defm PAVGW : PDI_binop_all_int<0xE3, "pavgw", int_x86_sse2_pavg_w,
int_x86_avx2_pavg_w, SSE_INTALU_ITINS_P, 1>;
defm PSADBW : PDI_binop_all_int<0xF6, "psadbw", int_x86_sse2_psad_bw,
int_x86_avx2_psad_bw, SSE_PMADD, 1>;
let Predicates = [HasAVX] in
defm VPMULUDQ : PDI_binop_rm2<0xF4, "vpmuludq", X86pmuludq, v2i64, v4i32, VR128,
loadv2i64, i128mem, SSE_INTMUL_ITINS_P, 1, 0>,
VEX_4V;
let Predicates = [HasAVX2] in
defm VPMULUDQY : PDI_binop_rm2<0xF4, "vpmuludq", X86pmuludq, v4i64, v8i32,
VR256, loadv4i64, i256mem,
SSE_INTMUL_ITINS_P, 1, 0>, VEX_4V, VEX_L;
let Constraints = "$src1 = $dst" in
defm PMULUDQ : PDI_binop_rm2<0xF4, "pmuludq", X86pmuludq, v2i64, v4i32, VR128,
memopv2i64, i128mem, SSE_INTMUL_ITINS_P, 1>;
//===---------------------------------------------------------------------===//
// SSE2 - Packed Integer Logical Instructions
//===---------------------------------------------------------------------===//
let Predicates = [HasAVX] in {
defm VPSLLW : PDI_binop_rmi<0xF1, 0x71, MRM6r, "vpsllw", X86vshl, X86vshli,
VR128, v8i16, v8i16, bc_v8i16,
SSE_INTSHIFT_ITINS_P, 0>, VEX_4V;
defm VPSLLD : PDI_binop_rmi<0xF2, 0x72, MRM6r, "vpslld", X86vshl, X86vshli,
VR128, v4i32, v4i32, bc_v4i32,
SSE_INTSHIFT_ITINS_P, 0>, VEX_4V;
defm VPSLLQ : PDI_binop_rmi<0xF3, 0x73, MRM6r, "vpsllq", X86vshl, X86vshli,
VR128, v2i64, v2i64, bc_v2i64,
SSE_INTSHIFT_ITINS_P, 0>, VEX_4V;
defm VPSRLW : PDI_binop_rmi<0xD1, 0x71, MRM2r, "vpsrlw", X86vsrl, X86vsrli,
VR128, v8i16, v8i16, bc_v8i16,
SSE_INTSHIFT_ITINS_P, 0>, VEX_4V;
defm VPSRLD : PDI_binop_rmi<0xD2, 0x72, MRM2r, "vpsrld", X86vsrl, X86vsrli,
VR128, v4i32, v4i32, bc_v4i32,
SSE_INTSHIFT_ITINS_P, 0>, VEX_4V;
defm VPSRLQ : PDI_binop_rmi<0xD3, 0x73, MRM2r, "vpsrlq", X86vsrl, X86vsrli,
VR128, v2i64, v2i64, bc_v2i64,
SSE_INTSHIFT_ITINS_P, 0>, VEX_4V;
defm VPSRAW : PDI_binop_rmi<0xE1, 0x71, MRM4r, "vpsraw", X86vsra, X86vsrai,
VR128, v8i16, v8i16, bc_v8i16,
SSE_INTSHIFT_ITINS_P, 0>, VEX_4V;
defm VPSRAD : PDI_binop_rmi<0xE2, 0x72, MRM4r, "vpsrad", X86vsra, X86vsrai,
VR128, v4i32, v4i32, bc_v4i32,
SSE_INTSHIFT_ITINS_P, 0>, VEX_4V;
let ExeDomain = SSEPackedInt, SchedRW = [WriteVecShift] in {
// 128-bit logical shifts.
def VPSLLDQri : PDIi8<0x73, MRM7r,
(outs VR128:$dst), (ins VR128:$src1, i32i8imm:$src2),
"vpslldq\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set VR128:$dst,
(int_x86_sse2_psll_dq_bs VR128:$src1, imm:$src2))]>,
VEX_4V;
def VPSRLDQri : PDIi8<0x73, MRM3r,
(outs VR128:$dst), (ins VR128:$src1, i32i8imm:$src2),
"vpsrldq\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set VR128:$dst,
(int_x86_sse2_psrl_dq_bs VR128:$src1, imm:$src2))]>,
VEX_4V;
// PSRADQri doesn't exist in SSE[1-3].
}
} // Predicates = [HasAVX]
let Predicates = [HasAVX2] in {
defm VPSLLWY : PDI_binop_rmi<0xF1, 0x71, MRM6r, "vpsllw", X86vshl, X86vshli,
VR256, v16i16, v8i16, bc_v8i16,
SSE_INTSHIFT_ITINS_P, 0>, VEX_4V, VEX_L;
defm VPSLLDY : PDI_binop_rmi<0xF2, 0x72, MRM6r, "vpslld", X86vshl, X86vshli,
VR256, v8i32, v4i32, bc_v4i32,
SSE_INTSHIFT_ITINS_P, 0>, VEX_4V, VEX_L;
defm VPSLLQY : PDI_binop_rmi<0xF3, 0x73, MRM6r, "vpsllq", X86vshl, X86vshli,
VR256, v4i64, v2i64, bc_v2i64,
SSE_INTSHIFT_ITINS_P, 0>, VEX_4V, VEX_L;
defm VPSRLWY : PDI_binop_rmi<0xD1, 0x71, MRM2r, "vpsrlw", X86vsrl, X86vsrli,
VR256, v16i16, v8i16, bc_v8i16,
SSE_INTSHIFT_ITINS_P, 0>, VEX_4V, VEX_L;
defm VPSRLDY : PDI_binop_rmi<0xD2, 0x72, MRM2r, "vpsrld", X86vsrl, X86vsrli,
VR256, v8i32, v4i32, bc_v4i32,
SSE_INTSHIFT_ITINS_P, 0>, VEX_4V, VEX_L;
defm VPSRLQY : PDI_binop_rmi<0xD3, 0x73, MRM2r, "vpsrlq", X86vsrl, X86vsrli,
VR256, v4i64, v2i64, bc_v2i64,
SSE_INTSHIFT_ITINS_P, 0>, VEX_4V, VEX_L;
defm VPSRAWY : PDI_binop_rmi<0xE1, 0x71, MRM4r, "vpsraw", X86vsra, X86vsrai,
VR256, v16i16, v8i16, bc_v8i16,
SSE_INTSHIFT_ITINS_P, 0>, VEX_4V, VEX_L;
defm VPSRADY : PDI_binop_rmi<0xE2, 0x72, MRM4r, "vpsrad", X86vsra, X86vsrai,
VR256, v8i32, v4i32, bc_v4i32,
SSE_INTSHIFT_ITINS_P, 0>, VEX_4V, VEX_L;
let ExeDomain = SSEPackedInt, SchedRW = [WriteVecShift] in {
// 256-bit logical shifts.
def VPSLLDQYri : PDIi8<0x73, MRM7r,
(outs VR256:$dst), (ins VR256:$src1, i32i8imm:$src2),
"vpslldq\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set VR256:$dst,
(int_x86_avx2_psll_dq_bs VR256:$src1, imm:$src2))]>,
VEX_4V, VEX_L;
def VPSRLDQYri : PDIi8<0x73, MRM3r,
(outs VR256:$dst), (ins VR256:$src1, i32i8imm:$src2),
"vpsrldq\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set VR256:$dst,
(int_x86_avx2_psrl_dq_bs VR256:$src1, imm:$src2))]>,
VEX_4V, VEX_L;
// PSRADQYri doesn't exist in SSE[1-3].
}
} // Predicates = [HasAVX2]
let Constraints = "$src1 = $dst" in {
defm PSLLW : PDI_binop_rmi<0xF1, 0x71, MRM6r, "psllw", X86vshl, X86vshli,
VR128, v8i16, v8i16, bc_v8i16,
SSE_INTSHIFT_ITINS_P>;
defm PSLLD : PDI_binop_rmi<0xF2, 0x72, MRM6r, "pslld", X86vshl, X86vshli,
VR128, v4i32, v4i32, bc_v4i32,
SSE_INTSHIFT_ITINS_P>;
defm PSLLQ : PDI_binop_rmi<0xF3, 0x73, MRM6r, "psllq", X86vshl, X86vshli,
VR128, v2i64, v2i64, bc_v2i64,
SSE_INTSHIFT_ITINS_P>;
defm PSRLW : PDI_binop_rmi<0xD1, 0x71, MRM2r, "psrlw", X86vsrl, X86vsrli,
VR128, v8i16, v8i16, bc_v8i16,
SSE_INTSHIFT_ITINS_P>;
defm PSRLD : PDI_binop_rmi<0xD2, 0x72, MRM2r, "psrld", X86vsrl, X86vsrli,
VR128, v4i32, v4i32, bc_v4i32,
SSE_INTSHIFT_ITINS_P>;
defm PSRLQ : PDI_binop_rmi<0xD3, 0x73, MRM2r, "psrlq", X86vsrl, X86vsrli,
VR128, v2i64, v2i64, bc_v2i64,
SSE_INTSHIFT_ITINS_P>;
defm PSRAW : PDI_binop_rmi<0xE1, 0x71, MRM4r, "psraw", X86vsra, X86vsrai,
VR128, v8i16, v8i16, bc_v8i16,
SSE_INTSHIFT_ITINS_P>;
defm PSRAD : PDI_binop_rmi<0xE2, 0x72, MRM4r, "psrad", X86vsra, X86vsrai,
VR128, v4i32, v4i32, bc_v4i32,
SSE_INTSHIFT_ITINS_P>;
let ExeDomain = SSEPackedInt, SchedRW = [WriteVecShift] in {
// 128-bit logical shifts.
def PSLLDQri : PDIi8<0x73, MRM7r,
(outs VR128:$dst), (ins VR128:$src1, i32i8imm:$src2),
"pslldq\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(int_x86_sse2_psll_dq_bs VR128:$src1, imm:$src2))],
IIC_SSE_INTSHDQ_P_RI>;
def PSRLDQri : PDIi8<0x73, MRM3r,
(outs VR128:$dst), (ins VR128:$src1, i32i8imm:$src2),
"psrldq\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(int_x86_sse2_psrl_dq_bs VR128:$src1, imm:$src2))],
IIC_SSE_INTSHDQ_P_RI>;
// PSRADQri doesn't exist in SSE[1-3].
}
} // Constraints = "$src1 = $dst"
let Predicates = [HasAVX] in {
def : Pat<(int_x86_sse2_psll_dq VR128:$src1, imm:$src2),
(VPSLLDQri VR128:$src1, (BYTE_imm imm:$src2))>;
def : Pat<(int_x86_sse2_psrl_dq VR128:$src1, imm:$src2),
(VPSRLDQri VR128:$src1, (BYTE_imm imm:$src2))>;
def : Pat<(v2f64 (X86fsrl VR128:$src1, i32immSExt8:$src2)),
(VPSRLDQri VR128:$src1, (BYTE_imm imm:$src2))>;
// Shift up / down and insert zero's.
def : Pat<(v2i64 (X86vshldq VR128:$src, (i8 imm:$amt))),
(VPSLLDQri VR128:$src, (BYTE_imm imm:$amt))>;
def : Pat<(v2i64 (X86vshrdq VR128:$src, (i8 imm:$amt))),
(VPSRLDQri VR128:$src, (BYTE_imm imm:$amt))>;
}
let Predicates = [HasAVX2] in {
def : Pat<(int_x86_avx2_psll_dq VR256:$src1, imm:$src2),
(VPSLLDQYri VR256:$src1, (BYTE_imm imm:$src2))>;
def : Pat<(int_x86_avx2_psrl_dq VR256:$src1, imm:$src2),
(VPSRLDQYri VR256:$src1, (BYTE_imm imm:$src2))>;
}
let Predicates = [UseSSE2] in {
def : Pat<(int_x86_sse2_psll_dq VR128:$src1, imm:$src2),
(PSLLDQri VR128:$src1, (BYTE_imm imm:$src2))>;
def : Pat<(int_x86_sse2_psrl_dq VR128:$src1, imm:$src2),
(PSRLDQri VR128:$src1, (BYTE_imm imm:$src2))>;
def : Pat<(v2f64 (X86fsrl VR128:$src1, i32immSExt8:$src2)),
(PSRLDQri VR128:$src1, (BYTE_imm imm:$src2))>;
// Shift up / down and insert zero's.
def : Pat<(v2i64 (X86vshldq VR128:$src, (i8 imm:$amt))),
(PSLLDQri VR128:$src, (BYTE_imm imm:$amt))>;
def : Pat<(v2i64 (X86vshrdq VR128:$src, (i8 imm:$amt))),
(PSRLDQri VR128:$src, (BYTE_imm imm:$amt))>;
}
//===---------------------------------------------------------------------===//
// SSE2 - Packed Integer Comparison Instructions
//===---------------------------------------------------------------------===//
defm PCMPEQB : PDI_binop_all<0x74, "pcmpeqb", X86pcmpeq, v16i8, v32i8,
SSE_INTALU_ITINS_P, 1>;
defm PCMPEQW : PDI_binop_all<0x75, "pcmpeqw", X86pcmpeq, v8i16, v16i16,
SSE_INTALU_ITINS_P, 1>;
defm PCMPEQD : PDI_binop_all<0x76, "pcmpeqd", X86pcmpeq, v4i32, v8i32,
SSE_INTALU_ITINS_P, 1>;
defm PCMPGTB : PDI_binop_all<0x64, "pcmpgtb", X86pcmpgt, v16i8, v32i8,
SSE_INTALU_ITINS_P, 0>;
defm PCMPGTW : PDI_binop_all<0x65, "pcmpgtw", X86pcmpgt, v8i16, v16i16,
SSE_INTALU_ITINS_P, 0>;
defm PCMPGTD : PDI_binop_all<0x66, "pcmpgtd", X86pcmpgt, v4i32, v8i32,
SSE_INTALU_ITINS_P, 0>;
//===---------------------------------------------------------------------===//
// SSE2 - Packed Integer Shuffle Instructions
//===---------------------------------------------------------------------===//
let ExeDomain = SSEPackedInt in {
multiclass sse2_pshuffle<string OpcodeStr, ValueType vt128, ValueType vt256,
SDNode OpNode> {
let Predicates = [HasAVX] in {
def V#NAME#ri : Ii8<0x70, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, i8imm:$src2),
!strconcat("v", OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set VR128:$dst,
(vt128 (OpNode VR128:$src1, (i8 imm:$src2))))],
IIC_SSE_PSHUF_RI>, VEX, Sched<[WriteShuffle]>;
def V#NAME#mi : Ii8<0x70, MRMSrcMem, (outs VR128:$dst),
(ins i128mem:$src1, i8imm:$src2),
!strconcat("v", OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set VR128:$dst,
(vt128 (OpNode (bitconvert (loadv2i64 addr:$src1)),
(i8 imm:$src2))))], IIC_SSE_PSHUF_MI>, VEX,
Sched<[WriteShuffleLd]>;
}
let Predicates = [HasAVX2] in {
def V#NAME#Yri : Ii8<0x70, MRMSrcReg, (outs VR256:$dst),
(ins VR256:$src1, i8imm:$src2),
!strconcat("v", OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set VR256:$dst,
(vt256 (OpNode VR256:$src1, (i8 imm:$src2))))],
IIC_SSE_PSHUF_RI>, VEX, VEX_L, Sched<[WriteShuffle]>;
def V#NAME#Ymi : Ii8<0x70, MRMSrcMem, (outs VR256:$dst),
(ins i256mem:$src1, i8imm:$src2),
!strconcat("v", OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set VR256:$dst,
(vt256 (OpNode (bitconvert (loadv4i64 addr:$src1)),
(i8 imm:$src2))))], IIC_SSE_PSHUF_MI>, VEX, VEX_L,
Sched<[WriteShuffleLd]>;
}
let Predicates = [UseSSE2] in {
def ri : Ii8<0x70, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, i8imm:$src2),
!strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set VR128:$dst,
(vt128 (OpNode VR128:$src1, (i8 imm:$src2))))],
IIC_SSE_PSHUF_RI>, Sched<[WriteShuffle]>;
def mi : Ii8<0x70, MRMSrcMem,
(outs VR128:$dst), (ins i128mem:$src1, i8imm:$src2),
!strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set VR128:$dst,
(vt128 (OpNode (bitconvert (memopv2i64 addr:$src1)),
(i8 imm:$src2))))], IIC_SSE_PSHUF_MI>,
Sched<[WriteShuffleLd, ReadAfterLd]>;
}
}
} // ExeDomain = SSEPackedInt
defm PSHUFD : sse2_pshuffle<"pshufd", v4i32, v8i32, X86PShufd>, PD;
defm PSHUFHW : sse2_pshuffle<"pshufhw", v8i16, v16i16, X86PShufhw>, XS;
defm PSHUFLW : sse2_pshuffle<"pshuflw", v8i16, v16i16, X86PShuflw>, XD;
let Predicates = [HasAVX] in {
def : Pat<(v4f32 (X86PShufd (loadv4f32 addr:$src1), (i8 imm:$imm))),
(VPSHUFDmi addr:$src1, imm:$imm)>;
def : Pat<(v4f32 (X86PShufd VR128:$src1, (i8 imm:$imm))),
(VPSHUFDri VR128:$src1, imm:$imm)>;
}
let Predicates = [UseSSE2] in {
def : Pat<(v4f32 (X86PShufd (memopv4f32 addr:$src1), (i8 imm:$imm))),
(PSHUFDmi addr:$src1, imm:$imm)>;
def : Pat<(v4f32 (X86PShufd VR128:$src1, (i8 imm:$imm))),
(PSHUFDri VR128:$src1, imm:$imm)>;
}
//===---------------------------------------------------------------------===//
// Packed Integer Pack Instructions (SSE & AVX)
//===---------------------------------------------------------------------===//
let ExeDomain = SSEPackedInt in {
multiclass sse2_pack<bits<8> opc, string OpcodeStr, ValueType OutVT,
ValueType ArgVT, SDNode OpNode, PatFrag bc_frag,
bit Is2Addr = 1> {
def rr : PDI<opc, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set VR128:$dst,
(OutVT (OpNode (ArgVT VR128:$src1), VR128:$src2)))]>,
Sched<[WriteShuffle]>;
def rm : PDI<opc, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, i128mem:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set VR128:$dst,
(OutVT (OpNode VR128:$src1,
(bc_frag (memopv2i64 addr:$src2)))))]>,
Sched<[WriteShuffleLd, ReadAfterLd]>;
}
multiclass sse2_pack_y<bits<8> opc, string OpcodeStr, ValueType OutVT,
ValueType ArgVT, SDNode OpNode, PatFrag bc_frag> {
def Yrr : PDI<opc, MRMSrcReg,
(outs VR256:$dst), (ins VR256:$src1, VR256:$src2),
!strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set VR256:$dst,
(OutVT (OpNode (ArgVT VR256:$src1), VR256:$src2)))]>,
Sched<[WriteShuffle]>;
def Yrm : PDI<opc, MRMSrcMem,
(outs VR256:$dst), (ins VR256:$src1, i256mem:$src2),
!strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set VR256:$dst,
(OutVT (OpNode VR256:$src1,
(bc_frag (memopv4i64 addr:$src2)))))]>,
Sched<[WriteShuffleLd, ReadAfterLd]>;
}
multiclass sse4_pack<bits<8> opc, string OpcodeStr, ValueType OutVT,
ValueType ArgVT, SDNode OpNode, PatFrag bc_frag,
bit Is2Addr = 1> {
def rr : SS48I<opc, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set VR128:$dst,
(OutVT (OpNode (ArgVT VR128:$src1), VR128:$src2)))]>,
Sched<[WriteShuffle]>;
def rm : SS48I<opc, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, i128mem:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set VR128:$dst,
(OutVT (OpNode VR128:$src1,
(bc_frag (memopv2i64 addr:$src2)))))]>,
Sched<[WriteShuffleLd, ReadAfterLd]>;
}
multiclass sse4_pack_y<bits<8> opc, string OpcodeStr, ValueType OutVT,
ValueType ArgVT, SDNode OpNode, PatFrag bc_frag> {
def Yrr : SS48I<opc, MRMSrcReg,
(outs VR256:$dst), (ins VR256:$src1, VR256:$src2),
!strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set VR256:$dst,
(OutVT (OpNode (ArgVT VR256:$src1), VR256:$src2)))]>,
Sched<[WriteShuffle]>;
def Yrm : SS48I<opc, MRMSrcMem,
(outs VR256:$dst), (ins VR256:$src1, i256mem:$src2),
!strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set VR256:$dst,
(OutVT (OpNode VR256:$src1,
(bc_frag (memopv4i64 addr:$src2)))))]>,
Sched<[WriteShuffleLd, ReadAfterLd]>;
}
let Predicates = [HasAVX] in {
defm VPACKSSWB : sse2_pack<0x63, "vpacksswb", v16i8, v8i16, X86Packss,
bc_v8i16, 0>, VEX_4V;
defm VPACKSSDW : sse2_pack<0x6B, "vpackssdw", v8i16, v4i32, X86Packss,
bc_v4i32, 0>, VEX_4V;
defm VPACKUSWB : sse2_pack<0x67, "vpackuswb", v16i8, v8i16, X86Packus,
bc_v8i16, 0>, VEX_4V;
defm VPACKUSDW : sse4_pack<0x2B, "vpackusdw", v8i16, v4i32, X86Packus,
bc_v4i32, 0>, VEX_4V;
}
let Predicates = [HasAVX2] in {
defm VPACKSSWB : sse2_pack_y<0x63, "vpacksswb", v32i8, v16i16, X86Packss,
bc_v16i16>, VEX_4V, VEX_L;
defm VPACKSSDW : sse2_pack_y<0x6B, "vpackssdw", v16i16, v8i32, X86Packss,
bc_v8i32>, VEX_4V, VEX_L;
defm VPACKUSWB : sse2_pack_y<0x67, "vpackuswb", v32i8, v16i16, X86Packus,
bc_v16i16>, VEX_4V, VEX_L;
defm VPACKUSDW : sse4_pack_y<0x2B, "vpackusdw", v16i16, v8i32, X86Packus,
bc_v8i32>, VEX_4V, VEX_L;
}
let Constraints = "$src1 = $dst" in {
defm PACKSSWB : sse2_pack<0x63, "packsswb", v16i8, v8i16, X86Packss,
bc_v8i16>;
defm PACKSSDW : sse2_pack<0x6B, "packssdw", v8i16, v4i32, X86Packss,
bc_v4i32>;
defm PACKUSWB : sse2_pack<0x67, "packuswb", v16i8, v8i16, X86Packus,
bc_v8i16>;
let Predicates = [HasSSE41] in
defm PACKUSDW : sse4_pack<0x2B, "packusdw", v8i16, v4i32, X86Packus,
bc_v4i32>;
}
} // ExeDomain = SSEPackedInt
//===---------------------------------------------------------------------===//
// SSE2 - Packed Integer Unpack Instructions
//===---------------------------------------------------------------------===//
let ExeDomain = SSEPackedInt in {
multiclass sse2_unpack<bits<8> opc, string OpcodeStr, ValueType vt,
SDNode OpNode, PatFrag bc_frag, bit Is2Addr = 1> {
def rr : PDI<opc, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr,"\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr,"\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set VR128:$dst, (vt (OpNode VR128:$src1, VR128:$src2)))],
IIC_SSE_UNPCK>, Sched<[WriteShuffle]>;
def rm : PDI<opc, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, i128mem:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr,"\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr,"\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set VR128:$dst, (OpNode VR128:$src1,
(bc_frag (memopv2i64
addr:$src2))))],
IIC_SSE_UNPCK>,
Sched<[WriteShuffleLd, ReadAfterLd]>;
}
multiclass sse2_unpack_y<bits<8> opc, string OpcodeStr, ValueType vt,
SDNode OpNode, PatFrag bc_frag> {
def Yrr : PDI<opc, MRMSrcReg,
(outs VR256:$dst), (ins VR256:$src1, VR256:$src2),
!strconcat(OpcodeStr,"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set VR256:$dst, (vt (OpNode VR256:$src1, VR256:$src2)))]>,
Sched<[WriteShuffle]>;
def Yrm : PDI<opc, MRMSrcMem,
(outs VR256:$dst), (ins VR256:$src1, i256mem:$src2),
!strconcat(OpcodeStr,"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set VR256:$dst, (OpNode VR256:$src1,
(bc_frag (memopv4i64 addr:$src2))))]>,
Sched<[WriteShuffleLd, ReadAfterLd]>;
}
let Predicates = [HasAVX] in {
defm VPUNPCKLBW : sse2_unpack<0x60, "vpunpcklbw", v16i8, X86Unpckl,
bc_v16i8, 0>, VEX_4V;
defm VPUNPCKLWD : sse2_unpack<0x61, "vpunpcklwd", v8i16, X86Unpckl,
bc_v8i16, 0>, VEX_4V;
defm VPUNPCKLDQ : sse2_unpack<0x62, "vpunpckldq", v4i32, X86Unpckl,
bc_v4i32, 0>, VEX_4V;
defm VPUNPCKLQDQ : sse2_unpack<0x6C, "vpunpcklqdq", v2i64, X86Unpckl,
bc_v2i64, 0>, VEX_4V;
defm VPUNPCKHBW : sse2_unpack<0x68, "vpunpckhbw", v16i8, X86Unpckh,
bc_v16i8, 0>, VEX_4V;
defm VPUNPCKHWD : sse2_unpack<0x69, "vpunpckhwd", v8i16, X86Unpckh,
bc_v8i16, 0>, VEX_4V;
defm VPUNPCKHDQ : sse2_unpack<0x6A, "vpunpckhdq", v4i32, X86Unpckh,
bc_v4i32, 0>, VEX_4V;
defm VPUNPCKHQDQ : sse2_unpack<0x6D, "vpunpckhqdq", v2i64, X86Unpckh,
bc_v2i64, 0>, VEX_4V;
}
let Predicates = [HasAVX2] in {
defm VPUNPCKLBW : sse2_unpack_y<0x60, "vpunpcklbw", v32i8, X86Unpckl,
bc_v32i8>, VEX_4V, VEX_L;
defm VPUNPCKLWD : sse2_unpack_y<0x61, "vpunpcklwd", v16i16, X86Unpckl,
bc_v16i16>, VEX_4V, VEX_L;
defm VPUNPCKLDQ : sse2_unpack_y<0x62, "vpunpckldq", v8i32, X86Unpckl,
bc_v8i32>, VEX_4V, VEX_L;
defm VPUNPCKLQDQ : sse2_unpack_y<0x6C, "vpunpcklqdq", v4i64, X86Unpckl,
bc_v4i64>, VEX_4V, VEX_L;
defm VPUNPCKHBW : sse2_unpack_y<0x68, "vpunpckhbw", v32i8, X86Unpckh,
bc_v32i8>, VEX_4V, VEX_L;
defm VPUNPCKHWD : sse2_unpack_y<0x69, "vpunpckhwd", v16i16, X86Unpckh,
bc_v16i16>, VEX_4V, VEX_L;
defm VPUNPCKHDQ : sse2_unpack_y<0x6A, "vpunpckhdq", v8i32, X86Unpckh,
bc_v8i32>, VEX_4V, VEX_L;
defm VPUNPCKHQDQ : sse2_unpack_y<0x6D, "vpunpckhqdq", v4i64, X86Unpckh,
bc_v4i64>, VEX_4V, VEX_L;
}
let Constraints = "$src1 = $dst" in {
defm PUNPCKLBW : sse2_unpack<0x60, "punpcklbw", v16i8, X86Unpckl,
bc_v16i8>;
defm PUNPCKLWD : sse2_unpack<0x61, "punpcklwd", v8i16, X86Unpckl,
bc_v8i16>;
defm PUNPCKLDQ : sse2_unpack<0x62, "punpckldq", v4i32, X86Unpckl,
bc_v4i32>;
defm PUNPCKLQDQ : sse2_unpack<0x6C, "punpcklqdq", v2i64, X86Unpckl,
bc_v2i64>;
defm PUNPCKHBW : sse2_unpack<0x68, "punpckhbw", v16i8, X86Unpckh,
bc_v16i8>;
defm PUNPCKHWD : sse2_unpack<0x69, "punpckhwd", v8i16, X86Unpckh,
bc_v8i16>;
defm PUNPCKHDQ : sse2_unpack<0x6A, "punpckhdq", v4i32, X86Unpckh,
bc_v4i32>;
defm PUNPCKHQDQ : sse2_unpack<0x6D, "punpckhqdq", v2i64, X86Unpckh,
bc_v2i64>;
}
} // ExeDomain = SSEPackedInt
//===---------------------------------------------------------------------===//
// SSE2 - Packed Integer Extract and Insert
//===---------------------------------------------------------------------===//
let ExeDomain = SSEPackedInt in {
multiclass sse2_pinsrw<bit Is2Addr = 1> {
def rri : Ii8<0xC4, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1,
GR32orGR64:$src2, i32i8imm:$src3),
!if(Is2Addr,
"pinsrw\t{$src3, $src2, $dst|$dst, $src2, $src3}",
"vpinsrw\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
[(set VR128:$dst,
(X86pinsrw VR128:$src1, GR32orGR64:$src2, imm:$src3))],
IIC_SSE_PINSRW>, Sched<[WriteShuffle]>;
def rmi : Ii8<0xC4, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1,
i16mem:$src2, i32i8imm:$src3),
!if(Is2Addr,
"pinsrw\t{$src3, $src2, $dst|$dst, $src2, $src3}",
"vpinsrw\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
[(set VR128:$dst,
(X86pinsrw VR128:$src1, (extloadi16 addr:$src2),
imm:$src3))], IIC_SSE_PINSRW>,
Sched<[WriteShuffleLd, ReadAfterLd]>;
}
// Extract
let Predicates = [HasAVX] in
def VPEXTRWri : Ii8<0xC5, MRMSrcReg,
(outs GR32orGR64:$dst), (ins VR128:$src1, i32i8imm:$src2),
"vpextrw\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set GR32orGR64:$dst, (X86pextrw (v8i16 VR128:$src1),
imm:$src2))]>, PD, VEX,
Sched<[WriteShuffle]>;
def PEXTRWri : PDIi8<0xC5, MRMSrcReg,
(outs GR32orGR64:$dst), (ins VR128:$src1, i32i8imm:$src2),
"pextrw\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set GR32orGR64:$dst, (X86pextrw (v8i16 VR128:$src1),
imm:$src2))], IIC_SSE_PEXTRW>,
Sched<[WriteShuffleLd, ReadAfterLd]>;
// Insert
let Predicates = [HasAVX] in
defm VPINSRW : sse2_pinsrw<0>, PD, VEX_4V;
let Predicates = [UseSSE2], Constraints = "$src1 = $dst" in
defm PINSRW : sse2_pinsrw, PD;
} // ExeDomain = SSEPackedInt
//===---------------------------------------------------------------------===//
// SSE2 - Packed Mask Creation
//===---------------------------------------------------------------------===//
let ExeDomain = SSEPackedInt, SchedRW = [WriteVecLogic] in {
def VPMOVMSKBrr : VPDI<0xD7, MRMSrcReg, (outs GR32orGR64:$dst),
(ins VR128:$src),
"pmovmskb\t{$src, $dst|$dst, $src}",
[(set GR32orGR64:$dst, (int_x86_sse2_pmovmskb_128 VR128:$src))],
IIC_SSE_MOVMSK>, VEX;
let Predicates = [HasAVX2] in {
def VPMOVMSKBYrr : VPDI<0xD7, MRMSrcReg, (outs GR32orGR64:$dst),
(ins VR256:$src),
"pmovmskb\t{$src, $dst|$dst, $src}",
[(set GR32orGR64:$dst, (int_x86_avx2_pmovmskb VR256:$src))]>,
VEX, VEX_L;
}
def PMOVMSKBrr : PDI<0xD7, MRMSrcReg, (outs GR32orGR64:$dst), (ins VR128:$src),
"pmovmskb\t{$src, $dst|$dst, $src}",
[(set GR32orGR64:$dst, (int_x86_sse2_pmovmskb_128 VR128:$src))],
IIC_SSE_MOVMSK>;
} // ExeDomain = SSEPackedInt
//===---------------------------------------------------------------------===//
// SSE2 - Conditional Store
//===---------------------------------------------------------------------===//
let ExeDomain = SSEPackedInt, SchedRW = [WriteStore] in {
let Uses = [EDI], Predicates = [HasAVX,Not64BitMode] in
def VMASKMOVDQU : VPDI<0xF7, MRMSrcReg, (outs),
(ins VR128:$src, VR128:$mask),
"maskmovdqu\t{$mask, $src|$src, $mask}",
[(int_x86_sse2_maskmov_dqu VR128:$src, VR128:$mask, EDI)],
IIC_SSE_MASKMOV>, VEX;
let Uses = [RDI], Predicates = [HasAVX,In64BitMode] in
def VMASKMOVDQU64 : VPDI<0xF7, MRMSrcReg, (outs),
(ins VR128:$src, VR128:$mask),
"maskmovdqu\t{$mask, $src|$src, $mask}",
[(int_x86_sse2_maskmov_dqu VR128:$src, VR128:$mask, RDI)],
IIC_SSE_MASKMOV>, VEX;
let Uses = [EDI], Predicates = [UseSSE2,Not64BitMode] in
def MASKMOVDQU : PDI<0xF7, MRMSrcReg, (outs), (ins VR128:$src, VR128:$mask),
"maskmovdqu\t{$mask, $src|$src, $mask}",
[(int_x86_sse2_maskmov_dqu VR128:$src, VR128:$mask, EDI)],
IIC_SSE_MASKMOV>;
let Uses = [RDI], Predicates = [UseSSE2,In64BitMode] in
def MASKMOVDQU64 : PDI<0xF7, MRMSrcReg, (outs), (ins VR128:$src, VR128:$mask),
"maskmovdqu\t{$mask, $src|$src, $mask}",
[(int_x86_sse2_maskmov_dqu VR128:$src, VR128:$mask, RDI)],
IIC_SSE_MASKMOV>;
} // ExeDomain = SSEPackedInt
//===---------------------------------------------------------------------===//
// SSE2 - Move Doubleword
//===---------------------------------------------------------------------===//
//===---------------------------------------------------------------------===//
// Move Int Doubleword to Packed Double Int
//
def VMOVDI2PDIrr : VS2I<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR32:$src),
"movd\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(v4i32 (scalar_to_vector GR32:$src)))], IIC_SSE_MOVDQ>,
VEX, Sched<[WriteMove]>;
def VMOVDI2PDIrm : VS2I<0x6E, MRMSrcMem, (outs VR128:$dst), (ins i32mem:$src),
"movd\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(v4i32 (scalar_to_vector (loadi32 addr:$src))))],
IIC_SSE_MOVDQ>,
VEX, Sched<[WriteLoad]>;
def VMOV64toPQIrr : VRS2I<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR64:$src),
"movq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(v2i64 (scalar_to_vector GR64:$src)))],
IIC_SSE_MOVDQ>, VEX, Sched<[WriteMove]>;
let isCodeGenOnly = 1 in
def VMOV64toSDrr : VRS2I<0x6E, MRMSrcReg, (outs FR64:$dst), (ins GR64:$src),
"movq\t{$src, $dst|$dst, $src}",
[(set FR64:$dst, (bitconvert GR64:$src))],
IIC_SSE_MOVDQ>, VEX, Sched<[WriteMove]>;
def MOVDI2PDIrr : S2I<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR32:$src),
"movd\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(v4i32 (scalar_to_vector GR32:$src)))], IIC_SSE_MOVDQ>,
Sched<[WriteMove]>;
def MOVDI2PDIrm : S2I<0x6E, MRMSrcMem, (outs VR128:$dst), (ins i32mem:$src),
"movd\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(v4i32 (scalar_to_vector (loadi32 addr:$src))))],
IIC_SSE_MOVDQ>, Sched<[WriteLoad]>;
def MOV64toPQIrr : RS2I<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR64:$src),
"mov{d|q}\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(v2i64 (scalar_to_vector GR64:$src)))],
IIC_SSE_MOVDQ>, Sched<[WriteMove]>;
let isCodeGenOnly = 1 in
def MOV64toSDrr : RS2I<0x6E, MRMSrcReg, (outs FR64:$dst), (ins GR64:$src),
"mov{d|q}\t{$src, $dst|$dst, $src}",
[(set FR64:$dst, (bitconvert GR64:$src))],
IIC_SSE_MOVDQ>, Sched<[WriteMove]>;
//===---------------------------------------------------------------------===//
// Move Int Doubleword to Single Scalar
//
let isCodeGenOnly = 1 in {
def VMOVDI2SSrr : VS2I<0x6E, MRMSrcReg, (outs FR32:$dst), (ins GR32:$src),
"movd\t{$src, $dst|$dst, $src}",
[(set FR32:$dst, (bitconvert GR32:$src))],
IIC_SSE_MOVDQ>, VEX, Sched<[WriteMove]>;
def VMOVDI2SSrm : VS2I<0x6E, MRMSrcMem, (outs FR32:$dst), (ins i32mem:$src),
"movd\t{$src, $dst|$dst, $src}",
[(set FR32:$dst, (bitconvert (loadi32 addr:$src)))],
IIC_SSE_MOVDQ>,
VEX, Sched<[WriteLoad]>;
def MOVDI2SSrr : S2I<0x6E, MRMSrcReg, (outs FR32:$dst), (ins GR32:$src),
"movd\t{$src, $dst|$dst, $src}",
[(set FR32:$dst, (bitconvert GR32:$src))],
IIC_SSE_MOVDQ>, Sched<[WriteMove]>;
def MOVDI2SSrm : S2I<0x6E, MRMSrcMem, (outs FR32:$dst), (ins i32mem:$src),
"movd\t{$src, $dst|$dst, $src}",
[(set FR32:$dst, (bitconvert (loadi32 addr:$src)))],
IIC_SSE_MOVDQ>, Sched<[WriteLoad]>;
}
//===---------------------------------------------------------------------===//
// Move Packed Doubleword Int to Packed Double Int
//
def VMOVPDI2DIrr : VS2I<0x7E, MRMDestReg, (outs GR32:$dst), (ins VR128:$src),
"movd\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, (vector_extract (v4i32 VR128:$src),
(iPTR 0)))], IIC_SSE_MOVD_ToGP>, VEX,
Sched<[WriteMove]>;
def VMOVPDI2DImr : VS2I<0x7E, MRMDestMem, (outs),
(ins i32mem:$dst, VR128:$src),
"movd\t{$src, $dst|$dst, $src}",
[(store (i32 (vector_extract (v4i32 VR128:$src),
(iPTR 0))), addr:$dst)], IIC_SSE_MOVDQ>,
VEX, Sched<[WriteStore]>;
def MOVPDI2DIrr : S2I<0x7E, MRMDestReg, (outs GR32:$dst), (ins VR128:$src),
"movd\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, (vector_extract (v4i32 VR128:$src),
(iPTR 0)))], IIC_SSE_MOVD_ToGP>,
Sched<[WriteMove]>;
def MOVPDI2DImr : S2I<0x7E, MRMDestMem, (outs), (ins i32mem:$dst, VR128:$src),
"movd\t{$src, $dst|$dst, $src}",
[(store (i32 (vector_extract (v4i32 VR128:$src),
(iPTR 0))), addr:$dst)],
IIC_SSE_MOVDQ>, Sched<[WriteStore]>;
def : Pat<(v8i32 (X86Vinsert (v8i32 immAllZerosV), GR32:$src2, (iPTR 0))),
(SUBREG_TO_REG (i32 0), (VMOVDI2PDIrr GR32:$src2), sub_xmm)>;
def : Pat<(v4i64 (X86Vinsert (bc_v4i64 (v8i32 immAllZerosV)), GR64:$src2, (iPTR 0))),
(SUBREG_TO_REG (i32 0), (VMOV64toPQIrr GR64:$src2), sub_xmm)>;
def : Pat<(v8i32 (X86Vinsert undef, GR32:$src2, (iPTR 0))),
(SUBREG_TO_REG (i32 0), (VMOVDI2PDIrr GR32:$src2), sub_xmm)>;
def : Pat<(v4i64 (X86Vinsert undef, GR64:$src2, (iPTR 0))),
(SUBREG_TO_REG (i32 0), (VMOV64toPQIrr GR64:$src2), sub_xmm)>;
//===---------------------------------------------------------------------===//
// Move Packed Doubleword Int first element to Doubleword Int
//
let SchedRW = [WriteMove] in {
def VMOVPQIto64rr : VRS2I<0x7E, MRMDestReg, (outs GR64:$dst), (ins VR128:$src),
"movq\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (vector_extract (v2i64 VR128:$src),
(iPTR 0)))],
IIC_SSE_MOVD_ToGP>,
VEX;
def MOVPQIto64rr : RS2I<0x7E, MRMDestReg, (outs GR64:$dst), (ins VR128:$src),
"mov{d|q}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (vector_extract (v2i64 VR128:$src),
(iPTR 0)))],
IIC_SSE_MOVD_ToGP>;
} //SchedRW
//===---------------------------------------------------------------------===//
// Bitcast FR64 <-> GR64
//
let isCodeGenOnly = 1 in {
let Predicates = [UseAVX] in
def VMOV64toSDrm : VS2SI<0x7E, MRMSrcMem, (outs FR64:$dst), (ins i64mem:$src),
"movq\t{$src, $dst|$dst, $src}",
[(set FR64:$dst, (bitconvert (loadi64 addr:$src)))]>,
VEX, Sched<[WriteLoad]>;
def VMOVSDto64rr : VRS2I<0x7E, MRMDestReg, (outs GR64:$dst), (ins FR64:$src),
"movq\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (bitconvert FR64:$src))],
IIC_SSE_MOVDQ>, VEX, Sched<[WriteMove]>;
def VMOVSDto64mr : VRS2I<0x7E, MRMDestMem, (outs), (ins i64mem:$dst, FR64:$src),
"movq\t{$src, $dst|$dst, $src}",
[(store (i64 (bitconvert FR64:$src)), addr:$dst)],
IIC_SSE_MOVDQ>, VEX, Sched<[WriteStore]>;
def MOV64toSDrm : S2SI<0x7E, MRMSrcMem, (outs FR64:$dst), (ins i64mem:$src),
"movq\t{$src, $dst|$dst, $src}",
[(set FR64:$dst, (bitconvert (loadi64 addr:$src)))],
IIC_SSE_MOVDQ>, Sched<[WriteLoad]>;
def MOVSDto64rr : RS2I<0x7E, MRMDestReg, (outs GR64:$dst), (ins FR64:$src),
"mov{d|q}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (bitconvert FR64:$src))],
IIC_SSE_MOVD_ToGP>, Sched<[WriteMove]>;
def MOVSDto64mr : RS2I<0x7E, MRMDestMem, (outs), (ins i64mem:$dst, FR64:$src),
"movq\t{$src, $dst|$dst, $src}",
[(store (i64 (bitconvert FR64:$src)), addr:$dst)],
IIC_SSE_MOVDQ>, Sched<[WriteStore]>;
}
//===---------------------------------------------------------------------===//
// Move Scalar Single to Double Int
//
let isCodeGenOnly = 1 in {
def VMOVSS2DIrr : VS2I<0x7E, MRMDestReg, (outs GR32:$dst), (ins FR32:$src),
"movd\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, (bitconvert FR32:$src))],
IIC_SSE_MOVD_ToGP>, VEX, Sched<[WriteMove]>;
def VMOVSS2DImr : VS2I<0x7E, MRMDestMem, (outs), (ins i32mem:$dst, FR32:$src),
"movd\t{$src, $dst|$dst, $src}",
[(store (i32 (bitconvert FR32:$src)), addr:$dst)],
IIC_SSE_MOVDQ>, VEX, Sched<[WriteStore]>;
def MOVSS2DIrr : S2I<0x7E, MRMDestReg, (outs GR32:$dst), (ins FR32:$src),
"movd\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, (bitconvert FR32:$src))],
IIC_SSE_MOVD_ToGP>, Sched<[WriteMove]>;
def MOVSS2DImr : S2I<0x7E, MRMDestMem, (outs), (ins i32mem:$dst, FR32:$src),
"movd\t{$src, $dst|$dst, $src}",
[(store (i32 (bitconvert FR32:$src)), addr:$dst)],
IIC_SSE_MOVDQ>, Sched<[WriteStore]>;
}
//===---------------------------------------------------------------------===//
// Patterns and instructions to describe movd/movq to XMM register zero-extends
//
let isCodeGenOnly = 1, SchedRW = [WriteMove] in {
let AddedComplexity = 15 in {
def VMOVZQI2PQIrr : VS2I<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR64:$src),
"movq\t{$src, $dst|$dst, $src}", // X86-64 only
[(set VR128:$dst, (v2i64 (X86vzmovl
(v2i64 (scalar_to_vector GR64:$src)))))],
IIC_SSE_MOVDQ>,
VEX, VEX_W;
def MOVZQI2PQIrr : RS2I<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR64:$src),
"mov{d|q}\t{$src, $dst|$dst, $src}", // X86-64 only
[(set VR128:$dst, (v2i64 (X86vzmovl
(v2i64 (scalar_to_vector GR64:$src)))))],
IIC_SSE_MOVDQ>;
}
} // isCodeGenOnly, SchedRW
let Predicates = [UseAVX] in {
let AddedComplexity = 15 in
def : Pat<(v4i32 (X86vzmovl (v4i32 (scalar_to_vector GR32:$src)))),
(VMOVDI2PDIrr GR32:$src)>;
// AVX 128-bit movd/movq instruction write zeros in the high 128-bit part.
let AddedComplexity = 20 in {
def : Pat<(v4i32 (X86vzmovl (v4i32 (scalar_to_vector (loadi32 addr:$src))))),
(VMOVDI2PDIrm addr:$src)>;
def : Pat<(v4i32 (X86vzmovl (bc_v4i32 (loadv4f32 addr:$src)))),
(VMOVDI2PDIrm addr:$src)>;
def : Pat<(v4i32 (X86vzmovl (bc_v4i32 (loadv2i64 addr:$src)))),
(VMOVDI2PDIrm addr:$src)>;
}
// Use regular 128-bit instructions to match 256-bit scalar_to_vec+zext.
def : Pat<(v8i32 (X86vzmovl (insert_subvector undef,
(v4i32 (scalar_to_vector GR32:$src)),(iPTR 0)))),
(SUBREG_TO_REG (i32 0), (VMOVDI2PDIrr GR32:$src), sub_xmm)>;
def : Pat<(v4i64 (X86vzmovl (insert_subvector undef,
(v2i64 (scalar_to_vector GR64:$src)),(iPTR 0)))),
(SUBREG_TO_REG (i64 0), (VMOVZQI2PQIrr GR64:$src), sub_xmm)>;
}
let Predicates = [UseSSE2] in {
let AddedComplexity = 15 in
def : Pat<(v4i32 (X86vzmovl (v4i32 (scalar_to_vector GR32:$src)))),
(MOVDI2PDIrr GR32:$src)>;
let AddedComplexity = 20 in {
def : Pat<(v4i32 (X86vzmovl (v4i32 (scalar_to_vector (loadi32 addr:$src))))),
(MOVDI2PDIrm addr:$src)>;
def : Pat<(v4i32 (X86vzmovl (bc_v4i32 (loadv4f32 addr:$src)))),
(MOVDI2PDIrm addr:$src)>;
def : Pat<(v4i32 (X86vzmovl (bc_v4i32 (loadv2i64 addr:$src)))),
(MOVDI2PDIrm addr:$src)>;
}
}
// These are the correct encodings of the instructions so that we know how to
// read correct assembly, even though we continue to emit the wrong ones for
// compatibility with Darwin's buggy assembler.
def : InstAlias<"movq\t{$src, $dst|$dst, $src}",
(MOV64toPQIrr VR128:$dst, GR64:$src), 0>;
def : InstAlias<"movq\t{$src, $dst|$dst, $src}",
(MOVPQIto64rr GR64:$dst, VR128:$src), 0>;
// Allow "vmovd" but print "vmovq" since we don't need compatibility for AVX.
def : InstAlias<"vmovd\t{$src, $dst|$dst, $src}",
(VMOV64toPQIrr VR128:$dst, GR64:$src), 0>;
def : InstAlias<"vmovd\t{$src, $dst|$dst, $src}",
(VMOVPQIto64rr GR64:$dst, VR128:$src), 0>;
//===---------------------------------------------------------------------===//
// SSE2 - Move Quadword
//===---------------------------------------------------------------------===//
//===---------------------------------------------------------------------===//
// Move Quadword Int to Packed Quadword Int
//
let SchedRW = [WriteLoad] in {
def VMOVQI2PQIrm : I<0x7E, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src),
"vmovq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(v2i64 (scalar_to_vector (loadi64 addr:$src))))]>, XS,
VEX, Requires<[UseAVX]>;
def MOVQI2PQIrm : I<0x7E, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src),
"movq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(v2i64 (scalar_to_vector (loadi64 addr:$src))))],
IIC_SSE_MOVDQ>, XS,
Requires<[UseSSE2]>; // SSE2 instruction with XS Prefix
} // SchedRW
//===---------------------------------------------------------------------===//
// Move Packed Quadword Int to Quadword Int
//
let SchedRW = [WriteStore] in {
def VMOVPQI2QImr : VS2I<0xD6, MRMDestMem, (outs), (ins i64mem:$dst, VR128:$src),
"movq\t{$src, $dst|$dst, $src}",
[(store (i64 (vector_extract (v2i64 VR128:$src),
(iPTR 0))), addr:$dst)],
IIC_SSE_MOVDQ>, VEX;
def MOVPQI2QImr : S2I<0xD6, MRMDestMem, (outs), (ins i64mem:$dst, VR128:$src),
"movq\t{$src, $dst|$dst, $src}",
[(store (i64 (vector_extract (v2i64 VR128:$src),
(iPTR 0))), addr:$dst)],
IIC_SSE_MOVDQ>;
} // SchedRW
// For disassembler only
let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0,
SchedRW = [WriteVecLogic] in {
def VMOVPQI2QIrr : VS2I<0xD6, MRMDestReg, (outs VR128:$dst), (ins VR128:$src),
"movq\t{$src, $dst|$dst, $src}", [], IIC_SSE_MOVQ_RR>, VEX;
def MOVPQI2QIrr : S2I<0xD6, MRMDestReg, (outs VR128:$dst), (ins VR128:$src),
"movq\t{$src, $dst|$dst, $src}", [], IIC_SSE_MOVQ_RR>;
}
//===---------------------------------------------------------------------===//
// Store / copy lower 64-bits of a XMM register.
//
let Predicates = [UseAVX] in
def : Pat<(int_x86_sse2_storel_dq addr:$dst, VR128:$src),
(VMOVPQI2QImr addr:$dst, VR128:$src)>;
let Predicates = [UseSSE2] in
def : Pat<(int_x86_sse2_storel_dq addr:$dst, VR128:$src),
(MOVPQI2QImr addr:$dst, VR128:$src)>;
let isCodeGenOnly = 1, AddedComplexity = 20 in {
def VMOVZQI2PQIrm : I<0x7E, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src),
"vmovq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(v2i64 (X86vzmovl (v2i64 (scalar_to_vector
(loadi64 addr:$src))))))],
IIC_SSE_MOVDQ>,
XS, VEX, Requires<[UseAVX]>, Sched<[WriteLoad]>;
def MOVZQI2PQIrm : I<0x7E, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src),
"movq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(v2i64 (X86vzmovl (v2i64 (scalar_to_vector
(loadi64 addr:$src))))))],
IIC_SSE_MOVDQ>,
XS, Requires<[UseSSE2]>, Sched<[WriteLoad]>;
}
let Predicates = [UseAVX], AddedComplexity = 20 in {
def : Pat<(v2i64 (X86vzmovl (bc_v2i64 (loadv4f32 addr:$src)))),
(VMOVZQI2PQIrm addr:$src)>;
def : Pat<(v2i64 (X86vzload addr:$src)),
(VMOVZQI2PQIrm addr:$src)>;
}
let Predicates = [UseSSE2], AddedComplexity = 20 in {
def : Pat<(v2i64 (X86vzmovl (bc_v2i64 (loadv4f32 addr:$src)))),
(MOVZQI2PQIrm addr:$src)>;
def : Pat<(v2i64 (X86vzload addr:$src)), (MOVZQI2PQIrm addr:$src)>;
}
let Predicates = [HasAVX] in {
def : Pat<(v4i64 (alignedX86vzload addr:$src)),
(SUBREG_TO_REG (i32 0), (VMOVAPSrm addr:$src), sub_xmm)>;
def : Pat<(v4i64 (X86vzload addr:$src)),
(SUBREG_TO_REG (i32 0), (VMOVUPSrm addr:$src), sub_xmm)>;
}
//===---------------------------------------------------------------------===//
// Moving from XMM to XMM and clear upper 64 bits. Note, there is a bug in
// IA32 document. movq xmm1, xmm2 does clear the high bits.
//
let SchedRW = [WriteVecLogic] in {
let AddedComplexity = 15 in
def VMOVZPQILo2PQIrr : I<0x7E, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"vmovq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (v2i64 (X86vzmovl (v2i64 VR128:$src))))],
IIC_SSE_MOVQ_RR>,
XS, VEX, Requires<[UseAVX]>;
let AddedComplexity = 15 in
def MOVZPQILo2PQIrr : I<0x7E, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"movq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (v2i64 (X86vzmovl (v2i64 VR128:$src))))],
IIC_SSE_MOVQ_RR>,
XS, Requires<[UseSSE2]>;
} // SchedRW
let isCodeGenOnly = 1, SchedRW = [WriteVecLogicLd] in {
let AddedComplexity = 20 in
def VMOVZPQILo2PQIrm : I<0x7E, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src),
"vmovq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (v2i64 (X86vzmovl
(loadv2i64 addr:$src))))],
IIC_SSE_MOVDQ>,
XS, VEX, Requires<[UseAVX]>;
let AddedComplexity = 20 in {
def MOVZPQILo2PQIrm : I<0x7E, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src),
"movq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (v2i64 (X86vzmovl
(loadv2i64 addr:$src))))],
IIC_SSE_MOVDQ>,
XS, Requires<[UseSSE2]>;
}
} // isCodeGenOnly, SchedRW
let AddedComplexity = 20 in {
let Predicates = [UseAVX] in {
def : Pat<(v2f64 (X86vzmovl (v2f64 VR128:$src))),
(VMOVZPQILo2PQIrr VR128:$src)>;
}
let Predicates = [UseSSE2] in {
def : Pat<(v2f64 (X86vzmovl (v2f64 VR128:$src))),
(MOVZPQILo2PQIrr VR128:$src)>;
}
}
//===---------------------------------------------------------------------===//
// SSE3 - Replicate Single FP - MOVSHDUP and MOVSLDUP
//===---------------------------------------------------------------------===//
multiclass sse3_replicate_sfp<bits<8> op, SDNode OpNode, string OpcodeStr,
ValueType vt, RegisterClass RC, PatFrag mem_frag,
X86MemOperand x86memop> {
def rr : S3SI<op, MRMSrcReg, (outs RC:$dst), (ins RC:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set RC:$dst, (vt (OpNode RC:$src)))],
IIC_SSE_MOV_LH>, Sched<[WriteFShuffle]>;
def rm : S3SI<op, MRMSrcMem, (outs RC:$dst), (ins x86memop:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set RC:$dst, (OpNode (mem_frag addr:$src)))],
IIC_SSE_MOV_LH>, Sched<[WriteLoad]>;
}
let Predicates = [HasAVX] in {
defm VMOVSHDUP : sse3_replicate_sfp<0x16, X86Movshdup, "vmovshdup",
v4f32, VR128, loadv4f32, f128mem>, VEX;
defm VMOVSLDUP : sse3_replicate_sfp<0x12, X86Movsldup, "vmovsldup",
v4f32, VR128, loadv4f32, f128mem>, VEX;
defm VMOVSHDUPY : sse3_replicate_sfp<0x16, X86Movshdup, "vmovshdup",
v8f32, VR256, loadv8f32, f256mem>, VEX, VEX_L;
defm VMOVSLDUPY : sse3_replicate_sfp<0x12, X86Movsldup, "vmovsldup",
v8f32, VR256, loadv8f32, f256mem>, VEX, VEX_L;
}
defm MOVSHDUP : sse3_replicate_sfp<0x16, X86Movshdup, "movshdup", v4f32, VR128,
memopv4f32, f128mem>;
defm MOVSLDUP : sse3_replicate_sfp<0x12, X86Movsldup, "movsldup", v4f32, VR128,
memopv4f32, f128mem>;
let Predicates = [HasAVX] in {
def : Pat<(v4i32 (X86Movshdup VR128:$src)),
(VMOVSHDUPrr VR128:$src)>;
def : Pat<(v4i32 (X86Movshdup (bc_v4i32 (loadv2i64 addr:$src)))),
(VMOVSHDUPrm addr:$src)>;
def : Pat<(v4i32 (X86Movsldup VR128:$src)),
(VMOVSLDUPrr VR128:$src)>;
def : Pat<(v4i32 (X86Movsldup (bc_v4i32 (loadv2i64 addr:$src)))),
(VMOVSLDUPrm addr:$src)>;
def : Pat<(v8i32 (X86Movshdup VR256:$src)),
(VMOVSHDUPYrr VR256:$src)>;
def : Pat<(v8i32 (X86Movshdup (bc_v8i32 (loadv4i64 addr:$src)))),
(VMOVSHDUPYrm addr:$src)>;
def : Pat<(v8i32 (X86Movsldup VR256:$src)),
(VMOVSLDUPYrr VR256:$src)>;
def : Pat<(v8i32 (X86Movsldup (bc_v8i32 (loadv4i64 addr:$src)))),
(VMOVSLDUPYrm addr:$src)>;
}
let Predicates = [UseSSE3] in {
def : Pat<(v4i32 (X86Movshdup VR128:$src)),
(MOVSHDUPrr VR128:$src)>;
def : Pat<(v4i32 (X86Movshdup (bc_v4i32 (memopv2i64 addr:$src)))),
(MOVSHDUPrm addr:$src)>;
def : Pat<(v4i32 (X86Movsldup VR128:$src)),
(MOVSLDUPrr VR128:$src)>;
def : Pat<(v4i32 (X86Movsldup (bc_v4i32 (memopv2i64 addr:$src)))),
(MOVSLDUPrm addr:$src)>;
}
//===---------------------------------------------------------------------===//
// SSE3 - Replicate Double FP - MOVDDUP
//===---------------------------------------------------------------------===//
multiclass sse3_replicate_dfp<string OpcodeStr> {
let neverHasSideEffects = 1 in
def rr : S3DI<0x12, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[], IIC_SSE_MOV_LH>, Sched<[WriteFShuffle]>;
def rm : S3DI<0x12, MRMSrcMem, (outs VR128:$dst), (ins f64mem:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst,
(v2f64 (X86Movddup
(scalar_to_vector (loadf64 addr:$src)))))],
IIC_SSE_MOV_LH>, Sched<[WriteLoad]>;
}
// FIXME: Merge with above classe when there're patterns for the ymm version
multiclass sse3_replicate_dfp_y<string OpcodeStr> {
def rr : S3DI<0x12, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR256:$dst, (v4f64 (X86Movddup VR256:$src)))]>,
Sched<[WriteFShuffle]>;
def rm : S3DI<0x12, MRMSrcMem, (outs VR256:$dst), (ins f256mem:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR256:$dst,
(v4f64 (X86Movddup
(scalar_to_vector (loadf64 addr:$src)))))]>,
Sched<[WriteLoad]>;
}
let Predicates = [HasAVX] in {
defm VMOVDDUP : sse3_replicate_dfp<"vmovddup">, VEX;
defm VMOVDDUPY : sse3_replicate_dfp_y<"vmovddup">, VEX, VEX_L;
}
defm MOVDDUP : sse3_replicate_dfp<"movddup">;
let Predicates = [HasAVX] in {
def : Pat<(X86Movddup (loadv2f64 addr:$src)),
(VMOVDDUPrm addr:$src)>, Requires<[HasAVX]>;
def : Pat<(X86Movddup (bc_v2f64 (loadv4f32 addr:$src))),
(VMOVDDUPrm addr:$src)>, Requires<[HasAVX]>;
def : Pat<(X86Movddup (bc_v2f64 (loadv2i64 addr:$src))),
(VMOVDDUPrm addr:$src)>, Requires<[HasAVX]>;
def : Pat<(X86Movddup (bc_v2f64
(v2i64 (scalar_to_vector (loadi64 addr:$src))))),
(VMOVDDUPrm addr:$src)>, Requires<[HasAVX]>;
// 256-bit version
def : Pat<(X86Movddup (loadv4f64 addr:$src)),
(VMOVDDUPYrm addr:$src)>;
def : Pat<(X86Movddup (loadv4i64 addr:$src)),
(VMOVDDUPYrm addr:$src)>;
def : Pat<(X86Movddup (v4i64 (scalar_to_vector (loadi64 addr:$src)))),
(VMOVDDUPYrm addr:$src)>;
def : Pat<(X86Movddup (v4i64 VR256:$src)),
(VMOVDDUPYrr VR256:$src)>;
}
let Predicates = [UseAVX, OptForSize] in {
def : Pat<(v2f64 (X86VBroadcast (loadf64 addr:$src))),
(VMOVDDUPrm addr:$src)>;
def : Pat<(v2i64 (X86VBroadcast (loadi64 addr:$src))),
(VMOVDDUPrm addr:$src)>;
}
let Predicates = [UseSSE3] in {
def : Pat<(X86Movddup (memopv2f64 addr:$src)),
(MOVDDUPrm addr:$src)>;
def : Pat<(X86Movddup (bc_v2f64 (memopv4f32 addr:$src))),
(MOVDDUPrm addr:$src)>;
def : Pat<(X86Movddup (bc_v2f64 (memopv2i64 addr:$src))),
(MOVDDUPrm addr:$src)>;
def : Pat<(X86Movddup (bc_v2f64
(v2i64 (scalar_to_vector (loadi64 addr:$src))))),
(MOVDDUPrm addr:$src)>;
}
//===---------------------------------------------------------------------===//
// SSE3 - Move Unaligned Integer
//===---------------------------------------------------------------------===//
let SchedRW = [WriteLoad] in {
let Predicates = [HasAVX] in {
def VLDDQUrm : S3DI<0xF0, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src),
"vlddqu\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse3_ldu_dq addr:$src))]>, VEX;
def VLDDQUYrm : S3DI<0xF0, MRMSrcMem, (outs VR256:$dst), (ins i256mem:$src),
"vlddqu\t{$src, $dst|$dst, $src}",
[(set VR256:$dst, (int_x86_avx_ldu_dq_256 addr:$src))]>,
VEX, VEX_L;
}
def LDDQUrm : S3DI<0xF0, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src),
"lddqu\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse3_ldu_dq addr:$src))],
IIC_SSE_LDDQU>;
}
//===---------------------------------------------------------------------===//
// SSE3 - Arithmetic
//===---------------------------------------------------------------------===//
multiclass sse3_addsub<Intrinsic Int, string OpcodeStr, RegisterClass RC,
X86MemOperand x86memop, OpndItins itins,
bit Is2Addr = 1> {
def rr : I<0xD0, MRMSrcReg,
(outs RC:$dst), (ins RC:$src1, RC:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set RC:$dst, (Int RC:$src1, RC:$src2))], itins.rr>,
Sched<[itins.Sched]>;
def rm : I<0xD0, MRMSrcMem,
(outs RC:$dst), (ins RC:$src1, x86memop:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set RC:$dst, (Int RC:$src1, (memop addr:$src2)))], itins.rr>,
Sched<[itins.Sched.Folded, ReadAfterLd]>;
}
let Predicates = [HasAVX] in {
let ExeDomain = SSEPackedSingle in {
defm VADDSUBPS : sse3_addsub<int_x86_sse3_addsub_ps, "vaddsubps", VR128,
f128mem, SSE_ALU_F32P, 0>, XD, VEX_4V;
defm VADDSUBPSY : sse3_addsub<int_x86_avx_addsub_ps_256, "vaddsubps", VR256,
f256mem, SSE_ALU_F32P, 0>, XD, VEX_4V, VEX_L;
}
let ExeDomain = SSEPackedDouble in {
defm VADDSUBPD : sse3_addsub<int_x86_sse3_addsub_pd, "vaddsubpd", VR128,
f128mem, SSE_ALU_F64P, 0>, PD, VEX_4V;
defm VADDSUBPDY : sse3_addsub<int_x86_avx_addsub_pd_256, "vaddsubpd", VR256,
f256mem, SSE_ALU_F64P, 0>, PD, VEX_4V, VEX_L;
}
}
let Constraints = "$src1 = $dst", Predicates = [UseSSE3] in {
let ExeDomain = SSEPackedSingle in
defm ADDSUBPS : sse3_addsub<int_x86_sse3_addsub_ps, "addsubps", VR128,
f128mem, SSE_ALU_F32P>, XD;
let ExeDomain = SSEPackedDouble in
defm ADDSUBPD : sse3_addsub<int_x86_sse3_addsub_pd, "addsubpd", VR128,
f128mem, SSE_ALU_F64P>, PD;
}
// Patterns used to select 'addsub' instructions.
let Predicates = [HasAVX] in {
def : Pat<(v4f32 (X86Addsub (v4f32 VR128:$lhs), (v4f32 VR128:$rhs))),
(VADDSUBPSrr VR128:$lhs, VR128:$rhs)>;
def : Pat<(v4f32 (X86Addsub (v4f32 VR128:$lhs), (v4f32 (memop addr:$rhs)))),
(VADDSUBPSrm VR128:$lhs, f128mem:$rhs)>;
def : Pat<(v2f64 (X86Addsub (v2f64 VR128:$lhs), (v2f64 VR128:$rhs))),
(VADDSUBPDrr VR128:$lhs, VR128:$rhs)>;
def : Pat<(v2f64 (X86Addsub (v2f64 VR128:$lhs), (v2f64 (memop addr:$rhs)))),
(VADDSUBPDrm VR128:$lhs, f128mem:$rhs)>;
def : Pat<(v8f32 (X86Addsub (v8f32 VR256:$lhs), (v8f32 VR256:$rhs))),
(VADDSUBPSYrr VR256:$lhs, VR256:$rhs)>;
def : Pat<(v8f32 (X86Addsub (v8f32 VR256:$lhs), (v8f32 (memop addr:$rhs)))),
(VADDSUBPSYrm VR256:$lhs, f256mem:$rhs)>;
def : Pat<(v4f64 (X86Addsub (v4f64 VR256:$lhs), (v4f64 VR256:$rhs))),
(VADDSUBPDYrr VR256:$lhs, VR256:$rhs)>;
def : Pat<(v4f64 (X86Addsub (v4f64 VR256:$lhs), (v4f64 (memop addr:$rhs)))),
(VADDSUBPDYrm VR256:$lhs, f256mem:$rhs)>;
}
let Predicates = [UseSSE3] in {
def : Pat<(v4f32 (X86Addsub (v4f32 VR128:$lhs), (v4f32 VR128:$rhs))),
(ADDSUBPSrr VR128:$lhs, VR128:$rhs)>;
def : Pat<(v4f32 (X86Addsub (v4f32 VR128:$lhs), (v4f32 (memop addr:$rhs)))),
(ADDSUBPSrm VR128:$lhs, f128mem:$rhs)>;
def : Pat<(v2f64 (X86Addsub (v2f64 VR128:$lhs), (v2f64 VR128:$rhs))),
(ADDSUBPDrr VR128:$lhs, VR128:$rhs)>;
def : Pat<(v2f64 (X86Addsub (v2f64 VR128:$lhs), (v2f64 (memop addr:$rhs)))),
(ADDSUBPDrm VR128:$lhs, f128mem:$rhs)>;
}
//===---------------------------------------------------------------------===//
// SSE3 Instructions
//===---------------------------------------------------------------------===//
// Horizontal ops
multiclass S3D_Int<bits<8> o, string OpcodeStr, ValueType vt, RegisterClass RC,
X86MemOperand x86memop, SDNode OpNode, bit Is2Addr = 1> {
def rr : S3DI<o, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set RC:$dst, (vt (OpNode RC:$src1, RC:$src2)))], IIC_SSE_HADDSUB_RR>,
Sched<[WriteFAdd]>;
def rm : S3DI<o, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set RC:$dst, (vt (OpNode RC:$src1, (memop addr:$src2))))],
IIC_SSE_HADDSUB_RM>, Sched<[WriteFAddLd, ReadAfterLd]>;
}
multiclass S3_Int<bits<8> o, string OpcodeStr, ValueType vt, RegisterClass RC,
X86MemOperand x86memop, SDNode OpNode, bit Is2Addr = 1> {
def rr : S3I<o, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set RC:$dst, (vt (OpNode RC:$src1, RC:$src2)))], IIC_SSE_HADDSUB_RR>,
Sched<[WriteFAdd]>;
def rm : S3I<o, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set RC:$dst, (vt (OpNode RC:$src1, (memop addr:$src2))))],
IIC_SSE_HADDSUB_RM>, Sched<[WriteFAddLd, ReadAfterLd]>;
}
let Predicates = [HasAVX] in {
let ExeDomain = SSEPackedSingle in {
defm VHADDPS : S3D_Int<0x7C, "vhaddps", v4f32, VR128, f128mem,
X86fhadd, 0>, VEX_4V;
defm VHSUBPS : S3D_Int<0x7D, "vhsubps", v4f32, VR128, f128mem,
X86fhsub, 0>, VEX_4V;
defm VHADDPSY : S3D_Int<0x7C, "vhaddps", v8f32, VR256, f256mem,
X86fhadd, 0>, VEX_4V, VEX_L;
defm VHSUBPSY : S3D_Int<0x7D, "vhsubps", v8f32, VR256, f256mem,
X86fhsub, 0>, VEX_4V, VEX_L;
}
let ExeDomain = SSEPackedDouble in {
defm VHADDPD : S3_Int <0x7C, "vhaddpd", v2f64, VR128, f128mem,
X86fhadd, 0>, VEX_4V;
defm VHSUBPD : S3_Int <0x7D, "vhsubpd", v2f64, VR128, f128mem,
X86fhsub, 0>, VEX_4V;
defm VHADDPDY : S3_Int <0x7C, "vhaddpd", v4f64, VR256, f256mem,
X86fhadd, 0>, VEX_4V, VEX_L;
defm VHSUBPDY : S3_Int <0x7D, "vhsubpd", v4f64, VR256, f256mem,
X86fhsub, 0>, VEX_4V, VEX_L;
}
}
let Constraints = "$src1 = $dst" in {
let ExeDomain = SSEPackedSingle in {
defm HADDPS : S3D_Int<0x7C, "haddps", v4f32, VR128, f128mem, X86fhadd>;
defm HSUBPS : S3D_Int<0x7D, "hsubps", v4f32, VR128, f128mem, X86fhsub>;
}
let ExeDomain = SSEPackedDouble in {
defm HADDPD : S3_Int<0x7C, "haddpd", v2f64, VR128, f128mem, X86fhadd>;
defm HSUBPD : S3_Int<0x7D, "hsubpd", v2f64, VR128, f128mem, X86fhsub>;
}
}
//===---------------------------------------------------------------------===//
// SSSE3 - Packed Absolute Instructions
//===---------------------------------------------------------------------===//
/// SS3I_unop_rm_int - Simple SSSE3 unary op whose type can be v*{i8,i16,i32}.
multiclass SS3I_unop_rm_int<bits<8> opc, string OpcodeStr,
Intrinsic IntId128> {
def rr128 : SS38I<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (IntId128 VR128:$src))], IIC_SSE_PABS_RR>,
Sched<[WriteVecALU]>;
def rm128 : SS38I<opc, MRMSrcMem, (outs VR128:$dst),
(ins i128mem:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst,
(IntId128
(bitconvert (memopv2i64 addr:$src))))], IIC_SSE_PABS_RM>,
Sched<[WriteVecALULd]>;
}
/// SS3I_unop_rm_int_y - Simple SSSE3 unary op whose type can be v*{i8,i16,i32}.
multiclass SS3I_unop_rm_int_y<bits<8> opc, string OpcodeStr,
Intrinsic IntId256> {
def rr256 : SS38I<opc, MRMSrcReg, (outs VR256:$dst),
(ins VR256:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR256:$dst, (IntId256 VR256:$src))]>,
Sched<[WriteVecALU]>;
def rm256 : SS38I<opc, MRMSrcMem, (outs VR256:$dst),
(ins i256mem:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR256:$dst,
(IntId256
(bitconvert (memopv4i64 addr:$src))))]>,
Sched<[WriteVecALULd]>;
}
// Helper fragments to match sext vXi1 to vXiY.
def v16i1sextv16i8 : PatLeaf<(v16i8 (X86pcmpgt (bc_v16i8 (v4i32 immAllZerosV)),
VR128:$src))>;
def v8i1sextv8i16 : PatLeaf<(v8i16 (X86vsrai VR128:$src, (i8 15)))>;
def v4i1sextv4i32 : PatLeaf<(v4i32 (X86vsrai VR128:$src, (i8 31)))>;
def v32i1sextv32i8 : PatLeaf<(v32i8 (X86pcmpgt (bc_v32i8 (v8i32 immAllZerosV)),
VR256:$src))>;
def v16i1sextv16i16: PatLeaf<(v16i16 (X86vsrai VR256:$src, (i8 15)))>;
def v8i1sextv8i32 : PatLeaf<(v8i32 (X86vsrai VR256:$src, (i8 31)))>;
let Predicates = [HasAVX] in {
defm VPABSB : SS3I_unop_rm_int<0x1C, "vpabsb",
int_x86_ssse3_pabs_b_128>, VEX;
defm VPABSW : SS3I_unop_rm_int<0x1D, "vpabsw",
int_x86_ssse3_pabs_w_128>, VEX;
defm VPABSD : SS3I_unop_rm_int<0x1E, "vpabsd",
int_x86_ssse3_pabs_d_128>, VEX;
def : Pat<(xor
(bc_v2i64 (v16i1sextv16i8)),
(bc_v2i64 (add (v16i8 VR128:$src), (v16i1sextv16i8)))),
(VPABSBrr128 VR128:$src)>;
def : Pat<(xor
(bc_v2i64 (v8i1sextv8i16)),
(bc_v2i64 (add (v8i16 VR128:$src), (v8i1sextv8i16)))),
(VPABSWrr128 VR128:$src)>;
def : Pat<(xor
(bc_v2i64 (v4i1sextv4i32)),
(bc_v2i64 (add (v4i32 VR128:$src), (v4i1sextv4i32)))),
(VPABSDrr128 VR128:$src)>;
}
let Predicates = [HasAVX2] in {
defm VPABSB : SS3I_unop_rm_int_y<0x1C, "vpabsb",
int_x86_avx2_pabs_b>, VEX, VEX_L;
defm VPABSW : SS3I_unop_rm_int_y<0x1D, "vpabsw",
int_x86_avx2_pabs_w>, VEX, VEX_L;
defm VPABSD : SS3I_unop_rm_int_y<0x1E, "vpabsd",
int_x86_avx2_pabs_d>, VEX, VEX_L;
def : Pat<(xor
(bc_v4i64 (v32i1sextv32i8)),
(bc_v4i64 (add (v32i8 VR256:$src), (v32i1sextv32i8)))),
(VPABSBrr256 VR256:$src)>;
def : Pat<(xor
(bc_v4i64 (v16i1sextv16i16)),
(bc_v4i64 (add (v16i16 VR256:$src), (v16i1sextv16i16)))),
(VPABSWrr256 VR256:$src)>;
def : Pat<(xor
(bc_v4i64 (v8i1sextv8i32)),
(bc_v4i64 (add (v8i32 VR256:$src), (v8i1sextv8i32)))),
(VPABSDrr256 VR256:$src)>;
}
defm PABSB : SS3I_unop_rm_int<0x1C, "pabsb",
int_x86_ssse3_pabs_b_128>;
defm PABSW : SS3I_unop_rm_int<0x1D, "pabsw",
int_x86_ssse3_pabs_w_128>;
defm PABSD : SS3I_unop_rm_int<0x1E, "pabsd",
int_x86_ssse3_pabs_d_128>;
let Predicates = [HasSSSE3] in {
def : Pat<(xor
(bc_v2i64 (v16i1sextv16i8)),
(bc_v2i64 (add (v16i8 VR128:$src), (v16i1sextv16i8)))),
(PABSBrr128 VR128:$src)>;
def : Pat<(xor
(bc_v2i64 (v8i1sextv8i16)),
(bc_v2i64 (add (v8i16 VR128:$src), (v8i1sextv8i16)))),
(PABSWrr128 VR128:$src)>;
def : Pat<(xor
(bc_v2i64 (v4i1sextv4i32)),
(bc_v2i64 (add (v4i32 VR128:$src), (v4i1sextv4i32)))),
(PABSDrr128 VR128:$src)>;
}
//===---------------------------------------------------------------------===//
// SSSE3 - Packed Binary Operator Instructions
//===---------------------------------------------------------------------===//
let Sched = WriteVecALU in {
def SSE_PHADDSUBD : OpndItins<
IIC_SSE_PHADDSUBD_RR, IIC_SSE_PHADDSUBD_RM
>;
def SSE_PHADDSUBSW : OpndItins<
IIC_SSE_PHADDSUBSW_RR, IIC_SSE_PHADDSUBSW_RM
>;
def SSE_PHADDSUBW : OpndItins<
IIC_SSE_PHADDSUBW_RR, IIC_SSE_PHADDSUBW_RM
>;
}
let Sched = WriteShuffle in
def SSE_PSHUFB : OpndItins<
IIC_SSE_PSHUFB_RR, IIC_SSE_PSHUFB_RM
>;
let Sched = WriteVecALU in
def SSE_PSIGN : OpndItins<
IIC_SSE_PSIGN_RR, IIC_SSE_PSIGN_RM
>;
let Sched = WriteVecIMul in
def SSE_PMULHRSW : OpndItins<
IIC_SSE_PMULHRSW, IIC_SSE_PMULHRSW
>;
/// SS3I_binop_rm - Simple SSSE3 bin op
multiclass SS3I_binop_rm<bits<8> opc, string OpcodeStr, SDNode OpNode,
ValueType OpVT, RegisterClass RC, PatFrag memop_frag,
X86MemOperand x86memop, OpndItins itins,
bit Is2Addr = 1> {
let isCommutable = 1 in
def rr : SS38I<opc, MRMSrcReg, (outs RC:$dst),
(ins RC:$src1, RC:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set RC:$dst, (OpVT (OpNode RC:$src1, RC:$src2)))], itins.rr>,
Sched<[itins.Sched]>;
def rm : SS38I<opc, MRMSrcMem, (outs RC:$dst),
(ins RC:$src1, x86memop:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set RC:$dst,
(OpVT (OpNode RC:$src1,
(bitconvert (memop_frag addr:$src2)))))], itins.rm>,
Sched<[itins.Sched.Folded, ReadAfterLd]>;
}
/// SS3I_binop_rm_int - Simple SSSE3 bin op whose type can be v*{i8,i16,i32}.
multiclass SS3I_binop_rm_int<bits<8> opc, string OpcodeStr,
Intrinsic IntId128, OpndItins itins,
bit Is2Addr = 1> {
let isCommutable = 1 in
def rr128 : SS38I<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set VR128:$dst, (IntId128 VR128:$src1, VR128:$src2))]>,
Sched<[itins.Sched]>;
def rm128 : SS38I<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, i128mem:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set VR128:$dst,
(IntId128 VR128:$src1,
(bitconvert (memopv2i64 addr:$src2))))]>,
Sched<[itins.Sched.Folded, ReadAfterLd]>;
}
multiclass SS3I_binop_rm_int_y<bits<8> opc, string OpcodeStr,
Intrinsic IntId256,
X86FoldableSchedWrite Sched> {
let isCommutable = 1 in
def rr256 : SS38I<opc, MRMSrcReg, (outs VR256:$dst),
(ins VR256:$src1, VR256:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set VR256:$dst, (IntId256 VR256:$src1, VR256:$src2))]>,
Sched<[Sched]>;
def rm256 : SS38I<opc, MRMSrcMem, (outs VR256:$dst),
(ins VR256:$src1, i256mem:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set VR256:$dst,
(IntId256 VR256:$src1, (bitconvert (loadv4i64 addr:$src2))))]>,
Sched<[Sched.Folded, ReadAfterLd]>;
}
let ImmT = NoImm, Predicates = [HasAVX] in {
let isCommutable = 0 in {
defm VPHADDW : SS3I_binop_rm<0x01, "vphaddw", X86hadd, v8i16, VR128,
loadv2i64, i128mem,
SSE_PHADDSUBW, 0>, VEX_4V;
defm VPHADDD : SS3I_binop_rm<0x02, "vphaddd", X86hadd, v4i32, VR128,
loadv2i64, i128mem,
SSE_PHADDSUBD, 0>, VEX_4V;
defm VPHSUBW : SS3I_binop_rm<0x05, "vphsubw", X86hsub, v8i16, VR128,
loadv2i64, i128mem,
SSE_PHADDSUBW, 0>, VEX_4V;
defm VPHSUBD : SS3I_binop_rm<0x06, "vphsubd", X86hsub, v4i32, VR128,
loadv2i64, i128mem,
SSE_PHADDSUBD, 0>, VEX_4V;
defm VPSIGNB : SS3I_binop_rm<0x08, "vpsignb", X86psign, v16i8, VR128,
loadv2i64, i128mem,
SSE_PSIGN, 0>, VEX_4V;
defm VPSIGNW : SS3I_binop_rm<0x09, "vpsignw", X86psign, v8i16, VR128,
loadv2i64, i128mem,
SSE_PSIGN, 0>, VEX_4V;
defm VPSIGND : SS3I_binop_rm<0x0A, "vpsignd", X86psign, v4i32, VR128,
loadv2i64, i128mem,
SSE_PSIGN, 0>, VEX_4V;
defm VPSHUFB : SS3I_binop_rm<0x00, "vpshufb", X86pshufb, v16i8, VR128,
loadv2i64, i128mem,
SSE_PSHUFB, 0>, VEX_4V;
defm VPHADDSW : SS3I_binop_rm_int<0x03, "vphaddsw",
int_x86_ssse3_phadd_sw_128,
SSE_PHADDSUBSW, 0>, VEX_4V;
defm VPHSUBSW : SS3I_binop_rm_int<0x07, "vphsubsw",
int_x86_ssse3_phsub_sw_128,
SSE_PHADDSUBSW, 0>, VEX_4V;
defm VPMADDUBSW : SS3I_binop_rm_int<0x04, "vpmaddubsw",
int_x86_ssse3_pmadd_ub_sw_128,
SSE_PMADD, 0>, VEX_4V;
}
defm VPMULHRSW : SS3I_binop_rm_int<0x0B, "vpmulhrsw",
int_x86_ssse3_pmul_hr_sw_128,
SSE_PMULHRSW, 0>, VEX_4V;
}
let ImmT = NoImm, Predicates = [HasAVX2] in {
let isCommutable = 0 in {
defm VPHADDWY : SS3I_binop_rm<0x01, "vphaddw", X86hadd, v16i16, VR256,
loadv4i64, i256mem,
SSE_PHADDSUBW, 0>, VEX_4V, VEX_L;
defm VPHADDDY : SS3I_binop_rm<0x02, "vphaddd", X86hadd, v8i32, VR256,
loadv4i64, i256mem,
SSE_PHADDSUBW, 0>, VEX_4V, VEX_L;
defm VPHSUBWY : SS3I_binop_rm<0x05, "vphsubw", X86hsub, v16i16, VR256,
loadv4i64, i256mem,
SSE_PHADDSUBW, 0>, VEX_4V, VEX_L;
defm VPHSUBDY : SS3I_binop_rm<0x06, "vphsubd", X86hsub, v8i32, VR256,
loadv4i64, i256mem,
SSE_PHADDSUBW, 0>, VEX_4V, VEX_L;
defm VPSIGNBY : SS3I_binop_rm<0x08, "vpsignb", X86psign, v32i8, VR256,
loadv4i64, i256mem,
SSE_PHADDSUBW, 0>, VEX_4V, VEX_L;
defm VPSIGNWY : SS3I_binop_rm<0x09, "vpsignw", X86psign, v16i16, VR256,
loadv4i64, i256mem,
SSE_PHADDSUBW, 0>, VEX_4V, VEX_L;
defm VPSIGNDY : SS3I_binop_rm<0x0A, "vpsignd", X86psign, v8i32, VR256,
loadv4i64, i256mem,
SSE_PHADDSUBW, 0>, VEX_4V, VEX_L;
defm VPSHUFBY : SS3I_binop_rm<0x00, "vpshufb", X86pshufb, v32i8, VR256,
loadv4i64, i256mem,
SSE_PSHUFB, 0>, VEX_4V, VEX_L;
defm VPHADDSW : SS3I_binop_rm_int_y<0x03, "vphaddsw",
int_x86_avx2_phadd_sw,
WriteVecALU>, VEX_4V, VEX_L;
defm VPHSUBSW : SS3I_binop_rm_int_y<0x07, "vphsubsw",
int_x86_avx2_phsub_sw,
WriteVecALU>, VEX_4V, VEX_L;
defm VPMADDUBSW : SS3I_binop_rm_int_y<0x04, "vpmaddubsw",
int_x86_avx2_pmadd_ub_sw,
WriteVecIMul>, VEX_4V, VEX_L;
}
defm VPMULHRSW : SS3I_binop_rm_int_y<0x0B, "vpmulhrsw",
int_x86_avx2_pmul_hr_sw,
WriteVecIMul>, VEX_4V, VEX_L;
}
// None of these have i8 immediate fields.
let ImmT = NoImm, Constraints = "$src1 = $dst" in {
let isCommutable = 0 in {
defm PHADDW : SS3I_binop_rm<0x01, "phaddw", X86hadd, v8i16, VR128,
memopv2i64, i128mem, SSE_PHADDSUBW>;
defm PHADDD : SS3I_binop_rm<0x02, "phaddd", X86hadd, v4i32, VR128,
memopv2i64, i128mem, SSE_PHADDSUBD>;
defm PHSUBW : SS3I_binop_rm<0x05, "phsubw", X86hsub, v8i16, VR128,
memopv2i64, i128mem, SSE_PHADDSUBW>;
defm PHSUBD : SS3I_binop_rm<0x06, "phsubd", X86hsub, v4i32, VR128,
memopv2i64, i128mem, SSE_PHADDSUBD>;
defm PSIGNB : SS3I_binop_rm<0x08, "psignb", X86psign, v16i8, VR128,
memopv2i64, i128mem, SSE_PSIGN>;
defm PSIGNW : SS3I_binop_rm<0x09, "psignw", X86psign, v8i16, VR128,
memopv2i64, i128mem, SSE_PSIGN>;
defm PSIGND : SS3I_binop_rm<0x0A, "psignd", X86psign, v4i32, VR128,
memopv2i64, i128mem, SSE_PSIGN>;
defm PSHUFB : SS3I_binop_rm<0x00, "pshufb", X86pshufb, v16i8, VR128,
memopv2i64, i128mem, SSE_PSHUFB>;
defm PHADDSW : SS3I_binop_rm_int<0x03, "phaddsw",
int_x86_ssse3_phadd_sw_128,
SSE_PHADDSUBSW>;
defm PHSUBSW : SS3I_binop_rm_int<0x07, "phsubsw",
int_x86_ssse3_phsub_sw_128,
SSE_PHADDSUBSW>;
defm PMADDUBSW : SS3I_binop_rm_int<0x04, "pmaddubsw",
int_x86_ssse3_pmadd_ub_sw_128, SSE_PMADD>;
}
defm PMULHRSW : SS3I_binop_rm_int<0x0B, "pmulhrsw",
int_x86_ssse3_pmul_hr_sw_128,
SSE_PMULHRSW>;
}
//===---------------------------------------------------------------------===//
// SSSE3 - Packed Align Instruction Patterns
//===---------------------------------------------------------------------===//
multiclass ssse3_palignr<string asm, bit Is2Addr = 1> {
let neverHasSideEffects = 1 in {
def R128rr : SS3AI<0x0F, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2, i8imm:$src3),
!if(Is2Addr,
!strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
!strconcat(asm,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
[], IIC_SSE_PALIGNRR>, Sched<[WriteShuffle]>;
let mayLoad = 1 in
def R128rm : SS3AI<0x0F, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, i128mem:$src2, i8imm:$src3),
!if(Is2Addr,
!strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
!strconcat(asm,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
[], IIC_SSE_PALIGNRM>, Sched<[WriteShuffleLd, ReadAfterLd]>;
}
}
multiclass ssse3_palignr_y<string asm, bit Is2Addr = 1> {
let neverHasSideEffects = 1 in {
def R256rr : SS3AI<0x0F, MRMSrcReg, (outs VR256:$dst),
(ins VR256:$src1, VR256:$src2, i8imm:$src3),
!strconcat(asm,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
[]>, Sched<[WriteShuffle]>;
let mayLoad = 1 in
def R256rm : SS3AI<0x0F, MRMSrcMem, (outs VR256:$dst),
(ins VR256:$src1, i256mem:$src2, i8imm:$src3),
!strconcat(asm,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
[]>, Sched<[WriteShuffleLd, ReadAfterLd]>;
}
}
let Predicates = [HasAVX] in
defm VPALIGN : ssse3_palignr<"vpalignr", 0>, VEX_4V;
let Predicates = [HasAVX2] in
defm VPALIGN : ssse3_palignr_y<"vpalignr", 0>, VEX_4V, VEX_L;
let Constraints = "$src1 = $dst", Predicates = [UseSSSE3] in
defm PALIGN : ssse3_palignr<"palignr">;
let Predicates = [HasAVX2] in {
def : Pat<(v8i32 (X86PAlignr VR256:$src1, VR256:$src2, (i8 imm:$imm))),
(VPALIGNR256rr VR256:$src2, VR256:$src1, imm:$imm)>;
def : Pat<(v8f32 (X86PAlignr VR256:$src1, VR256:$src2, (i8 imm:$imm))),
(VPALIGNR256rr VR256:$src2, VR256:$src1, imm:$imm)>;
def : Pat<(v16i16 (X86PAlignr VR256:$src1, VR256:$src2, (i8 imm:$imm))),
(VPALIGNR256rr VR256:$src2, VR256:$src1, imm:$imm)>;
def : Pat<(v32i8 (X86PAlignr VR256:$src1, VR256:$src2, (i8 imm:$imm))),
(VPALIGNR256rr VR256:$src2, VR256:$src1, imm:$imm)>;
}
let Predicates = [HasAVX] in {
def : Pat<(v4i32 (X86PAlignr VR128:$src1, VR128:$src2, (i8 imm:$imm))),
(VPALIGNR128rr VR128:$src2, VR128:$src1, imm:$imm)>;
def : Pat<(v4f32 (X86PAlignr VR128:$src1, VR128:$src2, (i8 imm:$imm))),
(VPALIGNR128rr VR128:$src2, VR128:$src1, imm:$imm)>;
def : Pat<(v8i16 (X86PAlignr VR128:$src1, VR128:$src2, (i8 imm:$imm))),
(VPALIGNR128rr VR128:$src2, VR128:$src1, imm:$imm)>;
def : Pat<(v16i8 (X86PAlignr VR128:$src1, VR128:$src2, (i8 imm:$imm))),
(VPALIGNR128rr VR128:$src2, VR128:$src1, imm:$imm)>;
}
let Predicates = [UseSSSE3] in {
def : Pat<(v4i32 (X86PAlignr VR128:$src1, VR128:$src2, (i8 imm:$imm))),
(PALIGNR128rr VR128:$src2, VR128:$src1, imm:$imm)>;
def : Pat<(v4f32 (X86PAlignr VR128:$src1, VR128:$src2, (i8 imm:$imm))),
(PALIGNR128rr VR128:$src2, VR128:$src1, imm:$imm)>;
def : Pat<(v8i16 (X86PAlignr VR128:$src1, VR128:$src2, (i8 imm:$imm))),
(PALIGNR128rr VR128:$src2, VR128:$src1, imm:$imm)>;
def : Pat<(v16i8 (X86PAlignr VR128:$src1, VR128:$src2, (i8 imm:$imm))),
(PALIGNR128rr VR128:$src2, VR128:$src1, imm:$imm)>;
}
//===---------------------------------------------------------------------===//
// SSSE3 - Thread synchronization
//===---------------------------------------------------------------------===//
let SchedRW = [WriteSystem] in {
let usesCustomInserter = 1 in {
def MONITOR : PseudoI<(outs), (ins i32mem:$src1, GR32:$src2, GR32:$src3),
[(int_x86_sse3_monitor addr:$src1, GR32:$src2, GR32:$src3)]>,
Requires<[HasSSE3]>;
}
let Uses = [EAX, ECX, EDX] in
def MONITORrrr : I<0x01, MRM_C8, (outs), (ins), "monitor", [], IIC_SSE_MONITOR>,
TB, Requires<[HasSSE3]>;
let Uses = [ECX, EAX] in
def MWAITrr : I<0x01, MRM_C9, (outs), (ins), "mwait",
[(int_x86_sse3_mwait ECX, EAX)], IIC_SSE_MWAIT>,
TB, Requires<[HasSSE3]>;
} // SchedRW
def : InstAlias<"mwait\t{%eax, %ecx|ecx, eax}", (MWAITrr)>, Requires<[Not64BitMode]>;
def : InstAlias<"mwait\t{%rax, %rcx|rcx, rax}", (MWAITrr)>, Requires<[In64BitMode]>;
def : InstAlias<"monitor\t{%eax, %ecx, %edx|edx, ecx, eax}", (MONITORrrr)>,
Requires<[Not64BitMode]>;
def : InstAlias<"monitor\t{%rax, %rcx, %rdx|rdx, rcx, rax}", (MONITORrrr)>,
Requires<[In64BitMode]>;
//===----------------------------------------------------------------------===//
// SSE4.1 - Packed Move with Sign/Zero Extend
//===----------------------------------------------------------------------===//
multiclass SS41I_binop_rm_int8<bits<8> opc, string OpcodeStr, Intrinsic IntId,
OpndItins itins = DEFAULT_ITINS> {
def rr : SS48I<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (IntId VR128:$src))], itins.rr>,
Sched<[itins.Sched]>;
def rm : SS48I<opc, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst,
(IntId (bitconvert (v2i64 (scalar_to_vector (loadi64 addr:$src))))))],
itins.rm>, Sched<[itins.Sched.Folded]>;
}
multiclass SS41I_binop_rm_int16_y<bits<8> opc, string OpcodeStr,
Intrinsic IntId, X86FoldableSchedWrite Sched> {
def Yrr : SS48I<opc, MRMSrcReg, (outs VR256:$dst), (ins VR128:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR256:$dst, (IntId VR128:$src))]>, Sched<[Sched]>;
def Yrm : SS48I<opc, MRMSrcMem, (outs VR256:$dst), (ins i128mem:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR256:$dst, (IntId (load addr:$src)))]>,
Sched<[Sched.Folded]>;
}
let Predicates = [HasAVX] in {
defm VPMOVSXBW : SS41I_binop_rm_int8<0x20, "vpmovsxbw",
int_x86_sse41_pmovsxbw,
DEFAULT_ITINS_SHUFFLESCHED>, VEX;
defm VPMOVSXWD : SS41I_binop_rm_int8<0x23, "vpmovsxwd",
int_x86_sse41_pmovsxwd,
DEFAULT_ITINS_SHUFFLESCHED>, VEX;
defm VPMOVSXDQ : SS41I_binop_rm_int8<0x25, "vpmovsxdq",
int_x86_sse41_pmovsxdq,
DEFAULT_ITINS_SHUFFLESCHED>, VEX;
defm VPMOVZXBW : SS41I_binop_rm_int8<0x30, "vpmovzxbw",
int_x86_sse41_pmovzxbw,
DEFAULT_ITINS_SHUFFLESCHED>, VEX;
defm VPMOVZXWD : SS41I_binop_rm_int8<0x33, "vpmovzxwd",
int_x86_sse41_pmovzxwd,
DEFAULT_ITINS_SHUFFLESCHED>, VEX;
defm VPMOVZXDQ : SS41I_binop_rm_int8<0x35, "vpmovzxdq",
int_x86_sse41_pmovzxdq,
DEFAULT_ITINS_SHUFFLESCHED>, VEX;
}
let Predicates = [HasAVX2] in {
defm VPMOVSXBW : SS41I_binop_rm_int16_y<0x20, "vpmovsxbw",
int_x86_avx2_pmovsxbw,
WriteShuffle>, VEX, VEX_L;
defm VPMOVSXWD : SS41I_binop_rm_int16_y<0x23, "vpmovsxwd",
int_x86_avx2_pmovsxwd,
WriteShuffle>, VEX, VEX_L;
defm VPMOVSXDQ : SS41I_binop_rm_int16_y<0x25, "vpmovsxdq",
int_x86_avx2_pmovsxdq,
WriteShuffle>, VEX, VEX_L;
defm VPMOVZXBW : SS41I_binop_rm_int16_y<0x30, "vpmovzxbw",
int_x86_avx2_pmovzxbw,
WriteShuffle>, VEX, VEX_L;
defm VPMOVZXWD : SS41I_binop_rm_int16_y<0x33, "vpmovzxwd",
int_x86_avx2_pmovzxwd,
WriteShuffle>, VEX, VEX_L;
defm VPMOVZXDQ : SS41I_binop_rm_int16_y<0x35, "vpmovzxdq",
int_x86_avx2_pmovzxdq,
WriteShuffle>, VEX, VEX_L;
}
defm PMOVSXBW : SS41I_binop_rm_int8<0x20, "pmovsxbw", int_x86_sse41_pmovsxbw,
SSE_INTALU_ITINS_SHUFF_P>;
defm PMOVSXWD : SS41I_binop_rm_int8<0x23, "pmovsxwd", int_x86_sse41_pmovsxwd,
SSE_INTALU_ITINS_SHUFF_P>;
defm PMOVSXDQ : SS41I_binop_rm_int8<0x25, "pmovsxdq", int_x86_sse41_pmovsxdq,
SSE_INTALU_ITINS_SHUFF_P>;
defm PMOVZXBW : SS41I_binop_rm_int8<0x30, "pmovzxbw", int_x86_sse41_pmovzxbw,
SSE_INTALU_ITINS_SHUFF_P>;
defm PMOVZXWD : SS41I_binop_rm_int8<0x33, "pmovzxwd", int_x86_sse41_pmovzxwd,
SSE_INTALU_ITINS_SHUFF_P>;
defm PMOVZXDQ : SS41I_binop_rm_int8<0x35, "pmovzxdq", int_x86_sse41_pmovzxdq,
SSE_INTALU_ITINS_SHUFF_P>;
let Predicates = [HasAVX] in {
// Common patterns involving scalar load.
def : Pat<(int_x86_sse41_pmovsxbw (vzmovl_v2i64 addr:$src)),
(VPMOVSXBWrm addr:$src)>;
def : Pat<(int_x86_sse41_pmovsxbw (vzload_v2i64 addr:$src)),
(VPMOVSXBWrm addr:$src)>;
def : Pat<(int_x86_sse41_pmovsxbw (bc_v16i8 (loadv2i64 addr:$src))),
(VPMOVSXBWrm addr:$src)>;
def : Pat<(int_x86_sse41_pmovsxwd (vzmovl_v2i64 addr:$src)),
(VPMOVSXWDrm addr:$src)>;
def : Pat<(int_x86_sse41_pmovsxwd (vzload_v2i64 addr:$src)),
(VPMOVSXWDrm addr:$src)>;
def : Pat<(int_x86_sse41_pmovsxwd (bc_v8i16 (loadv2i64 addr:$src))),
(VPMOVSXWDrm addr:$src)>;
def : Pat<(int_x86_sse41_pmovsxdq (vzmovl_v2i64 addr:$src)),
(VPMOVSXDQrm addr:$src)>;
def : Pat<(int_x86_sse41_pmovsxdq (vzload_v2i64 addr:$src)),
(VPMOVSXDQrm addr:$src)>;
def : Pat<(int_x86_sse41_pmovsxdq (bc_v4i32 (loadv2i64 addr:$src))),
(VPMOVSXDQrm addr:$src)>;
def : Pat<(int_x86_sse41_pmovzxbw (vzmovl_v2i64 addr:$src)),
(VPMOVZXBWrm addr:$src)>;
def : Pat<(int_x86_sse41_pmovzxbw (vzload_v2i64 addr:$src)),
(VPMOVZXBWrm addr:$src)>;
def : Pat<(int_x86_sse41_pmovzxbw (bc_v16i8 (loadv2i64 addr:$src))),
(VPMOVZXBWrm addr:$src)>;
def : Pat<(int_x86_sse41_pmovzxwd (vzmovl_v2i64 addr:$src)),
(VPMOVZXWDrm addr:$src)>;
def : Pat<(int_x86_sse41_pmovzxwd (vzload_v2i64 addr:$src)),
(VPMOVZXWDrm addr:$src)>;
def : Pat<(int_x86_sse41_pmovzxwd (bc_v8i16 (loadv2i64 addr:$src))),
(VPMOVZXWDrm addr:$src)>;
def : Pat<(int_x86_sse41_pmovzxdq (vzmovl_v2i64 addr:$src)),
(VPMOVZXDQrm addr:$src)>;
def : Pat<(int_x86_sse41_pmovzxdq (vzload_v2i64 addr:$src)),
(VPMOVZXDQrm addr:$src)>;
def : Pat<(int_x86_sse41_pmovzxdq (bc_v4i32 (loadv2i64 addr:$src))),
(VPMOVZXDQrm addr:$src)>;
}
let Predicates = [UseSSE41] in {
// Common patterns involving scalar load.
def : Pat<(int_x86_sse41_pmovsxbw (vzmovl_v2i64 addr:$src)),
(PMOVSXBWrm addr:$src)>;
def : Pat<(int_x86_sse41_pmovsxbw (vzload_v2i64 addr:$src)),
(PMOVSXBWrm addr:$src)>;
def : Pat<(int_x86_sse41_pmovsxbw (bc_v16i8 (loadv2i64 addr:$src))),
(PMOVSXBWrm addr:$src)>;
def : Pat<(int_x86_sse41_pmovsxwd (vzmovl_v2i64 addr:$src)),
(PMOVSXWDrm addr:$src)>;
def : Pat<(int_x86_sse41_pmovsxwd (vzload_v2i64 addr:$src)),
(PMOVSXWDrm addr:$src)>;
def : Pat<(int_x86_sse41_pmovsxwd (bc_v8i16 (loadv2i64 addr:$src))),
(PMOVSXWDrm addr:$src)>;
def : Pat<(int_x86_sse41_pmovsxdq (vzmovl_v2i64 addr:$src)),
(PMOVSXDQrm addr:$src)>;
def : Pat<(int_x86_sse41_pmovsxdq (vzload_v2i64 addr:$src)),
(PMOVSXDQrm addr:$src)>;
def : Pat<(int_x86_sse41_pmovsxdq (bc_v4i32 (loadv2i64 addr:$src))),
(PMOVSXDQrm addr:$src)>;
def : Pat<(int_x86_sse41_pmovzxbw (vzmovl_v2i64 addr:$src)),
(PMOVZXBWrm addr:$src)>;
def : Pat<(int_x86_sse41_pmovzxbw (vzload_v2i64 addr:$src)),
(PMOVZXBWrm addr:$src)>;
def : Pat<(int_x86_sse41_pmovzxbw (bc_v16i8 (loadv2i64 addr:$src))),
(PMOVZXBWrm addr:$src)>;
def : Pat<(int_x86_sse41_pmovzxwd (vzmovl_v2i64 addr:$src)),
(PMOVZXWDrm addr:$src)>;
def : Pat<(int_x86_sse41_pmovzxwd (vzload_v2i64 addr:$src)),
(PMOVZXWDrm addr:$src)>;
def : Pat<(int_x86_sse41_pmovzxwd (bc_v8i16 (loadv2i64 addr:$src))),
(PMOVZXWDrm addr:$src)>;
def : Pat<(int_x86_sse41_pmovzxdq (vzmovl_v2i64 addr:$src)),
(PMOVZXDQrm addr:$src)>;
def : Pat<(int_x86_sse41_pmovzxdq (vzload_v2i64 addr:$src)),
(PMOVZXDQrm addr:$src)>;
def : Pat<(int_x86_sse41_pmovzxdq (bc_v4i32 (loadv2i64 addr:$src))),
(PMOVZXDQrm addr:$src)>;
}
multiclass SS41I_binop_rm_int4<bits<8> opc, string OpcodeStr, Intrinsic IntId,
OpndItins itins = DEFAULT_ITINS> {
def rr : SS48I<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (IntId VR128:$src))], itins.rr>,
Sched<[itins.Sched]>;
def rm : SS48I<opc, MRMSrcMem, (outs VR128:$dst), (ins i32mem:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst,
(IntId (bitconvert (v4i32 (scalar_to_vector (loadi32 addr:$src))))))],
itins.rm>, Sched<[itins.Sched.Folded]>;
}
multiclass SS41I_binop_rm_int8_y<bits<8> opc, string OpcodeStr,
Intrinsic IntId, X86FoldableSchedWrite Sched> {
def Yrr : SS48I<opc, MRMSrcReg, (outs VR256:$dst), (ins VR128:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR256:$dst, (IntId VR128:$src))]>, Sched<[Sched]>;
def Yrm : SS48I<opc, MRMSrcMem, (outs VR256:$dst), (ins i32mem:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR256:$dst,
(IntId (bitconvert (v2i64 (scalar_to_vector (loadi64 addr:$src))))))]>,
Sched<[Sched.Folded]>;
}
let Predicates = [HasAVX] in {
defm VPMOVSXBD : SS41I_binop_rm_int4<0x21, "vpmovsxbd", int_x86_sse41_pmovsxbd,
DEFAULT_ITINS_SHUFFLESCHED>, VEX;
defm VPMOVSXWQ : SS41I_binop_rm_int4<0x24, "vpmovsxwq", int_x86_sse41_pmovsxwq,
DEFAULT_ITINS_SHUFFLESCHED>, VEX;
defm VPMOVZXBD : SS41I_binop_rm_int4<0x31, "vpmovzxbd", int_x86_sse41_pmovzxbd,
DEFAULT_ITINS_SHUFFLESCHED>, VEX;
defm VPMOVZXWQ : SS41I_binop_rm_int4<0x34, "vpmovzxwq", int_x86_sse41_pmovzxwq,
DEFAULT_ITINS_SHUFFLESCHED>, VEX;
}
let Predicates = [HasAVX2] in {
defm VPMOVSXBD : SS41I_binop_rm_int8_y<0x21, "vpmovsxbd",
int_x86_avx2_pmovsxbd, WriteShuffle>,
VEX, VEX_L;
defm VPMOVSXWQ : SS41I_binop_rm_int8_y<0x24, "vpmovsxwq",
int_x86_avx2_pmovsxwq, WriteShuffle>,
VEX, VEX_L;
defm VPMOVZXBD : SS41I_binop_rm_int8_y<0x31, "vpmovzxbd",
int_x86_avx2_pmovzxbd, WriteShuffle>,
VEX, VEX_L;
defm VPMOVZXWQ : SS41I_binop_rm_int8_y<0x34, "vpmovzxwq",
int_x86_avx2_pmovzxwq, WriteShuffle>,
VEX, VEX_L;
}
defm PMOVSXBD : SS41I_binop_rm_int4<0x21, "pmovsxbd", int_x86_sse41_pmovsxbd,
SSE_INTALU_ITINS_SHUFF_P>;
defm PMOVSXWQ : SS41I_binop_rm_int4<0x24, "pmovsxwq", int_x86_sse41_pmovsxwq,
SSE_INTALU_ITINS_SHUFF_P>;
defm PMOVZXBD : SS41I_binop_rm_int4<0x31, "pmovzxbd", int_x86_sse41_pmovzxbd,
SSE_INTALU_ITINS_SHUFF_P>;
defm PMOVZXWQ : SS41I_binop_rm_int4<0x34, "pmovzxwq", int_x86_sse41_pmovzxwq,
SSE_INTALU_ITINS_SHUFF_P>;
let Predicates = [HasAVX] in {
// Common patterns involving scalar load
def : Pat<(int_x86_sse41_pmovsxbd (vzmovl_v4i32 addr:$src)),
(VPMOVSXBDrm addr:$src)>;
def : Pat<(int_x86_sse41_pmovsxwq (vzmovl_v4i32 addr:$src)),
(VPMOVSXWQrm addr:$src)>;
def : Pat<(int_x86_sse41_pmovzxbd (vzmovl_v4i32 addr:$src)),
(VPMOVZXBDrm addr:$src)>;
def : Pat<(int_x86_sse41_pmovzxwq (vzmovl_v4i32 addr:$src)),
(VPMOVZXWQrm addr:$src)>;
}
let Predicates = [UseSSE41] in {
// Common patterns involving scalar load
def : Pat<(int_x86_sse41_pmovsxbd (vzmovl_v4i32 addr:$src)),
(PMOVSXBDrm addr:$src)>;
def : Pat<(int_x86_sse41_pmovsxwq (vzmovl_v4i32 addr:$src)),
(PMOVSXWQrm addr:$src)>;
def : Pat<(int_x86_sse41_pmovzxbd (vzmovl_v4i32 addr:$src)),
(PMOVZXBDrm addr:$src)>;
def : Pat<(int_x86_sse41_pmovzxwq (vzmovl_v4i32 addr:$src)),
(PMOVZXWQrm addr:$src)>;
}
multiclass SS41I_binop_rm_int2<bits<8> opc, string OpcodeStr, Intrinsic IntId,
X86FoldableSchedWrite Sched> {
def rr : SS48I<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (IntId VR128:$src))]>, Sched<[Sched]>;
// Expecting a i16 load any extended to i32 value.
def rm : SS48I<opc, MRMSrcMem, (outs VR128:$dst), (ins i16mem:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (IntId (bitconvert
(v4i32 (scalar_to_vector (loadi16_anyext addr:$src))))))]>,
Sched<[Sched.Folded]>;
}
multiclass SS41I_binop_rm_int4_y<bits<8> opc, string OpcodeStr,
Intrinsic IntId, X86FoldableSchedWrite Sched> {
def Yrr : SS48I<opc, MRMSrcReg, (outs VR256:$dst), (ins VR128:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR256:$dst, (IntId VR128:$src))]>, Sched<[Sched]>;
// Expecting a i16 load any extended to i32 value.
def Yrm : SS48I<opc, MRMSrcMem, (outs VR256:$dst), (ins i16mem:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR256:$dst, (IntId (bitconvert
(v4i32 (scalar_to_vector (loadi32 addr:$src))))))]>,
Sched<[Sched.Folded]>;
}
let Predicates = [HasAVX] in {
defm VPMOVSXBQ : SS41I_binop_rm_int2<0x22, "vpmovsxbq", int_x86_sse41_pmovsxbq,
WriteShuffle>, VEX;
defm VPMOVZXBQ : SS41I_binop_rm_int2<0x32, "vpmovzxbq", int_x86_sse41_pmovzxbq,
WriteShuffle>, VEX;
}
let Predicates = [HasAVX2] in {
defm VPMOVSXBQ : SS41I_binop_rm_int4_y<0x22, "vpmovsxbq", int_x86_avx2_pmovsxbq,
WriteShuffle>, VEX, VEX_L;
defm VPMOVZXBQ : SS41I_binop_rm_int4_y<0x32, "vpmovzxbq", int_x86_avx2_pmovzxbq,
WriteShuffle>, VEX, VEX_L;
}
defm PMOVSXBQ : SS41I_binop_rm_int2<0x22, "pmovsxbq", int_x86_sse41_pmovsxbq,
WriteShuffle>;
defm PMOVZXBQ : SS41I_binop_rm_int2<0x32, "pmovzxbq", int_x86_sse41_pmovzxbq,
WriteShuffle>;
let Predicates = [HasAVX2] in {
def : Pat<(v16i16 (X86vsext (v16i8 VR128:$src))), (VPMOVSXBWYrr VR128:$src)>;
def : Pat<(v8i32 (X86vsext (v16i8 VR128:$src))), (VPMOVSXBDYrr VR128:$src)>;
def : Pat<(v4i64 (X86vsext (v16i8 VR128:$src))), (VPMOVSXBQYrr VR128:$src)>;
def : Pat<(v8i32 (X86vsext (v8i16 VR128:$src))), (VPMOVSXWDYrr VR128:$src)>;
def : Pat<(v4i64 (X86vsext (v8i16 VR128:$src))), (VPMOVSXWQYrr VR128:$src)>;
def : Pat<(v4i64 (X86vsext (v4i32 VR128:$src))), (VPMOVSXDQYrr VR128:$src)>;
def : Pat<(v16i16 (X86vsext (v32i8 VR256:$src))),
(VPMOVSXBWYrr (EXTRACT_SUBREG VR256:$src, sub_xmm))>;
def : Pat<(v8i32 (X86vsext (v32i8 VR256:$src))),
(VPMOVSXBDYrr (EXTRACT_SUBREG VR256:$src, sub_xmm))>;
def : Pat<(v4i64 (X86vsext (v32i8 VR256:$src))),
(VPMOVSXBQYrr (EXTRACT_SUBREG VR256:$src, sub_xmm))>;
def : Pat<(v8i32 (X86vsext (v16i16 VR256:$src))),
(VPMOVSXWDYrr (EXTRACT_SUBREG VR256:$src, sub_xmm))>;
def : Pat<(v4i64 (X86vsext (v16i16 VR256:$src))),
(VPMOVSXWQYrr (EXTRACT_SUBREG VR256:$src, sub_xmm))>;
def : Pat<(v4i64 (X86vsext (v8i32 VR256:$src))),
(VPMOVSXDQYrr (EXTRACT_SUBREG VR256:$src, sub_xmm))>;
def : Pat<(v8i32 (X86vsext (v8i16 (bitconvert (v2i64 (load addr:$src)))))),
(VPMOVSXWDYrm addr:$src)>;
def : Pat<(v4i64 (X86vsext (v4i32 (bitconvert (v2i64 (load addr:$src)))))),
(VPMOVSXDQYrm addr:$src)>;
def : Pat<(v8i32 (X86vsext (v16i8 (bitconvert (v2i64
(scalar_to_vector (loadi64 addr:$src))))))),
(VPMOVSXBDYrm addr:$src)>;
def : Pat<(v8i32 (X86vsext (v16i8 (bitconvert (v2f64
(scalar_to_vector (loadf64 addr:$src))))))),
(VPMOVSXBDYrm addr:$src)>;
def : Pat<(v4i64 (X86vsext (v8i16 (bitconvert (v2i64
(scalar_to_vector (loadi64 addr:$src))))))),
(VPMOVSXWQYrm addr:$src)>;
def : Pat<(v4i64 (X86vsext (v8i16 (bitconvert (v2f64
(scalar_to_vector (loadf64 addr:$src))))))),
(VPMOVSXWQYrm addr:$src)>;
def : Pat<(v4i64 (X86vsext (v16i8 (bitconvert (v4i32
(scalar_to_vector (loadi32 addr:$src))))))),
(VPMOVSXBQYrm addr:$src)>;
}
let Predicates = [HasAVX] in {
// Common patterns involving scalar load
def : Pat<(int_x86_sse41_pmovsxbq
(bitconvert (v4i32 (X86vzmovl
(v4i32 (scalar_to_vector (loadi32 addr:$src))))))),
(VPMOVSXBQrm addr:$src)>;
def : Pat<(int_x86_sse41_pmovzxbq
(bitconvert (v4i32 (X86vzmovl
(v4i32 (scalar_to_vector (loadi32 addr:$src))))))),
(VPMOVZXBQrm addr:$src)>;
}
let Predicates = [UseSSE41] in {
def : Pat<(v8i16 (X86vsext (v16i8 VR128:$src))), (PMOVSXBWrr VR128:$src)>;
def : Pat<(v4i32 (X86vsext (v16i8 VR128:$src))), (PMOVSXBDrr VR128:$src)>;
def : Pat<(v2i64 (X86vsext (v16i8 VR128:$src))), (PMOVSXBQrr VR128:$src)>;
def : Pat<(v4i32 (X86vsext (v8i16 VR128:$src))), (PMOVSXWDrr VR128:$src)>;
def : Pat<(v2i64 (X86vsext (v8i16 VR128:$src))), (PMOVSXWQrr VR128:$src)>;
def : Pat<(v2i64 (X86vsext (v4i32 VR128:$src))), (PMOVSXDQrr VR128:$src)>;
// Common patterns involving scalar load
def : Pat<(int_x86_sse41_pmovsxbq
(bitconvert (v4i32 (X86vzmovl
(v4i32 (scalar_to_vector (loadi32 addr:$src))))))),
(PMOVSXBQrm addr:$src)>;
def : Pat<(int_x86_sse41_pmovzxbq
(bitconvert (v4i32 (X86vzmovl
(v4i32 (scalar_to_vector (loadi32 addr:$src))))))),
(PMOVZXBQrm addr:$src)>;
def : Pat<(v4i32 (X86vsext (v8i16 (bitconvert (v2i64
(scalar_to_vector (loadi64 addr:$src))))))),
(PMOVSXWDrm addr:$src)>;
def : Pat<(v4i32 (X86vsext (v8i16 (bitconvert (v2f64
(scalar_to_vector (loadf64 addr:$src))))))),
(PMOVSXWDrm addr:$src)>;
def : Pat<(v4i32 (X86vsext (v16i8 (bitconvert (v4i32
(scalar_to_vector (loadi32 addr:$src))))))),
(PMOVSXBDrm addr:$src)>;
def : Pat<(v2i64 (X86vsext (v8i16 (bitconvert (v4i32
(scalar_to_vector (loadi32 addr:$src))))))),
(PMOVSXWQrm addr:$src)>;
def : Pat<(v2i64 (X86vsext (v16i8 (bitconvert (v4i32
(scalar_to_vector (extloadi32i16 addr:$src))))))),
(PMOVSXBQrm addr:$src)>;
def : Pat<(v2i64 (X86vsext (v4i32 (bitconvert (v2i64
(scalar_to_vector (loadi64 addr:$src))))))),
(PMOVSXDQrm addr:$src)>;
def : Pat<(v2i64 (X86vsext (v4i32 (bitconvert (v2f64
(scalar_to_vector (loadf64 addr:$src))))))),
(PMOVSXDQrm addr:$src)>;
def : Pat<(v8i16 (X86vsext (v16i8 (bitconvert (v2i64
(scalar_to_vector (loadi64 addr:$src))))))),
(PMOVSXBWrm addr:$src)>;
def : Pat<(v8i16 (X86vsext (v16i8 (bitconvert (v2f64
(scalar_to_vector (loadf64 addr:$src))))))),
(PMOVSXBWrm addr:$src)>;
}
let Predicates = [HasAVX2] in {
def : Pat<(v16i16 (X86vzext (v16i8 VR128:$src))), (VPMOVZXBWYrr VR128:$src)>;
def : Pat<(v8i32 (X86vzext (v16i8 VR128:$src))), (VPMOVZXBDYrr VR128:$src)>;
def : Pat<(v4i64 (X86vzext (v16i8 VR128:$src))), (VPMOVZXBQYrr VR128:$src)>;
def : Pat<(v8i32 (X86vzext (v8i16 VR128:$src))), (VPMOVZXWDYrr VR128:$src)>;
def : Pat<(v4i64 (X86vzext (v8i16 VR128:$src))), (VPMOVZXWQYrr VR128:$src)>;
def : Pat<(v4i64 (X86vzext (v4i32 VR128:$src))), (VPMOVZXDQYrr VR128:$src)>;
def : Pat<(v16i16 (X86vzext (v32i8 VR256:$src))),
(VPMOVZXBWYrr (EXTRACT_SUBREG VR256:$src, sub_xmm))>;
def : Pat<(v8i32 (X86vzext (v32i8 VR256:$src))),
(VPMOVZXBDYrr (EXTRACT_SUBREG VR256:$src, sub_xmm))>;
def : Pat<(v4i64 (X86vzext (v32i8 VR256:$src))),
(VPMOVZXBQYrr (EXTRACT_SUBREG VR256:$src, sub_xmm))>;
def : Pat<(v8i32 (X86vzext (v16i16 VR256:$src))),
(VPMOVZXWDYrr (EXTRACT_SUBREG VR256:$src, sub_xmm))>;
def : Pat<(v4i64 (X86vzext (v16i16 VR256:$src))),
(VPMOVZXWQYrr (EXTRACT_SUBREG VR256:$src, sub_xmm))>;
def : Pat<(v4i64 (X86vzext (v8i32 VR256:$src))),
(VPMOVZXDQYrr (EXTRACT_SUBREG VR256:$src, sub_xmm))>;
}
let Predicates = [HasAVX] in {
def : Pat<(v8i16 (X86vzext (v16i8 VR128:$src))), (VPMOVZXBWrr VR128:$src)>;
def : Pat<(v4i32 (X86vzext (v16i8 VR128:$src))), (VPMOVZXBDrr VR128:$src)>;
def : Pat<(v2i64 (X86vzext (v16i8 VR128:$src))), (VPMOVZXBQrr VR128:$src)>;
def : Pat<(v4i32 (X86vzext (v8i16 VR128:$src))), (VPMOVZXWDrr VR128:$src)>;
def : Pat<(v2i64 (X86vzext (v8i16 VR128:$src))), (VPMOVZXWQrr VR128:$src)>;
def : Pat<(v2i64 (X86vzext (v4i32 VR128:$src))), (VPMOVZXDQrr VR128:$src)>;
def : Pat<(v8i16 (X86vzext (v16i8 (bitconvert (v2i64 (scalar_to_vector (loadi64 addr:$src))))))),
(VPMOVZXBWrm addr:$src)>;
def : Pat<(v8i16 (X86vzext (v16i8 (bitconvert (v2f64 (scalar_to_vector (loadf64 addr:$src))))))),
(VPMOVZXBWrm addr:$src)>;
def : Pat<(v4i32 (X86vzext (v16i8 (bitconvert (v4i32 (scalar_to_vector (loadi32 addr:$src))))))),
(VPMOVZXBDrm addr:$src)>;
def : Pat<(v2i64 (X86vzext (v16i8 (bitconvert (v4i32 (scalar_to_vector (loadi16_anyext addr:$src))))))),
(VPMOVZXBQrm addr:$src)>;
def : Pat<(v4i32 (X86vzext (v8i16 (bitconvert (v2i64 (scalar_to_vector (loadi64 addr:$src))))))),
(VPMOVZXWDrm addr:$src)>;
def : Pat<(v4i32 (X86vzext (v8i16 (bitconvert (v2f64 (scalar_to_vector (loadf64 addr:$src))))))),
(VPMOVZXWDrm addr:$src)>;
def : Pat<(v2i64 (X86vzext (v8i16 (bitconvert (v4i32 (scalar_to_vector (loadi32 addr:$src))))))),
(VPMOVZXWQrm addr:$src)>;
def : Pat<(v2i64 (X86vzext (v4i32 (bitconvert (v2i64 (scalar_to_vector (loadi64 addr:$src))))))),
(VPMOVZXDQrm addr:$src)>;
def : Pat<(v2i64 (X86vzext (v4i32 (bitconvert (v2f64 (scalar_to_vector (loadf64 addr:$src))))))),
(VPMOVZXDQrm addr:$src)>;
def : Pat<(v2i64 (X86vzext (v4i32 (bitconvert (v2i64 (X86vzload addr:$src)))))),
(VPMOVZXDQrm addr:$src)>;
def : Pat<(v8i16 (X86vsext (v16i8 VR128:$src))), (VPMOVSXBWrr VR128:$src)>;
def : Pat<(v4i32 (X86vsext (v16i8 VR128:$src))), (VPMOVSXBDrr VR128:$src)>;
def : Pat<(v2i64 (X86vsext (v16i8 VR128:$src))), (VPMOVSXBQrr VR128:$src)>;
def : Pat<(v4i32 (X86vsext (v8i16 VR128:$src))), (VPMOVSXWDrr VR128:$src)>;
def : Pat<(v2i64 (X86vsext (v8i16 VR128:$src))), (VPMOVSXWQrr VR128:$src)>;
def : Pat<(v2i64 (X86vsext (v4i32 VR128:$src))), (VPMOVSXDQrr VR128:$src)>;
def : Pat<(v4i32 (X86vsext (v8i16 (bitconvert (v2i64
(scalar_to_vector (loadi64 addr:$src))))))),
(VPMOVSXWDrm addr:$src)>;
def : Pat<(v2i64 (X86vsext (v4i32 (bitconvert (v2i64
(scalar_to_vector (loadi64 addr:$src))))))),
(VPMOVSXDQrm addr:$src)>;
def : Pat<(v4i32 (X86vsext (v8i16 (bitconvert (v2f64
(scalar_to_vector (loadf64 addr:$src))))))),
(VPMOVSXWDrm addr:$src)>;
def : Pat<(v2i64 (X86vsext (v4i32 (bitconvert (v2f64
(scalar_to_vector (loadf64 addr:$src))))))),
(VPMOVSXDQrm addr:$src)>;
def : Pat<(v8i16 (X86vsext (v16i8 (bitconvert (v2i64
(scalar_to_vector (loadi64 addr:$src))))))),
(VPMOVSXBWrm addr:$src)>;
def : Pat<(v8i16 (X86vsext (v16i8 (bitconvert (v2f64
(scalar_to_vector (loadf64 addr:$src))))))),
(VPMOVSXBWrm addr:$src)>;
def : Pat<(v4i32 (X86vsext (v16i8 (bitconvert (v4i32
(scalar_to_vector (loadi32 addr:$src))))))),
(VPMOVSXBDrm addr:$src)>;
def : Pat<(v2i64 (X86vsext (v8i16 (bitconvert (v4i32
(scalar_to_vector (loadi32 addr:$src))))))),
(VPMOVSXWQrm addr:$src)>;
def : Pat<(v2i64 (X86vsext (v16i8 (bitconvert (v4i32
(scalar_to_vector (extloadi32i16 addr:$src))))))),
(VPMOVSXBQrm addr:$src)>;
}
let Predicates = [UseSSE41] in {
def : Pat<(v8i16 (X86vzext (v16i8 VR128:$src))), (PMOVZXBWrr VR128:$src)>;
def : Pat<(v4i32 (X86vzext (v16i8 VR128:$src))), (PMOVZXBDrr VR128:$src)>;
def : Pat<(v2i64 (X86vzext (v16i8 VR128:$src))), (PMOVZXBQrr VR128:$src)>;
def : Pat<(v4i32 (X86vzext (v8i16 VR128:$src))), (PMOVZXWDrr VR128:$src)>;
def : Pat<(v2i64 (X86vzext (v8i16 VR128:$src))), (PMOVZXWQrr VR128:$src)>;
def : Pat<(v2i64 (X86vzext (v4i32 VR128:$src))), (PMOVZXDQrr VR128:$src)>;
def : Pat<(v8i16 (X86vzext (v16i8 (bitconvert (v2i64 (scalar_to_vector (loadi64 addr:$src))))))),
(PMOVZXBWrm addr:$src)>;
def : Pat<(v8i16 (X86vzext (v16i8 (bitconvert (v2f64 (scalar_to_vector (loadf64 addr:$src))))))),
(PMOVZXBWrm addr:$src)>;
def : Pat<(v4i32 (X86vzext (v16i8 (bitconvert (v4i32 (scalar_to_vector (loadi32 addr:$src))))))),
(PMOVZXBDrm addr:$src)>;
def : Pat<(v2i64 (X86vzext (v16i8 (bitconvert (v4i32 (scalar_to_vector (loadi16_anyext addr:$src))))))),
(PMOVZXBQrm addr:$src)>;
def : Pat<(v4i32 (X86vzext (v8i16 (bitconvert (v2i64 (scalar_to_vector (loadi64 addr:$src))))))),
(PMOVZXWDrm addr:$src)>;
def : Pat<(v4i32 (X86vzext (v8i16 (bitconvert (v2f64 (scalar_to_vector (loadf64 addr:$src))))))),
(PMOVZXWDrm addr:$src)>;
def : Pat<(v2i64 (X86vzext (v8i16 (bitconvert (v4i32 (scalar_to_vector (loadi32 addr:$src))))))),
(PMOVZXWQrm addr:$src)>;
def : Pat<(v2i64 (X86vzext (v4i32 (bitconvert (v2i64 (scalar_to_vector (loadi64 addr:$src))))))),
(PMOVZXDQrm addr:$src)>;
def : Pat<(v2i64 (X86vzext (v4i32 (bitconvert (v2f64 (scalar_to_vector (loadf64 addr:$src))))))),
(PMOVZXDQrm addr:$src)>;
def : Pat<(v2i64 (X86vzext (v4i32 (bitconvert (v2i64 (X86vzload addr:$src)))))),
(PMOVZXDQrm addr:$src)>;
}
//===----------------------------------------------------------------------===//
// SSE4.1 - Extract Instructions
//===----------------------------------------------------------------------===//
/// SS41I_binop_ext8 - SSE 4.1 extract 8 bits to 32 bit reg or 8 bit mem
multiclass SS41I_extract8<bits<8> opc, string OpcodeStr> {
def rr : SS4AIi8<opc, MRMDestReg, (outs GR32orGR64:$dst),
(ins VR128:$src1, i32i8imm:$src2),
!strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set GR32orGR64:$dst, (X86pextrb (v16i8 VR128:$src1),
imm:$src2))]>,
Sched<[WriteShuffle]>;
let neverHasSideEffects = 1, mayStore = 1,
SchedRW = [WriteShuffleLd, WriteRMW] in
def mr : SS4AIi8<opc, MRMDestMem, (outs),
(ins i8mem:$dst, VR128:$src1, i32i8imm:$src2),
!strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(store (i8 (trunc (assertzext (X86pextrb (v16i8 VR128:$src1),
imm:$src2)))), addr:$dst)]>;
}
let Predicates = [HasAVX] in
defm VPEXTRB : SS41I_extract8<0x14, "vpextrb">, VEX;
defm PEXTRB : SS41I_extract8<0x14, "pextrb">;
/// SS41I_extract16 - SSE 4.1 extract 16 bits to memory destination
multiclass SS41I_extract16<bits<8> opc, string OpcodeStr> {
let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0 in
def rr_REV : SS4AIi8<opc, MRMDestReg, (outs GR32orGR64:$dst),
(ins VR128:$src1, i32i8imm:$src2),
!strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[]>, Sched<[WriteShuffle]>;
let neverHasSideEffects = 1, mayStore = 1,
SchedRW = [WriteShuffleLd, WriteRMW] in
def mr : SS4AIi8<opc, MRMDestMem, (outs),
(ins i16mem:$dst, VR128:$src1, i32i8imm:$src2),
!strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(store (i16 (trunc (assertzext (X86pextrw (v8i16 VR128:$src1),
imm:$src2)))), addr:$dst)]>;
}
let Predicates = [HasAVX] in
defm VPEXTRW : SS41I_extract16<0x15, "vpextrw">, VEX;
defm PEXTRW : SS41I_extract16<0x15, "pextrw">;
/// SS41I_extract32 - SSE 4.1 extract 32 bits to int reg or memory destination
multiclass SS41I_extract32<bits<8> opc, string OpcodeStr> {
def rr : SS4AIi8<opc, MRMDestReg, (outs GR32:$dst),
(ins VR128:$src1, i32i8imm:$src2),
!strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set GR32:$dst,
(extractelt (v4i32 VR128:$src1), imm:$src2))]>,
Sched<[WriteShuffle]>;
let SchedRW = [WriteShuffleLd, WriteRMW] in
def mr : SS4AIi8<opc, MRMDestMem, (outs),
(ins i32mem:$dst, VR128:$src1, i32i8imm:$src2),
!strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(store (extractelt (v4i32 VR128:$src1), imm:$src2),
addr:$dst)]>;
}
let Predicates = [HasAVX] in
defm VPEXTRD : SS41I_extract32<0x16, "vpextrd">, VEX;
defm PEXTRD : SS41I_extract32<0x16, "pextrd">;
/// SS41I_extract32 - SSE 4.1 extract 32 bits to int reg or memory destination
multiclass SS41I_extract64<bits<8> opc, string OpcodeStr> {
def rr : SS4AIi8<opc, MRMDestReg, (outs GR64:$dst),
(ins VR128:$src1, i32i8imm:$src2),
!strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set GR64:$dst,
(extractelt (v2i64 VR128:$src1), imm:$src2))]>,
Sched<[WriteShuffle]>, REX_W;
let SchedRW = [WriteShuffleLd, WriteRMW] in
def mr : SS4AIi8<opc, MRMDestMem, (outs),
(ins i64mem:$dst, VR128:$src1, i32i8imm:$src2),
!strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(store (extractelt (v2i64 VR128:$src1), imm:$src2),
addr:$dst)]>, REX_W;
}
let Predicates = [HasAVX] in
defm VPEXTRQ : SS41I_extract64<0x16, "vpextrq">, VEX, VEX_W;
defm PEXTRQ : SS41I_extract64<0x16, "pextrq">;
/// SS41I_extractf32 - SSE 4.1 extract 32 bits fp value to int reg or memory
/// destination
multiclass SS41I_extractf32<bits<8> opc, string OpcodeStr,
OpndItins itins = DEFAULT_ITINS> {
def rr : SS4AIi8<opc, MRMDestReg, (outs GR32orGR64:$dst),
(ins VR128:$src1, i32i8imm:$src2),
!strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set GR32orGR64:$dst,
(extractelt (bc_v4i32 (v4f32 VR128:$src1)), imm:$src2))],
itins.rr>, Sched<[WriteFBlend]>;
let SchedRW = [WriteFBlendLd, WriteRMW] in
def mr : SS4AIi8<opc, MRMDestMem, (outs),
(ins f32mem:$dst, VR128:$src1, i32i8imm:$src2),
!strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(store (extractelt (bc_v4i32 (v4f32 VR128:$src1)), imm:$src2),
addr:$dst)], itins.rm>;
}
let ExeDomain = SSEPackedSingle in {
let Predicates = [UseAVX] in
defm VEXTRACTPS : SS41I_extractf32<0x17, "vextractps">, VEX;
defm EXTRACTPS : SS41I_extractf32<0x17, "extractps", SSE_EXTRACT_ITINS>;
}
// Also match an EXTRACTPS store when the store is done as f32 instead of i32.
def : Pat<(store (f32 (bitconvert (extractelt (bc_v4i32 (v4f32 VR128:$src1)),
imm:$src2))),
addr:$dst),
(VEXTRACTPSmr addr:$dst, VR128:$src1, imm:$src2)>,
Requires<[HasAVX]>;
def : Pat<(store (f32 (bitconvert (extractelt (bc_v4i32 (v4f32 VR128:$src1)),
imm:$src2))),
addr:$dst),
(EXTRACTPSmr addr:$dst, VR128:$src1, imm:$src2)>,
Requires<[UseSSE41]>;
//===----------------------------------------------------------------------===//
// SSE4.1 - Insert Instructions
//===----------------------------------------------------------------------===//
multiclass SS41I_insert8<bits<8> opc, string asm, bit Is2Addr = 1> {
def rr : SS4AIi8<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, GR32orGR64:$src2, i32i8imm:$src3),
!if(Is2Addr,
!strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
!strconcat(asm,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
[(set VR128:$dst,
(X86pinsrb VR128:$src1, GR32orGR64:$src2, imm:$src3))]>,
Sched<[WriteShuffle]>;
def rm : SS4AIi8<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, i8mem:$src2, i32i8imm:$src3),
!if(Is2Addr,
!strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
!strconcat(asm,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
[(set VR128:$dst,
(X86pinsrb VR128:$src1, (extloadi8 addr:$src2),
imm:$src3))]>, Sched<[WriteShuffleLd, ReadAfterLd]>;
}
let Predicates = [HasAVX] in
defm VPINSRB : SS41I_insert8<0x20, "vpinsrb", 0>, VEX_4V;
let Constraints = "$src1 = $dst" in
defm PINSRB : SS41I_insert8<0x20, "pinsrb">;
multiclass SS41I_insert32<bits<8> opc, string asm, bit Is2Addr = 1> {
def rr : SS4AIi8<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, GR32:$src2, i32i8imm:$src3),
!if(Is2Addr,
!strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
!strconcat(asm,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
[(set VR128:$dst,
(v4i32 (insertelt VR128:$src1, GR32:$src2, imm:$src3)))]>,
Sched<[WriteShuffle]>;
def rm : SS4AIi8<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, i32mem:$src2, i32i8imm:$src3),
!if(Is2Addr,
!strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
!strconcat(asm,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
[(set VR128:$dst,
(v4i32 (insertelt VR128:$src1, (loadi32 addr:$src2),
imm:$src3)))]>, Sched<[WriteShuffleLd, ReadAfterLd]>;
}
let Predicates = [HasAVX] in
defm VPINSRD : SS41I_insert32<0x22, "vpinsrd", 0>, VEX_4V;
let Constraints = "$src1 = $dst" in
defm PINSRD : SS41I_insert32<0x22, "pinsrd">;
multiclass SS41I_insert64<bits<8> opc, string asm, bit Is2Addr = 1> {
def rr : SS4AIi8<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, GR64:$src2, i32i8imm:$src3),
!if(Is2Addr,
!strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
!strconcat(asm,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
[(set VR128:$dst,
(v2i64 (insertelt VR128:$src1, GR64:$src2, imm:$src3)))]>,
Sched<[WriteShuffle]>;
def rm : SS4AIi8<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, i64mem:$src2, i32i8imm:$src3),
!if(Is2Addr,
!strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
!strconcat(asm,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
[(set VR128:$dst,
(v2i64 (insertelt VR128:$src1, (loadi64 addr:$src2),
imm:$src3)))]>, Sched<[WriteShuffleLd, ReadAfterLd]>;
}
let Predicates = [HasAVX] in
defm VPINSRQ : SS41I_insert64<0x22, "vpinsrq", 0>, VEX_4V, VEX_W;
let Constraints = "$src1 = $dst" in
defm PINSRQ : SS41I_insert64<0x22, "pinsrq">, REX_W;
// insertps has a few different modes, there's the first two here below which
// are optimized inserts that won't zero arbitrary elements in the destination
// vector. The next one matches the intrinsic and could zero arbitrary elements
// in the target vector.
multiclass SS41I_insertf32<bits<8> opc, string asm, bit Is2Addr = 1,
OpndItins itins = DEFAULT_ITINS> {
def rr : SS4AIi8<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2, i8imm:$src3),
!if(Is2Addr,
!strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
!strconcat(asm,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
[(set VR128:$dst,
(X86insertps VR128:$src1, VR128:$src2, imm:$src3))], itins.rr>,
Sched<[WriteFShuffle]>;
def rm : SS4AIi8<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, f32mem:$src2, i8imm:$src3),
!if(Is2Addr,
!strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
!strconcat(asm,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
[(set VR128:$dst,
(X86insertps VR128:$src1,
(v4f32 (scalar_to_vector (loadf32 addr:$src2))),
imm:$src3))], itins.rm>,
Sched<[WriteFShuffleLd, ReadAfterLd]>;
}
let ExeDomain = SSEPackedSingle in {
let Predicates = [UseAVX] in
defm VINSERTPS : SS41I_insertf32<0x21, "vinsertps", 0>, VEX_4V;
let Constraints = "$src1 = $dst" in
defm INSERTPS : SS41I_insertf32<0x21, "insertps", 1, SSE_INSERT_ITINS>;
}
let Predicates = [UseSSE41] in {
// If we're inserting an element from a load or a null pshuf of a load,
// fold the load into the insertps instruction.
def : Pat<(v4f32 (X86insertps (v4f32 VR128:$src1), (X86PShufd (v4f32
(scalar_to_vector (loadf32 addr:$src2))), (i8 0)),
imm:$src3)),
(INSERTPSrm VR128:$src1, addr:$src2, imm:$src3)>;
def : Pat<(v4f32 (X86insertps (v4f32 VR128:$src1), (X86PShufd
(loadv4f32 addr:$src2), (i8 0)), imm:$src3)),
(INSERTPSrm VR128:$src1, addr:$src2, imm:$src3)>;
}
let Predicates = [UseAVX] in {
// If we're inserting an element from a vbroadcast of a load, fold the
// load into the X86insertps instruction.
def : Pat<(v4f32 (X86insertps (v4f32 VR128:$src1),
(X86VBroadcast (loadf32 addr:$src2)), imm:$src3)),
(VINSERTPSrm VR128:$src1, addr:$src2, imm:$src3)>;
def : Pat<(v4f32 (X86insertps (v4f32 VR128:$src1),
(X86VBroadcast (loadv4f32 addr:$src2)), imm:$src3)),
(VINSERTPSrm VR128:$src1, addr:$src2, imm:$src3)>;
}
//===----------------------------------------------------------------------===//
// SSE4.1 - Round Instructions
//===----------------------------------------------------------------------===//
multiclass sse41_fp_unop_rm<bits<8> opcps, bits<8> opcpd, string OpcodeStr,
X86MemOperand x86memop, RegisterClass RC,
PatFrag mem_frag32, PatFrag mem_frag64,
Intrinsic V4F32Int, Intrinsic V2F64Int> {
let ExeDomain = SSEPackedSingle in {
// Intrinsic operation, reg.
// Vector intrinsic operation, reg
def PSr : SS4AIi8<opcps, MRMSrcReg,
(outs RC:$dst), (ins RC:$src1, i32i8imm:$src2),
!strconcat(OpcodeStr,
"ps\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set RC:$dst, (V4F32Int RC:$src1, imm:$src2))],
IIC_SSE_ROUNDPS_REG>, Sched<[WriteFAdd]>;
// Vector intrinsic operation, mem
def PSm : SS4AIi8<opcps, MRMSrcMem,
(outs RC:$dst), (ins x86memop:$src1, i32i8imm:$src2),
!strconcat(OpcodeStr,
"ps\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set RC:$dst,
(V4F32Int (mem_frag32 addr:$src1),imm:$src2))],
IIC_SSE_ROUNDPS_MEM>, Sched<[WriteFAddLd]>;
} // ExeDomain = SSEPackedSingle
let ExeDomain = SSEPackedDouble in {
// Vector intrinsic operation, reg
def PDr : SS4AIi8<opcpd, MRMSrcReg,
(outs RC:$dst), (ins RC:$src1, i32i8imm:$src2),
!strconcat(OpcodeStr,
"pd\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set RC:$dst, (V2F64Int RC:$src1, imm:$src2))],
IIC_SSE_ROUNDPS_REG>, Sched<[WriteFAdd]>;
// Vector intrinsic operation, mem
def PDm : SS4AIi8<opcpd, MRMSrcMem,
(outs RC:$dst), (ins x86memop:$src1, i32i8imm:$src2),
!strconcat(OpcodeStr,
"pd\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set RC:$dst,
(V2F64Int (mem_frag64 addr:$src1),imm:$src2))],
IIC_SSE_ROUNDPS_REG>, Sched<[WriteFAddLd]>;
} // ExeDomain = SSEPackedDouble
}
multiclass sse41_fp_binop_rm<bits<8> opcss, bits<8> opcsd,
string OpcodeStr,
Intrinsic F32Int,
Intrinsic F64Int, bit Is2Addr = 1> {
let ExeDomain = GenericDomain in {
// Operation, reg.
let hasSideEffects = 0 in
def SSr : SS4AIi8<opcss, MRMSrcReg,
(outs FR32:$dst), (ins FR32:$src1, FR32:$src2, i32i8imm:$src3),
!if(Is2Addr,
!strconcat(OpcodeStr,
"ss\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
!strconcat(OpcodeStr,
"ss\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
[]>, Sched<[WriteFAdd]>;
// Intrinsic operation, reg.
let isCodeGenOnly = 1 in
def SSr_Int : SS4AIi8<opcss, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR128:$src2, i32i8imm:$src3),
!if(Is2Addr,
!strconcat(OpcodeStr,
"ss\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
!strconcat(OpcodeStr,
"ss\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
[(set VR128:$dst, (F32Int VR128:$src1, VR128:$src2, imm:$src3))]>,
Sched<[WriteFAdd]>;
// Intrinsic operation, mem.
def SSm : SS4AIi8<opcss, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, ssmem:$src2, i32i8imm:$src3),
!if(Is2Addr,
!strconcat(OpcodeStr,
"ss\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
!strconcat(OpcodeStr,
"ss\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
[(set VR128:$dst,
(F32Int VR128:$src1, sse_load_f32:$src2, imm:$src3))]>,
Sched<[WriteFAddLd, ReadAfterLd]>;
// Operation, reg.
let hasSideEffects = 0 in
def SDr : SS4AIi8<opcsd, MRMSrcReg,
(outs FR64:$dst), (ins FR64:$src1, FR64:$src2, i32i8imm:$src3),
!if(Is2Addr,
!strconcat(OpcodeStr,
"sd\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
!strconcat(OpcodeStr,
"sd\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
[]>, Sched<[WriteFAdd]>;
// Intrinsic operation, reg.
let isCodeGenOnly = 1 in
def SDr_Int : SS4AIi8<opcsd, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR128:$src2, i32i8imm:$src3),
!if(Is2Addr,
!strconcat(OpcodeStr,
"sd\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
!strconcat(OpcodeStr,
"sd\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
[(set VR128:$dst, (F64Int VR128:$src1, VR128:$src2, imm:$src3))]>,
Sched<[WriteFAdd]>;
// Intrinsic operation, mem.
def SDm : SS4AIi8<opcsd, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, sdmem:$src2, i32i8imm:$src3),
!if(Is2Addr,
!strconcat(OpcodeStr,
"sd\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
!strconcat(OpcodeStr,
"sd\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
[(set VR128:$dst,
(F64Int VR128:$src1, sse_load_f64:$src2, imm:$src3))]>,
Sched<[WriteFAddLd, ReadAfterLd]>;
} // ExeDomain = GenericDomain
}
// FP round - roundss, roundps, roundsd, roundpd
let Predicates = [HasAVX] in {
// Intrinsic form
defm VROUND : sse41_fp_unop_rm<0x08, 0x09, "vround", f128mem, VR128,
loadv4f32, loadv2f64,
int_x86_sse41_round_ps,
int_x86_sse41_round_pd>, VEX;
defm VROUNDY : sse41_fp_unop_rm<0x08, 0x09, "vround", f256mem, VR256,
loadv8f32, loadv4f64,
int_x86_avx_round_ps_256,
int_x86_avx_round_pd_256>, VEX, VEX_L;
defm VROUND : sse41_fp_binop_rm<0x0A, 0x0B, "vround",
int_x86_sse41_round_ss,
int_x86_sse41_round_sd, 0>, VEX_4V, VEX_LIG;
def : Pat<(ffloor FR32:$src),
(VROUNDSSr (f32 (IMPLICIT_DEF)), FR32:$src, (i32 0x1))>;
def : Pat<(f64 (ffloor FR64:$src)),
(VROUNDSDr (f64 (IMPLICIT_DEF)), FR64:$src, (i32 0x1))>;
def : Pat<(f32 (fnearbyint FR32:$src)),
(VROUNDSSr (f32 (IMPLICIT_DEF)), FR32:$src, (i32 0xC))>;
def : Pat<(f64 (fnearbyint FR64:$src)),
(VROUNDSDr (f64 (IMPLICIT_DEF)), FR64:$src, (i32 0xC))>;
def : Pat<(f32 (fceil FR32:$src)),
(VROUNDSSr (f32 (IMPLICIT_DEF)), FR32:$src, (i32 0x2))>;
def : Pat<(f64 (fceil FR64:$src)),
(VROUNDSDr (f64 (IMPLICIT_DEF)), FR64:$src, (i32 0x2))>;
def : Pat<(f32 (frint FR32:$src)),
(VROUNDSSr (f32 (IMPLICIT_DEF)), FR32:$src, (i32 0x4))>;
def : Pat<(f64 (frint FR64:$src)),
(VROUNDSDr (f64 (IMPLICIT_DEF)), FR64:$src, (i32 0x4))>;
def : Pat<(f32 (ftrunc FR32:$src)),
(VROUNDSSr (f32 (IMPLICIT_DEF)), FR32:$src, (i32 0x3))>;
def : Pat<(f64 (ftrunc FR64:$src)),
(VROUNDSDr (f64 (IMPLICIT_DEF)), FR64:$src, (i32 0x3))>;
def : Pat<(v4f32 (ffloor VR128:$src)),
(VROUNDPSr VR128:$src, (i32 0x1))>;
def : Pat<(v4f32 (fnearbyint VR128:$src)),
(VROUNDPSr VR128:$src, (i32 0xC))>;
def : Pat<(v4f32 (fceil VR128:$src)),
(VROUNDPSr VR128:$src, (i32 0x2))>;
def : Pat<(v4f32 (frint VR128:$src)),
(VROUNDPSr VR128:$src, (i32 0x4))>;
def : Pat<(v4f32 (ftrunc VR128:$src)),
(VROUNDPSr VR128:$src, (i32 0x3))>;
def : Pat<(v2f64 (ffloor VR128:$src)),
(VROUNDPDr VR128:$src, (i32 0x1))>;
def : Pat<(v2f64 (fnearbyint VR128:$src)),
(VROUNDPDr VR128:$src, (i32 0xC))>;
def : Pat<(v2f64 (fceil VR128:$src)),
(VROUNDPDr VR128:$src, (i32 0x2))>;
def : Pat<(v2f64 (frint VR128:$src)),
(VROUNDPDr VR128:$src, (i32 0x4))>;
def : Pat<(v2f64 (ftrunc VR128:$src)),
(VROUNDPDr VR128:$src, (i32 0x3))>;
def : Pat<(v8f32 (ffloor VR256:$src)),
(VROUNDYPSr VR256:$src, (i32 0x1))>;
def : Pat<(v8f32 (fnearbyint VR256:$src)),
(VROUNDYPSr VR256:$src, (i32 0xC))>;
def : Pat<(v8f32 (fceil VR256:$src)),
(VROUNDYPSr VR256:$src, (i32 0x2))>;
def : Pat<(v8f32 (frint VR256:$src)),
(VROUNDYPSr VR256:$src, (i32 0x4))>;
def : Pat<(v8f32 (ftrunc VR256:$src)),
(VROUNDYPSr VR256:$src, (i32 0x3))>;
def : Pat<(v4f64 (ffloor VR256:$src)),
(VROUNDYPDr VR256:$src, (i32 0x1))>;
def : Pat<(v4f64 (fnearbyint VR256:$src)),
(VROUNDYPDr VR256:$src, (i32 0xC))>;
def : Pat<(v4f64 (fceil VR256:$src)),
(VROUNDYPDr VR256:$src, (i32 0x2))>;
def : Pat<(v4f64 (frint VR256:$src)),
(VROUNDYPDr VR256:$src, (i32 0x4))>;
def : Pat<(v4f64 (ftrunc VR256:$src)),
(VROUNDYPDr VR256:$src, (i32 0x3))>;
}
defm ROUND : sse41_fp_unop_rm<0x08, 0x09, "round", f128mem, VR128,
memopv4f32, memopv2f64,
int_x86_sse41_round_ps, int_x86_sse41_round_pd>;
let Constraints = "$src1 = $dst" in
defm ROUND : sse41_fp_binop_rm<0x0A, 0x0B, "round",
int_x86_sse41_round_ss, int_x86_sse41_round_sd>;
let Predicates = [UseSSE41] in {
def : Pat<(ffloor FR32:$src),
(ROUNDSSr (f32 (IMPLICIT_DEF)), FR32:$src, (i32 0x1))>;
def : Pat<(f64 (ffloor FR64:$src)),
(ROUNDSDr (f64 (IMPLICIT_DEF)), FR64:$src, (i32 0x1))>;
def : Pat<(f32 (fnearbyint FR32:$src)),
(ROUNDSSr (f32 (IMPLICIT_DEF)), FR32:$src, (i32 0xC))>;
def : Pat<(f64 (fnearbyint FR64:$src)),
(ROUNDSDr (f64 (IMPLICIT_DEF)), FR64:$src, (i32 0xC))>;
def : Pat<(f32 (fceil FR32:$src)),
(ROUNDSSr (f32 (IMPLICIT_DEF)), FR32:$src, (i32 0x2))>;
def : Pat<(f64 (fceil FR64:$src)),
(ROUNDSDr (f64 (IMPLICIT_DEF)), FR64:$src, (i32 0x2))>;
def : Pat<(f32 (frint FR32:$src)),
(ROUNDSSr (f32 (IMPLICIT_DEF)), FR32:$src, (i32 0x4))>;
def : Pat<(f64 (frint FR64:$src)),
(ROUNDSDr (f64 (IMPLICIT_DEF)), FR64:$src, (i32 0x4))>;
def : Pat<(f32 (ftrunc FR32:$src)),
(ROUNDSSr (f32 (IMPLICIT_DEF)), FR32:$src, (i32 0x3))>;
def : Pat<(f64 (ftrunc FR64:$src)),
(ROUNDSDr (f64 (IMPLICIT_DEF)), FR64:$src, (i32 0x3))>;
def : Pat<(v4f32 (ffloor VR128:$src)),
(ROUNDPSr VR128:$src, (i32 0x1))>;
def : Pat<(v4f32 (fnearbyint VR128:$src)),
(ROUNDPSr VR128:$src, (i32 0xC))>;
def : Pat<(v4f32 (fceil VR128:$src)),
(ROUNDPSr VR128:$src, (i32 0x2))>;
def : Pat<(v4f32 (frint VR128:$src)),
(ROUNDPSr VR128:$src, (i32 0x4))>;
def : Pat<(v4f32 (ftrunc VR128:$src)),
(ROUNDPSr VR128:$src, (i32 0x3))>;
def : Pat<(v2f64 (ffloor VR128:$src)),
(ROUNDPDr VR128:$src, (i32 0x1))>;
def : Pat<(v2f64 (fnearbyint VR128:$src)),
(ROUNDPDr VR128:$src, (i32 0xC))>;
def : Pat<(v2f64 (fceil VR128:$src)),
(ROUNDPDr VR128:$src, (i32 0x2))>;
def : Pat<(v2f64 (frint VR128:$src)),
(ROUNDPDr VR128:$src, (i32 0x4))>;
def : Pat<(v2f64 (ftrunc VR128:$src)),
(ROUNDPDr VR128:$src, (i32 0x3))>;
}
//===----------------------------------------------------------------------===//
// SSE4.1 - Packed Bit Test
//===----------------------------------------------------------------------===//
// ptest instruction we'll lower to this in X86ISelLowering primarily from
// the intel intrinsic that corresponds to this.
let Defs = [EFLAGS], Predicates = [HasAVX] in {
def VPTESTrr : SS48I<0x17, MRMSrcReg, (outs), (ins VR128:$src1, VR128:$src2),
"vptest\t{$src2, $src1|$src1, $src2}",
[(set EFLAGS, (X86ptest VR128:$src1, (v2i64 VR128:$src2)))]>,
Sched<[WriteVecLogic]>, VEX;
def VPTESTrm : SS48I<0x17, MRMSrcMem, (outs), (ins VR128:$src1, f128mem:$src2),
"vptest\t{$src2, $src1|$src1, $src2}",
[(set EFLAGS,(X86ptest VR128:$src1, (loadv2i64 addr:$src2)))]>,
Sched<[WriteVecLogicLd, ReadAfterLd]>, VEX;
def VPTESTYrr : SS48I<0x17, MRMSrcReg, (outs), (ins VR256:$src1, VR256:$src2),
"vptest\t{$src2, $src1|$src1, $src2}",
[(set EFLAGS, (X86ptest VR256:$src1, (v4i64 VR256:$src2)))]>,
Sched<[WriteVecLogic]>, VEX, VEX_L;
def VPTESTYrm : SS48I<0x17, MRMSrcMem, (outs), (ins VR256:$src1, i256mem:$src2),
"vptest\t{$src2, $src1|$src1, $src2}",
[(set EFLAGS,(X86ptest VR256:$src1, (loadv4i64 addr:$src2)))]>,
Sched<[WriteVecLogicLd, ReadAfterLd]>, VEX, VEX_L;
}
let Defs = [EFLAGS] in {
def PTESTrr : SS48I<0x17, MRMSrcReg, (outs), (ins VR128:$src1, VR128:$src2),
"ptest\t{$src2, $src1|$src1, $src2}",
[(set EFLAGS, (X86ptest VR128:$src1, (v2i64 VR128:$src2)))]>,
Sched<[WriteVecLogic]>;
def PTESTrm : SS48I<0x17, MRMSrcMem, (outs), (ins VR128:$src1, f128mem:$src2),
"ptest\t{$src2, $src1|$src1, $src2}",
[(set EFLAGS, (X86ptest VR128:$src1, (memopv2i64 addr:$src2)))]>,
Sched<[WriteVecLogicLd, ReadAfterLd]>;
}
// The bit test instructions below are AVX only
multiclass avx_bittest<bits<8> opc, string OpcodeStr, RegisterClass RC,
X86MemOperand x86memop, PatFrag mem_frag, ValueType vt> {
def rr : SS48I<opc, MRMSrcReg, (outs), (ins RC:$src1, RC:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1|$src1, $src2}"),
[(set EFLAGS, (X86testp RC:$src1, (vt RC:$src2)))]>,
Sched<[WriteVecLogic]>, VEX;
def rm : SS48I<opc, MRMSrcMem, (outs), (ins RC:$src1, x86memop:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1|$src1, $src2}"),
[(set EFLAGS, (X86testp RC:$src1, (mem_frag addr:$src2)))]>,
Sched<[WriteVecLogicLd, ReadAfterLd]>, VEX;
}
let Defs = [EFLAGS], Predicates = [HasAVX] in {
let ExeDomain = SSEPackedSingle in {
defm VTESTPS : avx_bittest<0x0E, "vtestps", VR128, f128mem, loadv4f32, v4f32>;
defm VTESTPSY : avx_bittest<0x0E, "vtestps", VR256, f256mem, loadv8f32, v8f32>,
VEX_L;
}
let ExeDomain = SSEPackedDouble in {
defm VTESTPD : avx_bittest<0x0F, "vtestpd", VR128, f128mem, loadv2f64, v2f64>;
defm VTESTPDY : avx_bittest<0x0F, "vtestpd", VR256, f256mem, loadv4f64, v4f64>,
VEX_L;
}
}
//===----------------------------------------------------------------------===//
// SSE4.1 - Misc Instructions
//===----------------------------------------------------------------------===//
let Defs = [EFLAGS], Predicates = [HasPOPCNT] in {
def POPCNT16rr : I<0xB8, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src),
"popcnt{w}\t{$src, $dst|$dst, $src}",
[(set GR16:$dst, (ctpop GR16:$src)), (implicit EFLAGS)],
IIC_SSE_POPCNT_RR>, Sched<[WriteFAdd]>,
OpSize16, XS;
def POPCNT16rm : I<0xB8, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src),
"popcnt{w}\t{$src, $dst|$dst, $src}",
[(set GR16:$dst, (ctpop (loadi16 addr:$src))),
(implicit EFLAGS)], IIC_SSE_POPCNT_RM>,
Sched<[WriteFAddLd]>, OpSize16, XS;
def POPCNT32rr : I<0xB8, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src),
"popcnt{l}\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, (ctpop GR32:$src)), (implicit EFLAGS)],
IIC_SSE_POPCNT_RR>, Sched<[WriteFAdd]>,
OpSize32, XS;
def POPCNT32rm : I<0xB8, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src),
"popcnt{l}\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, (ctpop (loadi32 addr:$src))),
(implicit EFLAGS)], IIC_SSE_POPCNT_RM>,
Sched<[WriteFAddLd]>, OpSize32, XS;
def POPCNT64rr : RI<0xB8, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src),
"popcnt{q}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (ctpop GR64:$src)), (implicit EFLAGS)],
IIC_SSE_POPCNT_RR>, Sched<[WriteFAdd]>, XS;
def POPCNT64rm : RI<0xB8, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src),
"popcnt{q}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (ctpop (loadi64 addr:$src))),
(implicit EFLAGS)], IIC_SSE_POPCNT_RM>,
Sched<[WriteFAddLd]>, XS;
}
// SS41I_unop_rm_int_v16 - SSE 4.1 unary operator whose type is v8i16.
multiclass SS41I_unop_rm_int_v16<bits<8> opc, string OpcodeStr,
Intrinsic IntId128,
X86FoldableSchedWrite Sched> {
def rr128 : SS48I<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (IntId128 VR128:$src))]>,
Sched<[Sched]>;
def rm128 : SS48I<opc, MRMSrcMem, (outs VR128:$dst),
(ins i128mem:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst,
(IntId128 (bitconvert (memopv2i64 addr:$src))))]>,
Sched<[Sched.Folded]>;
}
// PHMIN has the same profile as PSAD, thus we use the same scheduling
// model, although the naming is misleading.
let Predicates = [HasAVX] in
defm VPHMINPOSUW : SS41I_unop_rm_int_v16 <0x41, "vphminposuw",
int_x86_sse41_phminposuw,
WriteVecIMul>, VEX;
defm PHMINPOSUW : SS41I_unop_rm_int_v16 <0x41, "phminposuw",
int_x86_sse41_phminposuw,
WriteVecIMul>;
/// SS41I_binop_rm_int - Simple SSE 4.1 binary operator
multiclass SS41I_binop_rm_int<bits<8> opc, string OpcodeStr,
Intrinsic IntId128, bit Is2Addr = 1,
OpndItins itins = DEFAULT_ITINS> {
let isCommutable = 1 in
def rr : SS48I<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set VR128:$dst, (IntId128 VR128:$src1, VR128:$src2))],
itins.rr>, Sched<[itins.Sched]>;
def rm : SS48I<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, i128mem:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set VR128:$dst,
(IntId128 VR128:$src1, (bitconvert (memopv2i64 addr:$src2))))],
itins.rm>, Sched<[itins.Sched.Folded, ReadAfterLd]>;
}
/// SS41I_binop_rm_int_y - Simple SSE 4.1 binary operator
multiclass SS41I_binop_rm_int_y<bits<8> opc, string OpcodeStr,
Intrinsic IntId256,
X86FoldableSchedWrite Sched> {
let isCommutable = 1 in
def Yrr : SS48I<opc, MRMSrcReg, (outs VR256:$dst),
(ins VR256:$src1, VR256:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set VR256:$dst, (IntId256 VR256:$src1, VR256:$src2))]>,
Sched<[Sched]>;
def Yrm : SS48I<opc, MRMSrcMem, (outs VR256:$dst),
(ins VR256:$src1, i256mem:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set VR256:$dst,
(IntId256 VR256:$src1, (bitconvert (loadv4i64 addr:$src2))))]>,
Sched<[Sched.Folded, ReadAfterLd]>;
}
/// SS48I_binop_rm - Simple SSE41 binary operator.
multiclass SS48I_binop_rm<bits<8> opc, string OpcodeStr, SDNode OpNode,
ValueType OpVT, RegisterClass RC, PatFrag memop_frag,
X86MemOperand x86memop, bit Is2Addr = 1,
OpndItins itins = SSE_INTALU_ITINS_P> {
let isCommutable = 1 in
def rr : SS48I<opc, MRMSrcReg, (outs RC:$dst),
(ins RC:$src1, RC:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set RC:$dst, (OpVT (OpNode RC:$src1, RC:$src2)))]>,
Sched<[itins.Sched]>;
def rm : SS48I<opc, MRMSrcMem, (outs RC:$dst),
(ins RC:$src1, x86memop:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set RC:$dst,
(OpVT (OpNode RC:$src1, (bitconvert (memop_frag addr:$src2)))))]>,
Sched<[itins.Sched.Folded, ReadAfterLd]>;
}
/// SS48I_binop_rm2 - Simple SSE41 binary operator with different src and dst
/// types.
multiclass SS48I_binop_rm2<bits<8> opc, string OpcodeStr, SDNode OpNode,
ValueType DstVT, ValueType SrcVT, RegisterClass RC,
PatFrag memop_frag, X86MemOperand x86memop,
OpndItins itins,
bit IsCommutable = 0, bit Is2Addr = 1> {
let isCommutable = IsCommutable in
def rr : SS48I<opc, MRMSrcReg, (outs RC:$dst),
(ins RC:$src1, RC:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set RC:$dst, (DstVT (OpNode (SrcVT RC:$src1), RC:$src2)))]>,
Sched<[itins.Sched]>;
def rm : SS48I<opc, MRMSrcMem, (outs RC:$dst),
(ins RC:$src1, x86memop:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set RC:$dst, (DstVT (OpNode (SrcVT RC:$src1),
(bitconvert (memop_frag addr:$src2)))))]>,
Sched<[itins.Sched.Folded, ReadAfterLd]>;
}
let Predicates = [HasAVX] in {
let isCommutable = 0 in
defm VPMINSB : SS48I_binop_rm<0x38, "vpminsb", X86smin, v16i8, VR128,
loadv2i64, i128mem, 0, SSE_INTALU_ITINS_P>,
VEX_4V;
defm VPMINSD : SS48I_binop_rm<0x39, "vpminsd", X86smin, v4i32, VR128,
loadv2i64, i128mem, 0, SSE_INTALU_ITINS_P>,
VEX_4V;
defm VPMINUD : SS48I_binop_rm<0x3B, "vpminud", X86umin, v4i32, VR128,
loadv2i64, i128mem, 0, SSE_INTALU_ITINS_P>,
VEX_4V;
defm VPMINUW : SS48I_binop_rm<0x3A, "vpminuw", X86umin, v8i16, VR128,
loadv2i64, i128mem, 0, SSE_INTALU_ITINS_P>,
VEX_4V;
defm VPMAXSB : SS48I_binop_rm<0x3C, "vpmaxsb", X86smax, v16i8, VR128,
loadv2i64, i128mem, 0, SSE_INTALU_ITINS_P>,
VEX_4V;
defm VPMAXSD : SS48I_binop_rm<0x3D, "vpmaxsd", X86smax, v4i32, VR128,
loadv2i64, i128mem, 0, SSE_INTALU_ITINS_P>,
VEX_4V;
defm VPMAXUD : SS48I_binop_rm<0x3F, "vpmaxud", X86umax, v4i32, VR128,
loadv2i64, i128mem, 0, SSE_INTALU_ITINS_P>,
VEX_4V;
defm VPMAXUW : SS48I_binop_rm<0x3E, "vpmaxuw", X86umax, v8i16, VR128,
loadv2i64, i128mem, 0, SSE_INTALU_ITINS_P>,
VEX_4V;
defm VPMULDQ : SS48I_binop_rm2<0x28, "vpmuldq", X86pmuldq, v2i64, v4i32,
VR128, loadv2i64, i128mem,
SSE_INTMUL_ITINS_P, 1, 0>, VEX_4V;
}
let Predicates = [HasAVX2] in {
let isCommutable = 0 in
defm VPMINSBY : SS48I_binop_rm<0x38, "vpminsb", X86smin, v32i8, VR256,
loadv4i64, i256mem, 0, SSE_INTALU_ITINS_P>,
VEX_4V, VEX_L;
defm VPMINSDY : SS48I_binop_rm<0x39, "vpminsd", X86smin, v8i32, VR256,
loadv4i64, i256mem, 0, SSE_INTALU_ITINS_P>,
VEX_4V, VEX_L;
defm VPMINUDY : SS48I_binop_rm<0x3B, "vpminud", X86umin, v8i32, VR256,
loadv4i64, i256mem, 0, SSE_INTALU_ITINS_P>,
VEX_4V, VEX_L;
defm VPMINUWY : SS48I_binop_rm<0x3A, "vpminuw", X86umin, v16i16, VR256,
loadv4i64, i256mem, 0, SSE_INTALU_ITINS_P>,
VEX_4V, VEX_L;
defm VPMAXSBY : SS48I_binop_rm<0x3C, "vpmaxsb", X86smax, v32i8, VR256,
loadv4i64, i256mem, 0, SSE_INTALU_ITINS_P>,
VEX_4V, VEX_L;
defm VPMAXSDY : SS48I_binop_rm<0x3D, "vpmaxsd", X86smax, v8i32, VR256,
loadv4i64, i256mem, 0, SSE_INTALU_ITINS_P>,
VEX_4V, VEX_L;
defm VPMAXUDY : SS48I_binop_rm<0x3F, "vpmaxud", X86umax, v8i32, VR256,
loadv4i64, i256mem, 0, SSE_INTALU_ITINS_P>,
VEX_4V, VEX_L;
defm VPMAXUWY : SS48I_binop_rm<0x3E, "vpmaxuw", X86umax, v16i16, VR256,
loadv4i64, i256mem, 0, SSE_INTALU_ITINS_P>,
VEX_4V, VEX_L;
defm VPMULDQY : SS48I_binop_rm2<0x28, "vpmuldq", X86pmuldq, v4i64, v8i32,
VR256, loadv4i64, i256mem,
SSE_INTMUL_ITINS_P, 1, 0>, VEX_4V, VEX_L;
}
let Constraints = "$src1 = $dst" in {
let isCommutable = 0 in
defm PMINSB : SS48I_binop_rm<0x38, "pminsb", X86smin, v16i8, VR128,
memopv2i64, i128mem, 1, SSE_INTALU_ITINS_P>;
defm PMINSD : SS48I_binop_rm<0x39, "pminsd", X86smin, v4i32, VR128,
memopv2i64, i128mem, 1, SSE_INTALU_ITINS_P>;
defm PMINUD : SS48I_binop_rm<0x3B, "pminud", X86umin, v4i32, VR128,
memopv2i64, i128mem, 1, SSE_INTALU_ITINS_P>;
defm PMINUW : SS48I_binop_rm<0x3A, "pminuw", X86umin, v8i16, VR128,
memopv2i64, i128mem, 1, SSE_INTALU_ITINS_P>;
defm PMAXSB : SS48I_binop_rm<0x3C, "pmaxsb", X86smax, v16i8, VR128,
memopv2i64, i128mem, 1, SSE_INTALU_ITINS_P>;
defm PMAXSD : SS48I_binop_rm<0x3D, "pmaxsd", X86smax, v4i32, VR128,
memopv2i64, i128mem, 1, SSE_INTALU_ITINS_P>;
defm PMAXUD : SS48I_binop_rm<0x3F, "pmaxud", X86umax, v4i32, VR128,
memopv2i64, i128mem, 1, SSE_INTALU_ITINS_P>;
defm PMAXUW : SS48I_binop_rm<0x3E, "pmaxuw", X86umax, v8i16, VR128,
memopv2i64, i128mem, 1, SSE_INTALU_ITINS_P>;
defm PMULDQ : SS48I_binop_rm2<0x28, "pmuldq", X86pmuldq, v2i64, v4i32,
VR128, memopv2i64, i128mem,
SSE_INTMUL_ITINS_P, 1>;
}
let Predicates = [HasAVX] in {
defm VPMULLD : SS48I_binop_rm<0x40, "vpmulld", mul, v4i32, VR128,
memopv2i64, i128mem, 0, SSE_PMULLD_ITINS>,
VEX_4V;
defm VPCMPEQQ : SS48I_binop_rm<0x29, "vpcmpeqq", X86pcmpeq, v2i64, VR128,
memopv2i64, i128mem, 0, SSE_INTALU_ITINS_P>,
VEX_4V;
}
let Predicates = [HasAVX2] in {
defm VPMULLDY : SS48I_binop_rm<0x40, "vpmulld", mul, v8i32, VR256,
memopv4i64, i256mem, 0, SSE_PMULLD_ITINS>,
VEX_4V, VEX_L;
defm VPCMPEQQY : SS48I_binop_rm<0x29, "vpcmpeqq", X86pcmpeq, v4i64, VR256,
memopv4i64, i256mem, 0, SSE_INTALU_ITINS_P>,
VEX_4V, VEX_L;
}
let Constraints = "$src1 = $dst" in {
defm PMULLD : SS48I_binop_rm<0x40, "pmulld", mul, v4i32, VR128,
memopv2i64, i128mem, 1, SSE_PMULLD_ITINS>;
defm PCMPEQQ : SS48I_binop_rm<0x29, "pcmpeqq", X86pcmpeq, v2i64, VR128,
memopv2i64, i128mem, 1, SSE_INTALUQ_ITINS_P>;
}
/// SS41I_binop_rmi_int - SSE 4.1 binary operator with 8-bit immediate
multiclass SS41I_binop_rmi_int<bits<8> opc, string OpcodeStr,
Intrinsic IntId, RegisterClass RC, PatFrag memop_frag,
X86MemOperand x86memop, bit Is2Addr = 1,
OpndItins itins = DEFAULT_ITINS> {
let isCommutable = 1 in
def rri : SS4AIi8<opc, MRMSrcReg, (outs RC:$dst),
(ins RC:$src1, RC:$src2, i8imm:$src3),
!if(Is2Addr,
!strconcat(OpcodeStr,
"\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
[(set RC:$dst, (IntId RC:$src1, RC:$src2, imm:$src3))], itins.rr>,
Sched<[itins.Sched]>;
def rmi : SS4AIi8<opc, MRMSrcMem, (outs RC:$dst),
(ins RC:$src1, x86memop:$src2, i8imm:$src3),
!if(Is2Addr,
!strconcat(OpcodeStr,
"\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
[(set RC:$dst,
(IntId RC:$src1,
(bitconvert (memop_frag addr:$src2)), imm:$src3))], itins.rm>,
Sched<[itins.Sched.Folded, ReadAfterLd]>;
}
let Predicates = [HasAVX] in {
let isCommutable = 0 in {
let ExeDomain = SSEPackedSingle in {
defm VBLENDPS : SS41I_binop_rmi_int<0x0C, "vblendps", int_x86_sse41_blendps,
VR128, loadv4f32, f128mem, 0,
DEFAULT_ITINS_FBLENDSCHED>, VEX_4V;
defm VBLENDPSY : SS41I_binop_rmi_int<0x0C, "vblendps",
int_x86_avx_blend_ps_256, VR256, loadv8f32,
f256mem, 0, DEFAULT_ITINS_FBLENDSCHED>,
VEX_4V, VEX_L;
}
let ExeDomain = SSEPackedDouble in {
defm VBLENDPD : SS41I_binop_rmi_int<0x0D, "vblendpd", int_x86_sse41_blendpd,
VR128, loadv2f64, f128mem, 0,
DEFAULT_ITINS_FBLENDSCHED>, VEX_4V;
defm VBLENDPDY : SS41I_binop_rmi_int<0x0D, "vblendpd",
int_x86_avx_blend_pd_256,VR256, loadv4f64,
f256mem, 0, DEFAULT_ITINS_FBLENDSCHED>,
VEX_4V, VEX_L;
}
defm VPBLENDW : SS41I_binop_rmi_int<0x0E, "vpblendw", int_x86_sse41_pblendw,
VR128, loadv2i64, i128mem, 0,
DEFAULT_ITINS_BLENDSCHED>, VEX_4V;
defm VMPSADBW : SS41I_binop_rmi_int<0x42, "vmpsadbw", int_x86_sse41_mpsadbw,
VR128, loadv2i64, i128mem, 0,
DEFAULT_ITINS_MPSADSCHED>, VEX_4V;
}
let ExeDomain = SSEPackedSingle in
defm VDPPS : SS41I_binop_rmi_int<0x40, "vdpps", int_x86_sse41_dpps,
VR128, loadv4f32, f128mem, 0,
SSE_DPPS_ITINS>, VEX_4V;
let ExeDomain = SSEPackedDouble in
defm VDPPD : SS41I_binop_rmi_int<0x41, "vdppd", int_x86_sse41_dppd,
VR128, loadv2f64, f128mem, 0,
SSE_DPPS_ITINS>, VEX_4V;
let ExeDomain = SSEPackedSingle in
defm VDPPSY : SS41I_binop_rmi_int<0x40, "vdpps", int_x86_avx_dp_ps_256,
VR256, loadv8f32, i256mem, 0,
SSE_DPPS_ITINS>, VEX_4V, VEX_L;
}
let Predicates = [HasAVX2] in {
let isCommutable = 0 in {
defm VPBLENDWY : SS41I_binop_rmi_int<0x0E, "vpblendw", int_x86_avx2_pblendw,
VR256, loadv4i64, i256mem, 0,
DEFAULT_ITINS_BLENDSCHED>, VEX_4V, VEX_L;
defm VMPSADBWY : SS41I_binop_rmi_int<0x42, "vmpsadbw", int_x86_avx2_mpsadbw,
VR256, loadv4i64, i256mem, 0,
DEFAULT_ITINS_MPSADSCHED>, VEX_4V, VEX_L;
}
}
let Constraints = "$src1 = $dst" in {
let isCommutable = 0 in {
let ExeDomain = SSEPackedSingle in
defm BLENDPS : SS41I_binop_rmi_int<0x0C, "blendps", int_x86_sse41_blendps,
VR128, memopv4f32, f128mem,
1, SSE_INTALU_ITINS_FBLEND_P>;
let ExeDomain = SSEPackedDouble in
defm BLENDPD : SS41I_binop_rmi_int<0x0D, "blendpd", int_x86_sse41_blendpd,
VR128, memopv2f64, f128mem,
1, SSE_INTALU_ITINS_FBLEND_P>;
defm PBLENDW : SS41I_binop_rmi_int<0x0E, "pblendw", int_x86_sse41_pblendw,
VR128, memopv2i64, i128mem,
1, SSE_INTALU_ITINS_BLEND_P>;
defm MPSADBW : SS41I_binop_rmi_int<0x42, "mpsadbw", int_x86_sse41_mpsadbw,
VR128, memopv2i64, i128mem,
1, SSE_MPSADBW_ITINS>;
}
let ExeDomain = SSEPackedSingle in
defm DPPS : SS41I_binop_rmi_int<0x40, "dpps", int_x86_sse41_dpps,
VR128, memopv4f32, f128mem, 1,
SSE_DPPS_ITINS>;
let ExeDomain = SSEPackedDouble in
defm DPPD : SS41I_binop_rmi_int<0x41, "dppd", int_x86_sse41_dppd,
VR128, memopv2f64, f128mem, 1,
SSE_DPPD_ITINS>;
}
/// SS41I_quaternary_int_avx - AVX SSE 4.1 with 4 operators
multiclass SS41I_quaternary_int_avx<bits<8> opc, string OpcodeStr,
RegisterClass RC, X86MemOperand x86memop,
PatFrag mem_frag, Intrinsic IntId,
X86FoldableSchedWrite Sched> {
def rr : Ii8<opc, MRMSrcReg, (outs RC:$dst),
(ins RC:$src1, RC:$src2, RC:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
[(set RC:$dst, (IntId RC:$src1, RC:$src2, RC:$src3))],
NoItinerary, SSEPackedInt>, TAPD, VEX_4V, VEX_I8IMM,
Sched<[Sched]>;
def rm : Ii8<opc, MRMSrcMem, (outs RC:$dst),
(ins RC:$src1, x86memop:$src2, RC:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
[(set RC:$dst,
(IntId RC:$src1, (bitconvert (mem_frag addr:$src2)),
RC:$src3))],
NoItinerary, SSEPackedInt>, TAPD, VEX_4V, VEX_I8IMM,
Sched<[Sched.Folded, ReadAfterLd]>;
}
let Predicates = [HasAVX] in {
let ExeDomain = SSEPackedDouble in {
defm VBLENDVPD : SS41I_quaternary_int_avx<0x4B, "vblendvpd", VR128, f128mem,
loadv2f64, int_x86_sse41_blendvpd,
WriteFVarBlend>;
defm VBLENDVPDY : SS41I_quaternary_int_avx<0x4B, "vblendvpd", VR256, f256mem,
loadv4f64, int_x86_avx_blendv_pd_256,
WriteFVarBlend>, VEX_L;
} // ExeDomain = SSEPackedDouble
let ExeDomain = SSEPackedSingle in {
defm VBLENDVPS : SS41I_quaternary_int_avx<0x4A, "vblendvps", VR128, f128mem,
loadv4f32, int_x86_sse41_blendvps,
WriteFVarBlend>;
defm VBLENDVPSY : SS41I_quaternary_int_avx<0x4A, "vblendvps", VR256, f256mem,
loadv8f32, int_x86_avx_blendv_ps_256,
WriteFVarBlend>, VEX_L;
} // ExeDomain = SSEPackedSingle
defm VPBLENDVB : SS41I_quaternary_int_avx<0x4C, "vpblendvb", VR128, i128mem,
loadv2i64, int_x86_sse41_pblendvb,
WriteVarBlend>;
}
let Predicates = [HasAVX2] in {
defm VPBLENDVBY : SS41I_quaternary_int_avx<0x4C, "vpblendvb", VR256, i256mem,
loadv4i64, int_x86_avx2_pblendvb,
WriteVarBlend>, VEX_L;
}
let Predicates = [HasAVX] in {
def : Pat<(v16i8 (vselect (v16i8 VR128:$mask), (v16i8 VR128:$src1),
(v16i8 VR128:$src2))),
(VPBLENDVBrr VR128:$src2, VR128:$src1, VR128:$mask)>;
def : Pat<(v4i32 (vselect (v4i32 VR128:$mask), (v4i32 VR128:$src1),
(v4i32 VR128:$src2))),
(VBLENDVPSrr VR128:$src2, VR128:$src1, VR128:$mask)>;
def : Pat<(v4f32 (vselect (v4i32 VR128:$mask), (v4f32 VR128:$src1),
(v4f32 VR128:$src2))),
(VBLENDVPSrr VR128:$src2, VR128:$src1, VR128:$mask)>;
def : Pat<(v2i64 (vselect (v2i64 VR128:$mask), (v2i64 VR128:$src1),
(v2i64 VR128:$src2))),
(VBLENDVPDrr VR128:$src2, VR128:$src1, VR128:$mask)>;
def : Pat<(v2f64 (vselect (v2i64 VR128:$mask), (v2f64 VR128:$src1),
(v2f64 VR128:$src2))),
(VBLENDVPDrr VR128:$src2, VR128:$src1, VR128:$mask)>;
def : Pat<(v8i32 (vselect (v8i32 VR256:$mask), (v8i32 VR256:$src1),
(v8i32 VR256:$src2))),
(VBLENDVPSYrr VR256:$src2, VR256:$src1, VR256:$mask)>;
def : Pat<(v8f32 (vselect (v8i32 VR256:$mask), (v8f32 VR256:$src1),
(v8f32 VR256:$src2))),
(VBLENDVPSYrr VR256:$src2, VR256:$src1, VR256:$mask)>;
def : Pat<(v4i64 (vselect (v4i64 VR256:$mask), (v4i64 VR256:$src1),
(v4i64 VR256:$src2))),
(VBLENDVPDYrr VR256:$src2, VR256:$src1, VR256:$mask)>;
def : Pat<(v4f64 (vselect (v4i64 VR256:$mask), (v4f64 VR256:$src1),
(v4f64 VR256:$src2))),
(VBLENDVPDYrr VR256:$src2, VR256:$src1, VR256:$mask)>;
def : Pat<(v8f32 (X86Blendi (v8f32 VR256:$src1), (v8f32 VR256:$src2),
(imm:$mask))),
(VBLENDPSYrri VR256:$src1, VR256:$src2, imm:$mask)>;
def : Pat<(v4f64 (X86Blendi (v4f64 VR256:$src1), (v4f64 VR256:$src2),
(imm:$mask))),
(VBLENDPDYrri VR256:$src1, VR256:$src2, imm:$mask)>;
def : Pat<(v8i16 (X86Blendi (v8i16 VR128:$src1), (v8i16 VR128:$src2),
(imm:$mask))),
(VPBLENDWrri VR128:$src1, VR128:$src2, imm:$mask)>;
def : Pat<(v4f32 (X86Blendi (v4f32 VR128:$src1), (v4f32 VR128:$src2),
(imm:$mask))),
(VBLENDPSrri VR128:$src1, VR128:$src2, imm:$mask)>;
def : Pat<(v2f64 (X86Blendi (v2f64 VR128:$src1), (v2f64 VR128:$src2),
(imm:$mask))),
(VBLENDPDrri VR128:$src1, VR128:$src2, imm:$mask)>;
}
let Predicates = [HasAVX2] in {
def : Pat<(v32i8 (vselect (v32i8 VR256:$mask), (v32i8 VR256:$src1),
(v32i8 VR256:$src2))),
(VPBLENDVBYrr VR256:$src2, VR256:$src1, VR256:$mask)>;
def : Pat<(v16i16 (X86Blendi (v16i16 VR256:$src1), (v16i16 VR256:$src2),
(imm:$mask))),
(VPBLENDWYrri VR256:$src1, VR256:$src2, imm:$mask)>;
}
/// SS41I_ternary_int - SSE 4.1 ternary operator
let Uses = [XMM0], Constraints = "$src1 = $dst" in {
multiclass SS41I_ternary_int<bits<8> opc, string OpcodeStr, PatFrag mem_frag,
X86MemOperand x86memop, Intrinsic IntId,
OpndItins itins = DEFAULT_ITINS> {
def rr0 : SS48I<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2),
!strconcat(OpcodeStr,
"\t{$src2, $dst|$dst, $src2}"),
[(set VR128:$dst, (IntId VR128:$src1, VR128:$src2, XMM0))],
itins.rr>, Sched<[itins.Sched]>;
def rm0 : SS48I<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, x86memop:$src2),
!strconcat(OpcodeStr,
"\t{$src2, $dst|$dst, $src2}"),
[(set VR128:$dst,
(IntId VR128:$src1,
(bitconvert (mem_frag addr:$src2)), XMM0))],
itins.rm>, Sched<[itins.Sched.Folded, ReadAfterLd]>;
}
}
let ExeDomain = SSEPackedDouble in
defm BLENDVPD : SS41I_ternary_int<0x15, "blendvpd", memopv2f64, f128mem,
int_x86_sse41_blendvpd,
DEFAULT_ITINS_FBLENDSCHED>;
let ExeDomain = SSEPackedSingle in
defm BLENDVPS : SS41I_ternary_int<0x14, "blendvps", memopv4f32, f128mem,
int_x86_sse41_blendvps,
DEFAULT_ITINS_FBLENDSCHED>;
defm PBLENDVB : SS41I_ternary_int<0x10, "pblendvb", memopv2i64, i128mem,
int_x86_sse41_pblendvb,
DEFAULT_ITINS_VARBLENDSCHED>;
// Aliases with the implicit xmm0 argument
def : InstAlias<"blendvpd\t{%xmm0, $src2, $dst|$dst, $src2, xmm0}",
(BLENDVPDrr0 VR128:$dst, VR128:$src2)>;
def : InstAlias<"blendvpd\t{%xmm0, $src2, $dst|$dst, $src2, xmm0}",
(BLENDVPDrm0 VR128:$dst, f128mem:$src2)>;
def : InstAlias<"blendvps\t{%xmm0, $src2, $dst|$dst, $src2, xmm0}",
(BLENDVPSrr0 VR128:$dst, VR128:$src2)>;
def : InstAlias<"blendvps\t{%xmm0, $src2, $dst|$dst, $src2, xmm0}",
(BLENDVPSrm0 VR128:$dst, f128mem:$src2)>;
def : InstAlias<"pblendvb\t{%xmm0, $src2, $dst|$dst, $src2, xmm0}",
(PBLENDVBrr0 VR128:$dst, VR128:$src2)>;
def : InstAlias<"pblendvb\t{%xmm0, $src2, $dst|$dst, $src2, xmm0}",
(PBLENDVBrm0 VR128:$dst, i128mem:$src2)>;
let Predicates = [UseSSE41] in {
def : Pat<(v16i8 (vselect (v16i8 XMM0), (v16i8 VR128:$src1),
(v16i8 VR128:$src2))),
(PBLENDVBrr0 VR128:$src2, VR128:$src1)>;
def : Pat<(v4i32 (vselect (v4i32 XMM0), (v4i32 VR128:$src1),
(v4i32 VR128:$src2))),
(BLENDVPSrr0 VR128:$src2, VR128:$src1)>;
def : Pat<(v4f32 (vselect (v4i32 XMM0), (v4f32 VR128:$src1),
(v4f32 VR128:$src2))),
(BLENDVPSrr0 VR128:$src2, VR128:$src1)>;
def : Pat<(v2i64 (vselect (v2i64 XMM0), (v2i64 VR128:$src1),
(v2i64 VR128:$src2))),
(BLENDVPDrr0 VR128:$src2, VR128:$src1)>;
def : Pat<(v2f64 (vselect (v2i64 XMM0), (v2f64 VR128:$src1),
(v2f64 VR128:$src2))),
(BLENDVPDrr0 VR128:$src2, VR128:$src1)>;
def : Pat<(v8i16 (X86Blendi (v8i16 VR128:$src1), (v8i16 VR128:$src2),
(imm:$mask))),
(PBLENDWrri VR128:$src1, VR128:$src2, imm:$mask)>;
def : Pat<(v4f32 (X86Blendi (v4f32 VR128:$src1), (v4f32 VR128:$src2),
(imm:$mask))),
(BLENDPSrri VR128:$src1, VR128:$src2, imm:$mask)>;
def : Pat<(v2f64 (X86Blendi (v2f64 VR128:$src1), (v2f64 VR128:$src2),
(imm:$mask))),
(BLENDPDrri VR128:$src1, VR128:$src2, imm:$mask)>;
}
let SchedRW = [WriteLoad] in {
let Predicates = [HasAVX] in
def VMOVNTDQArm : SS48I<0x2A, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src),
"vmovntdqa\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse41_movntdqa addr:$src))]>,
VEX;
let Predicates = [HasAVX2] in
def VMOVNTDQAYrm : SS48I<0x2A, MRMSrcMem, (outs VR256:$dst), (ins i256mem:$src),
"vmovntdqa\t{$src, $dst|$dst, $src}",
[(set VR256:$dst, (int_x86_avx2_movntdqa addr:$src))]>,
VEX, VEX_L;
def MOVNTDQArm : SS48I<0x2A, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src),
"movntdqa\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse41_movntdqa addr:$src))]>;
} // SchedRW
//===----------------------------------------------------------------------===//
// SSE4.2 - Compare Instructions
//===----------------------------------------------------------------------===//
/// SS42I_binop_rm - Simple SSE 4.2 binary operator
multiclass SS42I_binop_rm<bits<8> opc, string OpcodeStr, SDNode OpNode,
ValueType OpVT, RegisterClass RC, PatFrag memop_frag,
X86MemOperand x86memop, bit Is2Addr = 1> {
def rr : SS428I<opc, MRMSrcReg, (outs RC:$dst),
(ins RC:$src1, RC:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set RC:$dst, (OpVT (OpNode RC:$src1, RC:$src2)))]>;
def rm : SS428I<opc, MRMSrcMem, (outs RC:$dst),
(ins RC:$src1, x86memop:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set RC:$dst,
(OpVT (OpNode RC:$src1, (memop_frag addr:$src2))))]>;
}
let Predicates = [HasAVX] in
defm VPCMPGTQ : SS42I_binop_rm<0x37, "vpcmpgtq", X86pcmpgt, v2i64, VR128,
loadv2i64, i128mem, 0>, VEX_4V;
let Predicates = [HasAVX2] in
defm VPCMPGTQY : SS42I_binop_rm<0x37, "vpcmpgtq", X86pcmpgt, v4i64, VR256,
loadv4i64, i256mem, 0>, VEX_4V, VEX_L;
let Constraints = "$src1 = $dst" in
defm PCMPGTQ : SS42I_binop_rm<0x37, "pcmpgtq", X86pcmpgt, v2i64, VR128,
memopv2i64, i128mem>;
//===----------------------------------------------------------------------===//
// SSE4.2 - String/text Processing Instructions
//===----------------------------------------------------------------------===//
// Packed Compare Implicit Length Strings, Return Mask
multiclass pseudo_pcmpistrm<string asm> {
def REG : PseudoI<(outs VR128:$dst),
(ins VR128:$src1, VR128:$src2, i8imm:$src3),
[(set VR128:$dst, (int_x86_sse42_pcmpistrm128 VR128:$src1, VR128:$src2,
imm:$src3))]>;
def MEM : PseudoI<(outs VR128:$dst),
(ins VR128:$src1, i128mem:$src2, i8imm:$src3),
[(set VR128:$dst, (int_x86_sse42_pcmpistrm128 VR128:$src1,
(bc_v16i8 (memopv2i64 addr:$src2)), imm:$src3))]>;
}
let Defs = [EFLAGS], usesCustomInserter = 1 in {
defm VPCMPISTRM128 : pseudo_pcmpistrm<"#VPCMPISTRM128">, Requires<[HasAVX]>;
defm PCMPISTRM128 : pseudo_pcmpistrm<"#PCMPISTRM128">, Requires<[UseSSE42]>;
}
multiclass pcmpistrm_SS42AI<string asm> {
def rr : SS42AI<0x62, MRMSrcReg, (outs),
(ins VR128:$src1, VR128:$src2, i8imm:$src3),
!strconcat(asm, "\t{$src3, $src2, $src1|$src1, $src2, $src3}"),
[]>, Sched<[WritePCmpIStrM]>;
let mayLoad = 1 in
def rm :SS42AI<0x62, MRMSrcMem, (outs),
(ins VR128:$src1, i128mem:$src2, i8imm:$src3),
!strconcat(asm, "\t{$src3, $src2, $src1|$src1, $src2, $src3}"),
[]>, Sched<[WritePCmpIStrMLd, ReadAfterLd]>;
}
let Defs = [XMM0, EFLAGS], neverHasSideEffects = 1 in {
let Predicates = [HasAVX] in
defm VPCMPISTRM128 : pcmpistrm_SS42AI<"vpcmpistrm">, VEX;
defm PCMPISTRM128 : pcmpistrm_SS42AI<"pcmpistrm"> ;
}
// Packed Compare Explicit Length Strings, Return Mask
multiclass pseudo_pcmpestrm<string asm> {
def REG : PseudoI<(outs VR128:$dst),
(ins VR128:$src1, VR128:$src3, i8imm:$src5),
[(set VR128:$dst, (int_x86_sse42_pcmpestrm128
VR128:$src1, EAX, VR128:$src3, EDX, imm:$src5))]>;
def MEM : PseudoI<(outs VR128:$dst),
(ins VR128:$src1, i128mem:$src3, i8imm:$src5),
[(set VR128:$dst, (int_x86_sse42_pcmpestrm128 VR128:$src1, EAX,
(bc_v16i8 (memopv2i64 addr:$src3)), EDX, imm:$src5))]>;
}
let Defs = [EFLAGS], Uses = [EAX, EDX], usesCustomInserter = 1 in {
defm VPCMPESTRM128 : pseudo_pcmpestrm<"#VPCMPESTRM128">, Requires<[HasAVX]>;
defm PCMPESTRM128 : pseudo_pcmpestrm<"#PCMPESTRM128">, Requires<[UseSSE42]>;
}
multiclass SS42AI_pcmpestrm<string asm> {
def rr : SS42AI<0x60, MRMSrcReg, (outs),
(ins VR128:$src1, VR128:$src3, i8imm:$src5),
!strconcat(asm, "\t{$src5, $src3, $src1|$src1, $src3, $src5}"),
[]>, Sched<[WritePCmpEStrM]>;
let mayLoad = 1 in
def rm : SS42AI<0x60, MRMSrcMem, (outs),
(ins VR128:$src1, i128mem:$src3, i8imm:$src5),
!strconcat(asm, "\t{$src5, $src3, $src1|$src1, $src3, $src5}"),
[]>, Sched<[WritePCmpEStrMLd, ReadAfterLd]>;
}
let Defs = [XMM0, EFLAGS], Uses = [EAX, EDX], neverHasSideEffects = 1 in {
let Predicates = [HasAVX] in
defm VPCMPESTRM128 : SS42AI_pcmpestrm<"vpcmpestrm">, VEX;
defm PCMPESTRM128 : SS42AI_pcmpestrm<"pcmpestrm">;
}
// Packed Compare Implicit Length Strings, Return Index
multiclass pseudo_pcmpistri<string asm> {
def REG : PseudoI<(outs GR32:$dst),
(ins VR128:$src1, VR128:$src2, i8imm:$src3),
[(set GR32:$dst, EFLAGS,
(X86pcmpistri VR128:$src1, VR128:$src2, imm:$src3))]>;
def MEM : PseudoI<(outs GR32:$dst),
(ins VR128:$src1, i128mem:$src2, i8imm:$src3),
[(set GR32:$dst, EFLAGS, (X86pcmpistri VR128:$src1,
(bc_v16i8 (memopv2i64 addr:$src2)), imm:$src3))]>;
}
let Defs = [EFLAGS], usesCustomInserter = 1 in {
defm VPCMPISTRI : pseudo_pcmpistri<"#VPCMPISTRI">, Requires<[HasAVX]>;
defm PCMPISTRI : pseudo_pcmpistri<"#PCMPISTRI">, Requires<[UseSSE42]>;
}
multiclass SS42AI_pcmpistri<string asm> {
def rr : SS42AI<0x63, MRMSrcReg, (outs),
(ins VR128:$src1, VR128:$src2, i8imm:$src3),
!strconcat(asm, "\t{$src3, $src2, $src1|$src1, $src2, $src3}"),
[]>, Sched<[WritePCmpIStrI]>;
let mayLoad = 1 in
def rm : SS42AI<0x63, MRMSrcMem, (outs),
(ins VR128:$src1, i128mem:$src2, i8imm:$src3),
!strconcat(asm, "\t{$src3, $src2, $src1|$src1, $src2, $src3}"),
[]>, Sched<[WritePCmpIStrILd, ReadAfterLd]>;
}
let Defs = [ECX, EFLAGS], neverHasSideEffects = 1 in {
let Predicates = [HasAVX] in
defm VPCMPISTRI : SS42AI_pcmpistri<"vpcmpistri">, VEX;
defm PCMPISTRI : SS42AI_pcmpistri<"pcmpistri">;
}
// Packed Compare Explicit Length Strings, Return Index
multiclass pseudo_pcmpestri<string asm> {
def REG : PseudoI<(outs GR32:$dst),
(ins VR128:$src1, VR128:$src3, i8imm:$src5),
[(set GR32:$dst, EFLAGS,
(X86pcmpestri VR128:$src1, EAX, VR128:$src3, EDX, imm:$src5))]>;
def MEM : PseudoI<(outs GR32:$dst),
(ins VR128:$src1, i128mem:$src3, i8imm:$src5),
[(set GR32:$dst, EFLAGS,
(X86pcmpestri VR128:$src1, EAX, (bc_v16i8 (memopv2i64 addr:$src3)), EDX,
imm:$src5))]>;
}
let Defs = [EFLAGS], Uses = [EAX, EDX], usesCustomInserter = 1 in {
defm VPCMPESTRI : pseudo_pcmpestri<"#VPCMPESTRI">, Requires<[HasAVX]>;
defm PCMPESTRI : pseudo_pcmpestri<"#PCMPESTRI">, Requires<[UseSSE42]>;
}
multiclass SS42AI_pcmpestri<string asm> {
def rr : SS42AI<0x61, MRMSrcReg, (outs),
(ins VR128:$src1, VR128:$src3, i8imm:$src5),
!strconcat(asm, "\t{$src5, $src3, $src1|$src1, $src3, $src5}"),
[]>, Sched<[WritePCmpEStrI]>;
let mayLoad = 1 in
def rm : SS42AI<0x61, MRMSrcMem, (outs),
(ins VR128:$src1, i128mem:$src3, i8imm:$src5),
!strconcat(asm, "\t{$src5, $src3, $src1|$src1, $src3, $src5}"),
[]>, Sched<[WritePCmpEStrILd, ReadAfterLd]>;
}
let Defs = [ECX, EFLAGS], Uses = [EAX, EDX], neverHasSideEffects = 1 in {
let Predicates = [HasAVX] in
defm VPCMPESTRI : SS42AI_pcmpestri<"vpcmpestri">, VEX;
defm PCMPESTRI : SS42AI_pcmpestri<"pcmpestri">;
}
//===----------------------------------------------------------------------===//
// SSE4.2 - CRC Instructions
//===----------------------------------------------------------------------===//
// No CRC instructions have AVX equivalents
// crc intrinsic instruction
// This set of instructions are only rm, the only difference is the size
// of r and m.
class SS42I_crc32r<bits<8> opc, string asm, RegisterClass RCOut,
RegisterClass RCIn, SDPatternOperator Int> :
SS42FI<opc, MRMSrcReg, (outs RCOut:$dst), (ins RCOut:$src1, RCIn:$src2),
!strconcat(asm, "\t{$src2, $src1|$src1, $src2}"),
[(set RCOut:$dst, (Int RCOut:$src1, RCIn:$src2))], IIC_CRC32_REG>,
Sched<[WriteFAdd]>;
class SS42I_crc32m<bits<8> opc, string asm, RegisterClass RCOut,
X86MemOperand x86memop, SDPatternOperator Int> :
SS42FI<opc, MRMSrcMem, (outs RCOut:$dst), (ins RCOut:$src1, x86memop:$src2),
!strconcat(asm, "\t{$src2, $src1|$src1, $src2}"),
[(set RCOut:$dst, (Int RCOut:$src1, (load addr:$src2)))],
IIC_CRC32_MEM>, Sched<[WriteFAddLd, ReadAfterLd]>;
let Constraints = "$src1 = $dst" in {
def CRC32r32m8 : SS42I_crc32m<0xF0, "crc32{b}", GR32, i8mem,
int_x86_sse42_crc32_32_8>;
def CRC32r32r8 : SS42I_crc32r<0xF0, "crc32{b}", GR32, GR8,
int_x86_sse42_crc32_32_8>;
def CRC32r32m16 : SS42I_crc32m<0xF1, "crc32{w}", GR32, i16mem,
int_x86_sse42_crc32_32_16>, OpSize16;
def CRC32r32r16 : SS42I_crc32r<0xF1, "crc32{w}", GR32, GR16,
int_x86_sse42_crc32_32_16>, OpSize16;
def CRC32r32m32 : SS42I_crc32m<0xF1, "crc32{l}", GR32, i32mem,
int_x86_sse42_crc32_32_32>, OpSize32;
def CRC32r32r32 : SS42I_crc32r<0xF1, "crc32{l}", GR32, GR32,
int_x86_sse42_crc32_32_32>, OpSize32;
def CRC32r64m64 : SS42I_crc32m<0xF1, "crc32{q}", GR64, i64mem,
int_x86_sse42_crc32_64_64>, REX_W;
def CRC32r64r64 : SS42I_crc32r<0xF1, "crc32{q}", GR64, GR64,
int_x86_sse42_crc32_64_64>, REX_W;
let hasSideEffects = 0 in {
let mayLoad = 1 in
def CRC32r64m8 : SS42I_crc32m<0xF0, "crc32{b}", GR64, i8mem,
null_frag>, REX_W;
def CRC32r64r8 : SS42I_crc32r<0xF0, "crc32{b}", GR64, GR8,
null_frag>, REX_W;
}
}
//===----------------------------------------------------------------------===//
// SHA-NI Instructions
//===----------------------------------------------------------------------===//
multiclass SHAI_binop<bits<8> Opc, string OpcodeStr, Intrinsic IntId,
bit UsesXMM0 = 0> {
def rr : I<Opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2),
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
[!if(UsesXMM0,
(set VR128:$dst, (IntId VR128:$src1, VR128:$src2, XMM0)),
(set VR128:$dst, (IntId VR128:$src1, VR128:$src2)))]>, T8;
def rm : I<Opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, i128mem:$src2),
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
[!if(UsesXMM0,
(set VR128:$dst, (IntId VR128:$src1,
(bc_v4i32 (memopv2i64 addr:$src2)), XMM0)),
(set VR128:$dst, (IntId VR128:$src1,
(bc_v4i32 (memopv2i64 addr:$src2)))))]>, T8;
}
let Constraints = "$src1 = $dst", Predicates = [HasSHA] in {
def SHA1RNDS4rri : Ii8<0xCC, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2, i8imm:$src3),
"sha1rnds4\t{$src3, $src2, $dst|$dst, $src2, $src3}",
[(set VR128:$dst,
(int_x86_sha1rnds4 VR128:$src1, VR128:$src2,
(i8 imm:$src3)))]>, TA;
def SHA1RNDS4rmi : Ii8<0xCC, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, i128mem:$src2, i8imm:$src3),
"sha1rnds4\t{$src3, $src2, $dst|$dst, $src2, $src3}",
[(set VR128:$dst,
(int_x86_sha1rnds4 VR128:$src1,
(bc_v4i32 (memopv2i64 addr:$src2)),
(i8 imm:$src3)))]>, TA;
defm SHA1NEXTE : SHAI_binop<0xC8, "sha1nexte", int_x86_sha1nexte>;
defm SHA1MSG1 : SHAI_binop<0xC9, "sha1msg1", int_x86_sha1msg1>;
defm SHA1MSG2 : SHAI_binop<0xCA, "sha1msg2", int_x86_sha1msg2>;
let Uses=[XMM0] in
defm SHA256RNDS2 : SHAI_binop<0xCB, "sha256rnds2", int_x86_sha256rnds2, 1>;
defm SHA256MSG1 : SHAI_binop<0xCC, "sha256msg1", int_x86_sha256msg1>;
defm SHA256MSG2 : SHAI_binop<0xCD, "sha256msg2", int_x86_sha256msg2>;
}
// Aliases with explicit %xmm0
def : InstAlias<"sha256rnds2\t{%xmm0, $src2, $dst|$dst, $src2, xmm0}",
(SHA256RNDS2rr VR128:$dst, VR128:$src2)>;
def : InstAlias<"sha256rnds2\t{%xmm0, $src2, $dst|$dst, $src2, xmm0}",
(SHA256RNDS2rm VR128:$dst, i128mem:$src2)>;
//===----------------------------------------------------------------------===//
// AES-NI Instructions
//===----------------------------------------------------------------------===//
multiclass AESI_binop_rm_int<bits<8> opc, string OpcodeStr,
Intrinsic IntId128, bit Is2Addr = 1> {
def rr : AES8I<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set VR128:$dst, (IntId128 VR128:$src1, VR128:$src2))]>,
Sched<[WriteAESDecEnc]>;
def rm : AES8I<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, i128mem:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set VR128:$dst,
(IntId128 VR128:$src1, (memopv2i64 addr:$src2)))]>,
Sched<[WriteAESDecEncLd, ReadAfterLd]>;
}
// Perform One Round of an AES Encryption/Decryption Flow
let Predicates = [HasAVX, HasAES] in {
defm VAESENC : AESI_binop_rm_int<0xDC, "vaesenc",
int_x86_aesni_aesenc, 0>, VEX_4V;
defm VAESENCLAST : AESI_binop_rm_int<0xDD, "vaesenclast",
int_x86_aesni_aesenclast, 0>, VEX_4V;
defm VAESDEC : AESI_binop_rm_int<0xDE, "vaesdec",
int_x86_aesni_aesdec, 0>, VEX_4V;
defm VAESDECLAST : AESI_binop_rm_int<0xDF, "vaesdeclast",
int_x86_aesni_aesdeclast, 0>, VEX_4V;
}
let Constraints = "$src1 = $dst" in {
defm AESENC : AESI_binop_rm_int<0xDC, "aesenc",
int_x86_aesni_aesenc>;
defm AESENCLAST : AESI_binop_rm_int<0xDD, "aesenclast",
int_x86_aesni_aesenclast>;
defm AESDEC : AESI_binop_rm_int<0xDE, "aesdec",
int_x86_aesni_aesdec>;
defm AESDECLAST : AESI_binop_rm_int<0xDF, "aesdeclast",
int_x86_aesni_aesdeclast>;
}
// Perform the AES InvMixColumn Transformation
let Predicates = [HasAVX, HasAES] in {
def VAESIMCrr : AES8I<0xDB, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1),
"vaesimc\t{$src1, $dst|$dst, $src1}",
[(set VR128:$dst,
(int_x86_aesni_aesimc VR128:$src1))]>, Sched<[WriteAESIMC]>,
VEX;
def VAESIMCrm : AES8I<0xDB, MRMSrcMem, (outs VR128:$dst),
(ins i128mem:$src1),
"vaesimc\t{$src1, $dst|$dst, $src1}",
[(set VR128:$dst, (int_x86_aesni_aesimc (loadv2i64 addr:$src1)))]>,
Sched<[WriteAESIMCLd]>, VEX;
}
def AESIMCrr : AES8I<0xDB, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1),
"aesimc\t{$src1, $dst|$dst, $src1}",
[(set VR128:$dst,
(int_x86_aesni_aesimc VR128:$src1))]>, Sched<[WriteAESIMC]>;
def AESIMCrm : AES8I<0xDB, MRMSrcMem, (outs VR128:$dst),
(ins i128mem:$src1),
"aesimc\t{$src1, $dst|$dst, $src1}",
[(set VR128:$dst, (int_x86_aesni_aesimc (memopv2i64 addr:$src1)))]>,
Sched<[WriteAESIMCLd]>;
// AES Round Key Generation Assist
let Predicates = [HasAVX, HasAES] in {
def VAESKEYGENASSIST128rr : AESAI<0xDF, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, i8imm:$src2),
"vaeskeygenassist\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set VR128:$dst,
(int_x86_aesni_aeskeygenassist VR128:$src1, imm:$src2))]>,
Sched<[WriteAESKeyGen]>, VEX;
def VAESKEYGENASSIST128rm : AESAI<0xDF, MRMSrcMem, (outs VR128:$dst),
(ins i128mem:$src1, i8imm:$src2),
"vaeskeygenassist\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set VR128:$dst,
(int_x86_aesni_aeskeygenassist (loadv2i64 addr:$src1), imm:$src2))]>,
Sched<[WriteAESKeyGenLd]>, VEX;
}
def AESKEYGENASSIST128rr : AESAI<0xDF, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, i8imm:$src2),
"aeskeygenassist\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set VR128:$dst,
(int_x86_aesni_aeskeygenassist VR128:$src1, imm:$src2))]>,
Sched<[WriteAESKeyGen]>;
def AESKEYGENASSIST128rm : AESAI<0xDF, MRMSrcMem, (outs VR128:$dst),
(ins i128mem:$src1, i8imm:$src2),
"aeskeygenassist\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set VR128:$dst,
(int_x86_aesni_aeskeygenassist (memopv2i64 addr:$src1), imm:$src2))]>,
Sched<[WriteAESKeyGenLd]>;
//===----------------------------------------------------------------------===//
// PCLMUL Instructions
//===----------------------------------------------------------------------===//
// AVX carry-less Multiplication instructions
def VPCLMULQDQrr : AVXPCLMULIi8<0x44, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2, i8imm:$src3),
"vpclmulqdq\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
[(set VR128:$dst,
(int_x86_pclmulqdq VR128:$src1, VR128:$src2, imm:$src3))]>,
Sched<[WriteCLMul]>;
def VPCLMULQDQrm : AVXPCLMULIi8<0x44, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, i128mem:$src2, i8imm:$src3),
"vpclmulqdq\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
[(set VR128:$dst, (int_x86_pclmulqdq VR128:$src1,
(loadv2i64 addr:$src2), imm:$src3))]>,
Sched<[WriteCLMulLd, ReadAfterLd]>;
// Carry-less Multiplication instructions
let Constraints = "$src1 = $dst" in {
def PCLMULQDQrr : PCLMULIi8<0x44, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2, i8imm:$src3),
"pclmulqdq\t{$src3, $src2, $dst|$dst, $src2, $src3}",
[(set VR128:$dst,
(int_x86_pclmulqdq VR128:$src1, VR128:$src2, imm:$src3))],
IIC_SSE_PCLMULQDQ_RR>, Sched<[WriteCLMul]>;
def PCLMULQDQrm : PCLMULIi8<0x44, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, i128mem:$src2, i8imm:$src3),
"pclmulqdq\t{$src3, $src2, $dst|$dst, $src2, $src3}",
[(set VR128:$dst, (int_x86_pclmulqdq VR128:$src1,
(memopv2i64 addr:$src2), imm:$src3))],
IIC_SSE_PCLMULQDQ_RM>,
Sched<[WriteCLMulLd, ReadAfterLd]>;
} // Constraints = "$src1 = $dst"
multiclass pclmul_alias<string asm, int immop> {
def : InstAlias<!strconcat("pclmul", asm, "dq {$src, $dst|$dst, $src}"),
(PCLMULQDQrr VR128:$dst, VR128:$src, immop), 0>;
def : InstAlias<!strconcat("pclmul", asm, "dq {$src, $dst|$dst, $src}"),
(PCLMULQDQrm VR128:$dst, i128mem:$src, immop), 0>;
def : InstAlias<!strconcat("vpclmul", asm,
"dq {$src2, $src1, $dst|$dst, $src1, $src2}"),
(VPCLMULQDQrr VR128:$dst, VR128:$src1, VR128:$src2, immop),
0>;
def : InstAlias<!strconcat("vpclmul", asm,
"dq {$src2, $src1, $dst|$dst, $src1, $src2}"),
(VPCLMULQDQrm VR128:$dst, VR128:$src1, i128mem:$src2, immop),
0>;
}
defm : pclmul_alias<"hqhq", 0x11>;
defm : pclmul_alias<"hqlq", 0x01>;
defm : pclmul_alias<"lqhq", 0x10>;
defm : pclmul_alias<"lqlq", 0x00>;
//===----------------------------------------------------------------------===//
// SSE4A Instructions
//===----------------------------------------------------------------------===//
let Predicates = [HasSSE4A] in {
let Constraints = "$src = $dst" in {
def EXTRQI : Ii8<0x78, MRMXr, (outs VR128:$dst),
(ins VR128:$src, i8imm:$len, i8imm:$idx),
"extrq\t{$idx, $len, $src|$src, $len, $idx}",
[(set VR128:$dst, (int_x86_sse4a_extrqi VR128:$src, imm:$len,
imm:$idx))]>, PD;
def EXTRQ : I<0x79, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src, VR128:$mask),
"extrq\t{$mask, $src|$src, $mask}",
[(set VR128:$dst, (int_x86_sse4a_extrq VR128:$src,
VR128:$mask))]>, PD;
def INSERTQI : Ii8<0x78, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src, VR128:$src2, i8imm:$len, i8imm:$idx),
"insertq\t{$idx, $len, $src2, $src|$src, $src2, $len, $idx}",
[(set VR128:$dst, (int_x86_sse4a_insertqi VR128:$src,
VR128:$src2, imm:$len, imm:$idx))]>, XD;
def INSERTQ : I<0x79, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src, VR128:$mask),
"insertq\t{$mask, $src|$src, $mask}",
[(set VR128:$dst, (int_x86_sse4a_insertq VR128:$src,
VR128:$mask))]>, XD;
}
def MOVNTSS : I<0x2B, MRMDestMem, (outs), (ins f32mem:$dst, VR128:$src),
"movntss\t{$src, $dst|$dst, $src}",
[(int_x86_sse4a_movnt_ss addr:$dst, VR128:$src)]>, XS;
def MOVNTSD : I<0x2B, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src),
"movntsd\t{$src, $dst|$dst, $src}",
[(int_x86_sse4a_movnt_sd addr:$dst, VR128:$src)]>, XD;
}
//===----------------------------------------------------------------------===//
// AVX Instructions
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// VBROADCAST - Load from memory and broadcast to all elements of the
// destination operand
//
class avx_broadcast<bits<8> opc, string OpcodeStr, RegisterClass RC,
X86MemOperand x86memop, Intrinsic Int, SchedWrite Sched> :
AVX8I<opc, MRMSrcMem, (outs RC:$dst), (ins x86memop:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set RC:$dst, (Int addr:$src))]>, Sched<[Sched]>, VEX;
class avx_broadcast_no_int<bits<8> opc, string OpcodeStr, RegisterClass RC,
X86MemOperand x86memop, ValueType VT,
PatFrag ld_frag, SchedWrite Sched> :
AVX8I<opc, MRMSrcMem, (outs RC:$dst), (ins x86memop:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set RC:$dst, (VT (X86VBroadcast (ld_frag addr:$src))))]>,
Sched<[Sched]>, VEX {
let mayLoad = 1;
}
// AVX2 adds register forms
class avx2_broadcast_reg<bits<8> opc, string OpcodeStr, RegisterClass RC,
Intrinsic Int, SchedWrite Sched> :
AVX28I<opc, MRMSrcReg, (outs RC:$dst), (ins VR128:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set RC:$dst, (Int VR128:$src))]>, Sched<[Sched]>, VEX;
let ExeDomain = SSEPackedSingle in {
def VBROADCASTSSrm : avx_broadcast_no_int<0x18, "vbroadcastss", VR128,
f32mem, v4f32, loadf32, WriteLoad>;
def VBROADCASTSSYrm : avx_broadcast_no_int<0x18, "vbroadcastss", VR256,
f32mem, v8f32, loadf32,
WriteFShuffleLd>, VEX_L;
}
let ExeDomain = SSEPackedDouble in
def VBROADCASTSDYrm : avx_broadcast_no_int<0x19, "vbroadcastsd", VR256, f64mem,
v4f64, loadf64, WriteFShuffleLd>, VEX_L;
def VBROADCASTF128 : avx_broadcast<0x1A, "vbroadcastf128", VR256, f128mem,
int_x86_avx_vbroadcastf128_pd_256,
WriteFShuffleLd>, VEX_L;
let ExeDomain = SSEPackedSingle in {
def VBROADCASTSSrr : avx2_broadcast_reg<0x18, "vbroadcastss", VR128,
int_x86_avx2_vbroadcast_ss_ps,
WriteFShuffle>;
def VBROADCASTSSYrr : avx2_broadcast_reg<0x18, "vbroadcastss", VR256,
int_x86_avx2_vbroadcast_ss_ps_256,
WriteFShuffle256>, VEX_L;
}
let ExeDomain = SSEPackedDouble in
def VBROADCASTSDYrr : avx2_broadcast_reg<0x19, "vbroadcastsd", VR256,
int_x86_avx2_vbroadcast_sd_pd_256,
WriteFShuffle256>, VEX_L;
let Predicates = [HasAVX2] in
def VBROADCASTI128 : avx_broadcast<0x5A, "vbroadcasti128", VR256, i128mem,
int_x86_avx2_vbroadcasti128, WriteLoad>,
VEX_L;
let Predicates = [HasAVX] in
def : Pat<(int_x86_avx_vbroadcastf128_ps_256 addr:$src),
(VBROADCASTF128 addr:$src)>;
//===----------------------------------------------------------------------===//
// VINSERTF128 - Insert packed floating-point values
//
let neverHasSideEffects = 1, ExeDomain = SSEPackedSingle in {
def VINSERTF128rr : AVXAIi8<0x18, MRMSrcReg, (outs VR256:$dst),
(ins VR256:$src1, VR128:$src2, i8imm:$src3),
"vinsertf128\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
[]>, Sched<[WriteFShuffle]>, VEX_4V, VEX_L;
let mayLoad = 1 in
def VINSERTF128rm : AVXAIi8<0x18, MRMSrcMem, (outs VR256:$dst),
(ins VR256:$src1, f128mem:$src2, i8imm:$src3),
"vinsertf128\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
[]>, Sched<[WriteFShuffleLd, ReadAfterLd]>, VEX_4V, VEX_L;
}
let Predicates = [HasAVX] in {
def : Pat<(vinsert128_insert:$ins (v8f32 VR256:$src1), (v4f32 VR128:$src2),
(iPTR imm)),
(VINSERTF128rr VR256:$src1, VR128:$src2,
(INSERT_get_vinsert128_imm VR256:$ins))>;
def : Pat<(vinsert128_insert:$ins (v4f64 VR256:$src1), (v2f64 VR128:$src2),
(iPTR imm)),
(VINSERTF128rr VR256:$src1, VR128:$src2,
(INSERT_get_vinsert128_imm VR256:$ins))>;
def : Pat<(vinsert128_insert:$ins (v8f32 VR256:$src1), (loadv4f32 addr:$src2),
(iPTR imm)),
(VINSERTF128rm VR256:$src1, addr:$src2,
(INSERT_get_vinsert128_imm VR256:$ins))>;
def : Pat<(vinsert128_insert:$ins (v4f64 VR256:$src1), (loadv2f64 addr:$src2),
(iPTR imm)),
(VINSERTF128rm VR256:$src1, addr:$src2,
(INSERT_get_vinsert128_imm VR256:$ins))>;
}
let Predicates = [HasAVX1Only] in {
def : Pat<(vinsert128_insert:$ins (v4i64 VR256:$src1), (v2i64 VR128:$src2),
(iPTR imm)),
(VINSERTF128rr VR256:$src1, VR128:$src2,
(INSERT_get_vinsert128_imm VR256:$ins))>;
def : Pat<(vinsert128_insert:$ins (v8i32 VR256:$src1), (v4i32 VR128:$src2),
(iPTR imm)),
(VINSERTF128rr VR256:$src1, VR128:$src2,
(INSERT_get_vinsert128_imm VR256:$ins))>;
def : Pat<(vinsert128_insert:$ins (v32i8 VR256:$src1), (v16i8 VR128:$src2),
(iPTR imm)),
(VINSERTF128rr VR256:$src1, VR128:$src2,
(INSERT_get_vinsert128_imm VR256:$ins))>;
def : Pat<(vinsert128_insert:$ins (v16i16 VR256:$src1), (v8i16 VR128:$src2),
(iPTR imm)),
(VINSERTF128rr VR256:$src1, VR128:$src2,
(INSERT_get_vinsert128_imm VR256:$ins))>;
def : Pat<(vinsert128_insert:$ins (v4i64 VR256:$src1), (loadv2i64 addr:$src2),
(iPTR imm)),
(VINSERTF128rm VR256:$src1, addr:$src2,
(INSERT_get_vinsert128_imm VR256:$ins))>;
def : Pat<(vinsert128_insert:$ins (v8i32 VR256:$src1),
(bc_v4i32 (loadv2i64 addr:$src2)),
(iPTR imm)),
(VINSERTF128rm VR256:$src1, addr:$src2,
(INSERT_get_vinsert128_imm VR256:$ins))>;
def : Pat<(vinsert128_insert:$ins (v32i8 VR256:$src1),
(bc_v16i8 (loadv2i64 addr:$src2)),
(iPTR imm)),
(VINSERTF128rm VR256:$src1, addr:$src2,
(INSERT_get_vinsert128_imm VR256:$ins))>;
def : Pat<(vinsert128_insert:$ins (v16i16 VR256:$src1),
(bc_v8i16 (loadv2i64 addr:$src2)),
(iPTR imm)),
(VINSERTF128rm VR256:$src1, addr:$src2,
(INSERT_get_vinsert128_imm VR256:$ins))>;
}
//===----------------------------------------------------------------------===//
// VEXTRACTF128 - Extract packed floating-point values
//
let neverHasSideEffects = 1, ExeDomain = SSEPackedSingle in {
def VEXTRACTF128rr : AVXAIi8<0x19, MRMDestReg, (outs VR128:$dst),
(ins VR256:$src1, i8imm:$src2),
"vextractf128\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[]>, Sched<[WriteFShuffle]>, VEX, VEX_L;
let mayStore = 1 in
def VEXTRACTF128mr : AVXAIi8<0x19, MRMDestMem, (outs),
(ins f128mem:$dst, VR256:$src1, i8imm:$src2),
"vextractf128\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[]>, Sched<[WriteStore]>, VEX, VEX_L;
}
// AVX1 patterns
let Predicates = [HasAVX] in {
def : Pat<(vextract128_extract:$ext VR256:$src1, (iPTR imm)),
(v4f32 (VEXTRACTF128rr
(v8f32 VR256:$src1),
(EXTRACT_get_vextract128_imm VR128:$ext)))>;
def : Pat<(vextract128_extract:$ext VR256:$src1, (iPTR imm)),
(v2f64 (VEXTRACTF128rr
(v4f64 VR256:$src1),
(EXTRACT_get_vextract128_imm VR128:$ext)))>;
def : Pat<(store (v4f32 (vextract128_extract:$ext (v8f32 VR256:$src1),
(iPTR imm))), addr:$dst),
(VEXTRACTF128mr addr:$dst, VR256:$src1,
(EXTRACT_get_vextract128_imm VR128:$ext))>;
def : Pat<(store (v2f64 (vextract128_extract:$ext (v4f64 VR256:$src1),
(iPTR imm))), addr:$dst),
(VEXTRACTF128mr addr:$dst, VR256:$src1,
(EXTRACT_get_vextract128_imm VR128:$ext))>;
}
let Predicates = [HasAVX1Only] in {
def : Pat<(vextract128_extract:$ext VR256:$src1, (iPTR imm)),
(v2i64 (VEXTRACTF128rr
(v4i64 VR256:$src1),
(EXTRACT_get_vextract128_imm VR128:$ext)))>;
def : Pat<(vextract128_extract:$ext VR256:$src1, (iPTR imm)),
(v4i32 (VEXTRACTF128rr
(v8i32 VR256:$src1),
(EXTRACT_get_vextract128_imm VR128:$ext)))>;
def : Pat<(vextract128_extract:$ext VR256:$src1, (iPTR imm)),
(v8i16 (VEXTRACTF128rr
(v16i16 VR256:$src1),
(EXTRACT_get_vextract128_imm VR128:$ext)))>;
def : Pat<(vextract128_extract:$ext VR256:$src1, (iPTR imm)),
(v16i8 (VEXTRACTF128rr
(v32i8 VR256:$src1),
(EXTRACT_get_vextract128_imm VR128:$ext)))>;
def : Pat<(alignedstore (v2i64 (vextract128_extract:$ext (v4i64 VR256:$src1),
(iPTR imm))), addr:$dst),
(VEXTRACTF128mr addr:$dst, VR256:$src1,
(EXTRACT_get_vextract128_imm VR128:$ext))>;
def : Pat<(alignedstore (v4i32 (vextract128_extract:$ext (v8i32 VR256:$src1),
(iPTR imm))), addr:$dst),
(VEXTRACTF128mr addr:$dst, VR256:$src1,
(EXTRACT_get_vextract128_imm VR128:$ext))>;
def : Pat<(alignedstore (v8i16 (vextract128_extract:$ext (v16i16 VR256:$src1),
(iPTR imm))), addr:$dst),
(VEXTRACTF128mr addr:$dst, VR256:$src1,
(EXTRACT_get_vextract128_imm VR128:$ext))>;
def : Pat<(alignedstore (v16i8 (vextract128_extract:$ext (v32i8 VR256:$src1),
(iPTR imm))), addr:$dst),
(VEXTRACTF128mr addr:$dst, VR256:$src1,
(EXTRACT_get_vextract128_imm VR128:$ext))>;
}
//===----------------------------------------------------------------------===//
// VMASKMOV - Conditional SIMD Packed Loads and Stores
//
multiclass avx_movmask_rm<bits<8> opc_rm, bits<8> opc_mr, string OpcodeStr,
Intrinsic IntLd, Intrinsic IntLd256,
Intrinsic IntSt, Intrinsic IntSt256> {
def rm : AVX8I<opc_rm, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, f128mem:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set VR128:$dst, (IntLd addr:$src2, VR128:$src1))]>,
VEX_4V;
def Yrm : AVX8I<opc_rm, MRMSrcMem, (outs VR256:$dst),
(ins VR256:$src1, f256mem:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set VR256:$dst, (IntLd256 addr:$src2, VR256:$src1))]>,
VEX_4V, VEX_L;
def mr : AVX8I<opc_mr, MRMDestMem, (outs),
(ins f128mem:$dst, VR128:$src1, VR128:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(IntSt addr:$dst, VR128:$src1, VR128:$src2)]>, VEX_4V;
def Ymr : AVX8I<opc_mr, MRMDestMem, (outs),
(ins f256mem:$dst, VR256:$src1, VR256:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(IntSt256 addr:$dst, VR256:$src1, VR256:$src2)]>, VEX_4V, VEX_L;
}
let ExeDomain = SSEPackedSingle in
defm VMASKMOVPS : avx_movmask_rm<0x2C, 0x2E, "vmaskmovps",
int_x86_avx_maskload_ps,
int_x86_avx_maskload_ps_256,
int_x86_avx_maskstore_ps,
int_x86_avx_maskstore_ps_256>;
let ExeDomain = SSEPackedDouble in
defm VMASKMOVPD : avx_movmask_rm<0x2D, 0x2F, "vmaskmovpd",
int_x86_avx_maskload_pd,
int_x86_avx_maskload_pd_256,
int_x86_avx_maskstore_pd,
int_x86_avx_maskstore_pd_256>;
//===----------------------------------------------------------------------===//
// VPERMIL - Permute Single and Double Floating-Point Values
//
multiclass avx_permil<bits<8> opc_rm, bits<8> opc_rmi, string OpcodeStr,
RegisterClass RC, X86MemOperand x86memop_f,
X86MemOperand x86memop_i, PatFrag i_frag,
Intrinsic IntVar, ValueType vt> {
def rr : AVX8I<opc_rm, MRMSrcReg, (outs RC:$dst),
(ins RC:$src1, RC:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set RC:$dst, (IntVar RC:$src1, RC:$src2))]>, VEX_4V,
Sched<[WriteFShuffle]>;
def rm : AVX8I<opc_rm, MRMSrcMem, (outs RC:$dst),
(ins RC:$src1, x86memop_i:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set RC:$dst, (IntVar RC:$src1,
(bitconvert (i_frag addr:$src2))))]>, VEX_4V,
Sched<[WriteFShuffleLd, ReadAfterLd]>;
def ri : AVXAIi8<opc_rmi, MRMSrcReg, (outs RC:$dst),
(ins RC:$src1, i8imm:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set RC:$dst, (vt (X86VPermilpi RC:$src1, (i8 imm:$src2))))]>, VEX,
Sched<[WriteFShuffle]>;
def mi : AVXAIi8<opc_rmi, MRMSrcMem, (outs RC:$dst),
(ins x86memop_f:$src1, i8imm:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set RC:$dst,
(vt (X86VPermilpi (memop addr:$src1), (i8 imm:$src2))))]>, VEX,
Sched<[WriteFShuffleLd]>;
}
let ExeDomain = SSEPackedSingle in {
defm VPERMILPS : avx_permil<0x0C, 0x04, "vpermilps", VR128, f128mem, i128mem,
loadv2i64, int_x86_avx_vpermilvar_ps, v4f32>;
defm VPERMILPSY : avx_permil<0x0C, 0x04, "vpermilps", VR256, f256mem, i256mem,
loadv4i64, int_x86_avx_vpermilvar_ps_256, v8f32>, VEX_L;
}
let ExeDomain = SSEPackedDouble in {
defm VPERMILPD : avx_permil<0x0D, 0x05, "vpermilpd", VR128, f128mem, i128mem,
loadv2i64, int_x86_avx_vpermilvar_pd, v2f64>;
defm VPERMILPDY : avx_permil<0x0D, 0x05, "vpermilpd", VR256, f256mem, i256mem,
loadv4i64, int_x86_avx_vpermilvar_pd_256, v4f64>, VEX_L;
}
let Predicates = [HasAVX] in {
def : Pat<(v8i32 (X86VPermilpi VR256:$src1, (i8 imm:$imm))),
(VPERMILPSYri VR256:$src1, imm:$imm)>;
def : Pat<(v4i64 (X86VPermilpi VR256:$src1, (i8 imm:$imm))),
(VPERMILPDYri VR256:$src1, imm:$imm)>;
def : Pat<(v8i32 (X86VPermilpi (bc_v8i32 (loadv4i64 addr:$src1)),
(i8 imm:$imm))),
(VPERMILPSYmi addr:$src1, imm:$imm)>;
def : Pat<(v4i64 (X86VPermilpi (loadv4i64 addr:$src1), (i8 imm:$imm))),
(VPERMILPDYmi addr:$src1, imm:$imm)>;
def : Pat<(v2i64 (X86VPermilpi VR128:$src1, (i8 imm:$imm))),
(VPERMILPDri VR128:$src1, imm:$imm)>;
def : Pat<(v2i64 (X86VPermilpi (loadv2i64 addr:$src1), (i8 imm:$imm))),
(VPERMILPDmi addr:$src1, imm:$imm)>;
}
//===----------------------------------------------------------------------===//
// VPERM2F128 - Permute Floating-Point Values in 128-bit chunks
//
let ExeDomain = SSEPackedSingle in {
def VPERM2F128rr : AVXAIi8<0x06, MRMSrcReg, (outs VR256:$dst),
(ins VR256:$src1, VR256:$src2, i8imm:$src3),
"vperm2f128\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
[(set VR256:$dst, (v8f32 (X86VPerm2x128 VR256:$src1, VR256:$src2,
(i8 imm:$src3))))]>, VEX_4V, VEX_L,
Sched<[WriteFShuffle]>;
def VPERM2F128rm : AVXAIi8<0x06, MRMSrcMem, (outs VR256:$dst),
(ins VR256:$src1, f256mem:$src2, i8imm:$src3),
"vperm2f128\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
[(set VR256:$dst, (X86VPerm2x128 VR256:$src1, (loadv8f32 addr:$src2),
(i8 imm:$src3)))]>, VEX_4V, VEX_L,
Sched<[WriteFShuffleLd, ReadAfterLd]>;
}
let Predicates = [HasAVX] in {
def : Pat<(v4f64 (X86VPerm2x128 VR256:$src1, VR256:$src2, (i8 imm:$imm))),
(VPERM2F128rr VR256:$src1, VR256:$src2, imm:$imm)>;
def : Pat<(v4f64 (X86VPerm2x128 VR256:$src1,
(loadv4f64 addr:$src2), (i8 imm:$imm))),
(VPERM2F128rm VR256:$src1, addr:$src2, imm:$imm)>;
}
let Predicates = [HasAVX1Only] in {
def : Pat<(v8i32 (X86VPerm2x128 VR256:$src1, VR256:$src2, (i8 imm:$imm))),
(VPERM2F128rr VR256:$src1, VR256:$src2, imm:$imm)>;
def : Pat<(v4i64 (X86VPerm2x128 VR256:$src1, VR256:$src2, (i8 imm:$imm))),
(VPERM2F128rr VR256:$src1, VR256:$src2, imm:$imm)>;
def : Pat<(v32i8 (X86VPerm2x128 VR256:$src1, VR256:$src2, (i8 imm:$imm))),
(VPERM2F128rr VR256:$src1, VR256:$src2, imm:$imm)>;
def : Pat<(v16i16 (X86VPerm2x128 VR256:$src1, VR256:$src2, (i8 imm:$imm))),
(VPERM2F128rr VR256:$src1, VR256:$src2, imm:$imm)>;
def : Pat<(v8i32 (X86VPerm2x128 VR256:$src1,
(bc_v8i32 (loadv4i64 addr:$src2)), (i8 imm:$imm))),
(VPERM2F128rm VR256:$src1, addr:$src2, imm:$imm)>;
def : Pat<(v4i64 (X86VPerm2x128 VR256:$src1,
(loadv4i64 addr:$src2), (i8 imm:$imm))),
(VPERM2F128rm VR256:$src1, addr:$src2, imm:$imm)>;
def : Pat<(v32i8 (X86VPerm2x128 VR256:$src1,
(bc_v32i8 (loadv4i64 addr:$src2)), (i8 imm:$imm))),
(VPERM2F128rm VR256:$src1, addr:$src2, imm:$imm)>;
def : Pat<(v16i16 (X86VPerm2x128 VR256:$src1,
(bc_v16i16 (loadv4i64 addr:$src2)), (i8 imm:$imm))),
(VPERM2F128rm VR256:$src1, addr:$src2, imm:$imm)>;
}
//===----------------------------------------------------------------------===//
// VZERO - Zero YMM registers
//
let Defs = [YMM0, YMM1, YMM2, YMM3, YMM4, YMM5, YMM6, YMM7,
YMM8, YMM9, YMM10, YMM11, YMM12, YMM13, YMM14, YMM15] in {
// Zero All YMM registers
def VZEROALL : I<0x77, RawFrm, (outs), (ins), "vzeroall",
[(int_x86_avx_vzeroall)]>, PS, VEX, VEX_L, Requires<[HasAVX]>;
// Zero Upper bits of YMM registers
def VZEROUPPER : I<0x77, RawFrm, (outs), (ins), "vzeroupper",
[(int_x86_avx_vzeroupper)]>, PS, VEX, Requires<[HasAVX]>;
}
//===----------------------------------------------------------------------===//
// Half precision conversion instructions
//===----------------------------------------------------------------------===//
multiclass f16c_ph2ps<RegisterClass RC, X86MemOperand x86memop, Intrinsic Int> {
def rr : I<0x13, MRMSrcReg, (outs RC:$dst), (ins VR128:$src),
"vcvtph2ps\t{$src, $dst|$dst, $src}",
[(set RC:$dst, (Int VR128:$src))]>,
T8PD, VEX, Sched<[WriteCvtF2F]>;
let neverHasSideEffects = 1, mayLoad = 1 in
def rm : I<0x13, MRMSrcMem, (outs RC:$dst), (ins x86memop:$src),
"vcvtph2ps\t{$src, $dst|$dst, $src}", []>, T8PD, VEX,
Sched<[WriteCvtF2FLd]>;
}
multiclass f16c_ps2ph<RegisterClass RC, X86MemOperand x86memop, Intrinsic Int> {
def rr : Ii8<0x1D, MRMDestReg, (outs VR128:$dst),
(ins RC:$src1, i32i8imm:$src2),
"vcvtps2ph\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set VR128:$dst, (Int RC:$src1, imm:$src2))]>,
TAPD, VEX, Sched<[WriteCvtF2F]>;
let neverHasSideEffects = 1, mayStore = 1,
SchedRW = [WriteCvtF2FLd, WriteRMW] in
def mr : Ii8<0x1D, MRMDestMem, (outs),
(ins x86memop:$dst, RC:$src1, i32i8imm:$src2),
"vcvtps2ph\t{$src2, $src1, $dst|$dst, $src1, $src2}", []>,
TAPD, VEX;
}
let Predicates = [HasF16C] in {
defm VCVTPH2PS : f16c_ph2ps<VR128, f64mem, int_x86_vcvtph2ps_128>;
defm VCVTPH2PSY : f16c_ph2ps<VR256, f128mem, int_x86_vcvtph2ps_256>, VEX_L;
defm VCVTPS2PH : f16c_ps2ph<VR128, f64mem, int_x86_vcvtps2ph_128>;
defm VCVTPS2PHY : f16c_ps2ph<VR256, f128mem, int_x86_vcvtps2ph_256>, VEX_L;
// Pattern match vcvtph2ps of a scalar i64 load.
def : Pat<(int_x86_vcvtph2ps_128 (vzmovl_v2i64 addr:$src)),
(VCVTPH2PSrm addr:$src)>;
def : Pat<(int_x86_vcvtph2ps_128 (vzload_v2i64 addr:$src)),
(VCVTPH2PSrm addr:$src)>;
}
// Patterns for matching conversions from float to half-float and vice versa.
let Predicates = [HasF16C] in {
def : Pat<(fp_to_f16 FR32:$src),
(i16 (EXTRACT_SUBREG (VMOVPDI2DIrr (VCVTPS2PHrr
(COPY_TO_REGCLASS FR32:$src, VR128), 0)), sub_16bit))>;
def : Pat<(f16_to_fp GR16:$src),
(f32 (COPY_TO_REGCLASS (VCVTPH2PSrr
(COPY_TO_REGCLASS (MOVSX32rr16 GR16:$src), VR128)), FR32)) >;
def : Pat<(f16_to_fp (i16 (fp_to_f16 FR32:$src))),
(f32 (COPY_TO_REGCLASS (VCVTPH2PSrr
(VCVTPS2PHrr (COPY_TO_REGCLASS FR32:$src, VR128), 0)), FR32)) >;
}
//===----------------------------------------------------------------------===//
// AVX2 Instructions
//===----------------------------------------------------------------------===//
/// AVX2_binop_rmi_int - AVX2 binary operator with 8-bit immediate
multiclass AVX2_binop_rmi_int<bits<8> opc, string OpcodeStr,
Intrinsic IntId, RegisterClass RC, PatFrag memop_frag,
X86MemOperand x86memop> {
let isCommutable = 1 in
def rri : AVX2AIi8<opc, MRMSrcReg, (outs RC:$dst),
(ins RC:$src1, RC:$src2, i8imm:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
[(set RC:$dst, (IntId RC:$src1, RC:$src2, imm:$src3))]>,
Sched<[WriteBlend]>, VEX_4V;
def rmi : AVX2AIi8<opc, MRMSrcMem, (outs RC:$dst),
(ins RC:$src1, x86memop:$src2, i8imm:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
[(set RC:$dst,
(IntId RC:$src1,
(bitconvert (memop_frag addr:$src2)), imm:$src3))]>,
Sched<[WriteBlendLd, ReadAfterLd]>, VEX_4V;
}
let isCommutable = 0 in {
defm VPBLENDD : AVX2_binop_rmi_int<0x02, "vpblendd", int_x86_avx2_pblendd_128,
VR128, loadv2i64, i128mem>;
defm VPBLENDDY : AVX2_binop_rmi_int<0x02, "vpblendd", int_x86_avx2_pblendd_256,
VR256, loadv4i64, i256mem>, VEX_L;
}
def : Pat<(v4i32 (X86Blendi (v4i32 VR128:$src1), (v4i32 VR128:$src2),
imm:$mask)),
(VPBLENDDrri VR128:$src1, VR128:$src2, imm:$mask)>;
def : Pat<(v8i32 (X86Blendi (v8i32 VR256:$src1), (v8i32 VR256:$src2),
imm:$mask)),
(VPBLENDDYrri VR256:$src1, VR256:$src2, imm:$mask)>;
//===----------------------------------------------------------------------===//
// VPBROADCAST - Load from memory and broadcast to all elements of the
// destination operand
//
multiclass avx2_broadcast<bits<8> opc, string OpcodeStr,
X86MemOperand x86memop, PatFrag ld_frag,
Intrinsic Int128, Intrinsic Int256> {
def rr : AVX28I<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (Int128 VR128:$src))]>,
Sched<[WriteShuffle]>, VEX;
def rm : AVX28I<opc, MRMSrcMem, (outs VR128:$dst), (ins x86memop:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst,
(Int128 (scalar_to_vector (ld_frag addr:$src))))]>,
Sched<[WriteLoad]>, VEX;
def Yrr : AVX28I<opc, MRMSrcReg, (outs VR256:$dst), (ins VR128:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR256:$dst, (Int256 VR128:$src))]>,
Sched<[WriteShuffle256]>, VEX, VEX_L;
def Yrm : AVX28I<opc, MRMSrcMem, (outs VR256:$dst), (ins x86memop:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR256:$dst,
(Int256 (scalar_to_vector (ld_frag addr:$src))))]>,
Sched<[WriteLoad]>, VEX, VEX_L;
}
defm VPBROADCASTB : avx2_broadcast<0x78, "vpbroadcastb", i8mem, loadi8,
int_x86_avx2_pbroadcastb_128,
int_x86_avx2_pbroadcastb_256>;
defm VPBROADCASTW : avx2_broadcast<0x79, "vpbroadcastw", i16mem, loadi16,
int_x86_avx2_pbroadcastw_128,
int_x86_avx2_pbroadcastw_256>;
defm VPBROADCASTD : avx2_broadcast<0x58, "vpbroadcastd", i32mem, loadi32,
int_x86_avx2_pbroadcastd_128,
int_x86_avx2_pbroadcastd_256>;
defm VPBROADCASTQ : avx2_broadcast<0x59, "vpbroadcastq", i64mem, loadi64,
int_x86_avx2_pbroadcastq_128,
int_x86_avx2_pbroadcastq_256>;
let Predicates = [HasAVX2] in {
def : Pat<(v16i8 (X86VBroadcast (loadi8 addr:$src))),
(VPBROADCASTBrm addr:$src)>;
def : Pat<(v32i8 (X86VBroadcast (loadi8 addr:$src))),
(VPBROADCASTBYrm addr:$src)>;
def : Pat<(v8i16 (X86VBroadcast (loadi16 addr:$src))),
(VPBROADCASTWrm addr:$src)>;
def : Pat<(v16i16 (X86VBroadcast (loadi16 addr:$src))),
(VPBROADCASTWYrm addr:$src)>;
def : Pat<(v4i32 (X86VBroadcast (loadi32 addr:$src))),
(VPBROADCASTDrm addr:$src)>;
def : Pat<(v8i32 (X86VBroadcast (loadi32 addr:$src))),
(VPBROADCASTDYrm addr:$src)>;
def : Pat<(v2i64 (X86VBroadcast (loadi64 addr:$src))),
(VPBROADCASTQrm addr:$src)>;
def : Pat<(v4i64 (X86VBroadcast (loadi64 addr:$src))),
(VPBROADCASTQYrm addr:$src)>;
def : Pat<(v16i8 (X86VBroadcast (v16i8 VR128:$src))),
(VPBROADCASTBrr VR128:$src)>;
def : Pat<(v32i8 (X86VBroadcast (v16i8 VR128:$src))),
(VPBROADCASTBYrr VR128:$src)>;
def : Pat<(v8i16 (X86VBroadcast (v8i16 VR128:$src))),
(VPBROADCASTWrr VR128:$src)>;
def : Pat<(v16i16 (X86VBroadcast (v8i16 VR128:$src))),
(VPBROADCASTWYrr VR128:$src)>;
def : Pat<(v4i32 (X86VBroadcast (v4i32 VR128:$src))),
(VPBROADCASTDrr VR128:$src)>;
def : Pat<(v8i32 (X86VBroadcast (v4i32 VR128:$src))),
(VPBROADCASTDYrr VR128:$src)>;
def : Pat<(v2i64 (X86VBroadcast (v2i64 VR128:$src))),
(VPBROADCASTQrr VR128:$src)>;
def : Pat<(v4i64 (X86VBroadcast (v2i64 VR128:$src))),
(VPBROADCASTQYrr VR128:$src)>;
def : Pat<(v4f32 (X86VBroadcast (v4f32 VR128:$src))),
(VBROADCASTSSrr VR128:$src)>;
def : Pat<(v8f32 (X86VBroadcast (v4f32 VR128:$src))),
(VBROADCASTSSYrr VR128:$src)>;
def : Pat<(v2f64 (X86VBroadcast (v2f64 VR128:$src))),
(VPBROADCASTQrr VR128:$src)>;
def : Pat<(v4f64 (X86VBroadcast (v2f64 VR128:$src))),
(VBROADCASTSDYrr VR128:$src)>;
// Provide fallback in case the load node that is used in the patterns above
// is used by additional users, which prevents the pattern selection.
let AddedComplexity = 20 in {
def : Pat<(v4f32 (X86VBroadcast FR32:$src)),
(VBROADCASTSSrr (COPY_TO_REGCLASS FR32:$src, VR128))>;
def : Pat<(v8f32 (X86VBroadcast FR32:$src)),
(VBROADCASTSSYrr (COPY_TO_REGCLASS FR32:$src, VR128))>;
def : Pat<(v4f64 (X86VBroadcast FR64:$src)),
(VBROADCASTSDYrr (COPY_TO_REGCLASS FR64:$src, VR128))>;
def : Pat<(v4i32 (X86VBroadcast GR32:$src)),
(VBROADCASTSSrr (COPY_TO_REGCLASS GR32:$src, VR128))>;
def : Pat<(v8i32 (X86VBroadcast GR32:$src)),
(VBROADCASTSSYrr (COPY_TO_REGCLASS GR32:$src, VR128))>;
def : Pat<(v4i64 (X86VBroadcast GR64:$src)),
(VBROADCASTSDYrr (COPY_TO_REGCLASS GR64:$src, VR128))>;
def : Pat<(v16i8 (X86VBroadcast GR8:$src)),
(VPBROADCASTBrr (COPY_TO_REGCLASS
(i32 (SUBREG_TO_REG (i32 0), GR8:$src, sub_8bit)),
VR128))>;
def : Pat<(v32i8 (X86VBroadcast GR8:$src)),
(VPBROADCASTBYrr (COPY_TO_REGCLASS
(i32 (SUBREG_TO_REG (i32 0), GR8:$src, sub_8bit)),
VR128))>;
def : Pat<(v8i16 (X86VBroadcast GR16:$src)),
(VPBROADCASTWrr (COPY_TO_REGCLASS
(i32 (SUBREG_TO_REG (i32 0), GR16:$src, sub_16bit)),
VR128))>;
def : Pat<(v16i16 (X86VBroadcast GR16:$src)),
(VPBROADCASTWYrr (COPY_TO_REGCLASS
(i32 (SUBREG_TO_REG (i32 0), GR16:$src, sub_16bit)),
VR128))>;
// The patterns for VPBROADCASTD are not needed because they would match
// the exact same thing as VBROADCASTSS patterns.
def : Pat<(v2i64 (X86VBroadcast GR64:$src)),
(VPBROADCASTQrr (COPY_TO_REGCLASS GR64:$src, VR128))>;
// The v4i64 pattern is not needed because VBROADCASTSDYrr already match.
}
}
// AVX1 broadcast patterns
let Predicates = [HasAVX1Only] in {
def : Pat<(v8i32 (X86VBroadcast (loadi32 addr:$src))),
(VBROADCASTSSYrm addr:$src)>;
def : Pat<(v4i64 (X86VBroadcast (loadi64 addr:$src))),
(VBROADCASTSDYrm addr:$src)>;
def : Pat<(v4i32 (X86VBroadcast (loadi32 addr:$src))),
(VBROADCASTSSrm addr:$src)>;
}
let Predicates = [HasAVX] in {
// Provide fallback in case the load node that is used in the patterns above
// is used by additional users, which prevents the pattern selection.
let AddedComplexity = 20 in {
// 128bit broadcasts:
def : Pat<(v4f32 (X86VBroadcast FR32:$src)),
(VPSHUFDri (COPY_TO_REGCLASS FR32:$src, VR128), 0)>;
def : Pat<(v8f32 (X86VBroadcast FR32:$src)),
(VINSERTF128rr (INSERT_SUBREG (v8f32 (IMPLICIT_DEF)),
(VPSHUFDri (COPY_TO_REGCLASS FR32:$src, VR128), 0), sub_xmm),
(VPSHUFDri (COPY_TO_REGCLASS FR32:$src, VR128), 0), 1)>;
def : Pat<(v4f64 (X86VBroadcast FR64:$src)),
(VINSERTF128rr (INSERT_SUBREG (v4f64 (IMPLICIT_DEF)),
(VPSHUFDri (COPY_TO_REGCLASS FR64:$src, VR128), 0x44), sub_xmm),
(VPSHUFDri (COPY_TO_REGCLASS FR64:$src, VR128), 0x44), 1)>;
def : Pat<(v4i32 (X86VBroadcast GR32:$src)),
(VPSHUFDri (COPY_TO_REGCLASS GR32:$src, VR128), 0)>;
def : Pat<(v8i32 (X86VBroadcast GR32:$src)),
(VINSERTF128rr (INSERT_SUBREG (v8i32 (IMPLICIT_DEF)),
(VPSHUFDri (COPY_TO_REGCLASS GR32:$src, VR128), 0), sub_xmm),
(VPSHUFDri (COPY_TO_REGCLASS GR32:$src, VR128), 0), 1)>;
def : Pat<(v4i64 (X86VBroadcast GR64:$src)),
(VINSERTF128rr (INSERT_SUBREG (v4i64 (IMPLICIT_DEF)),
(VPSHUFDri (COPY_TO_REGCLASS GR64:$src, VR128), 0x44), sub_xmm),
(VPSHUFDri (COPY_TO_REGCLASS GR64:$src, VR128), 0x44), 1)>;
}
}
//===----------------------------------------------------------------------===//
// VPERM - Permute instructions
//
multiclass avx2_perm<bits<8> opc, string OpcodeStr, PatFrag mem_frag,
ValueType OpVT, X86FoldableSchedWrite Sched> {
def Yrr : AVX28I<opc, MRMSrcReg, (outs VR256:$dst),
(ins VR256:$src1, VR256:$src2),
!strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set VR256:$dst,
(OpVT (X86VPermv VR256:$src1, VR256:$src2)))]>,
Sched<[Sched]>, VEX_4V, VEX_L;
def Yrm : AVX28I<opc, MRMSrcMem, (outs VR256:$dst),
(ins VR256:$src1, i256mem:$src2),
!strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set VR256:$dst,
(OpVT (X86VPermv VR256:$src1,
(bitconvert (mem_frag addr:$src2)))))]>,
Sched<[Sched.Folded, ReadAfterLd]>, VEX_4V, VEX_L;
}
defm VPERMD : avx2_perm<0x36, "vpermd", loadv4i64, v8i32, WriteShuffle256>;
let ExeDomain = SSEPackedSingle in
defm VPERMPS : avx2_perm<0x16, "vpermps", loadv8f32, v8f32, WriteFShuffle256>;
multiclass avx2_perm_imm<bits<8> opc, string OpcodeStr, PatFrag mem_frag,
ValueType OpVT, X86FoldableSchedWrite Sched> {
def Yri : AVX2AIi8<opc, MRMSrcReg, (outs VR256:$dst),
(ins VR256:$src1, i8imm:$src2),
!strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set VR256:$dst,
(OpVT (X86VPermi VR256:$src1, (i8 imm:$src2))))]>,
Sched<[Sched]>, VEX, VEX_L;
def Ymi : AVX2AIi8<opc, MRMSrcMem, (outs VR256:$dst),
(ins i256mem:$src1, i8imm:$src2),
!strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set VR256:$dst,
(OpVT (X86VPermi (mem_frag addr:$src1),
(i8 imm:$src2))))]>,
Sched<[Sched.Folded, ReadAfterLd]>, VEX, VEX_L;
}
defm VPERMQ : avx2_perm_imm<0x00, "vpermq", loadv4i64, v4i64,
WriteShuffle256>, VEX_W;
let ExeDomain = SSEPackedDouble in
defm VPERMPD : avx2_perm_imm<0x01, "vpermpd", loadv4f64, v4f64,
WriteFShuffle256>, VEX_W;
//===----------------------------------------------------------------------===//
// VPERM2I128 - Permute Floating-Point Values in 128-bit chunks
//
def VPERM2I128rr : AVX2AIi8<0x46, MRMSrcReg, (outs VR256:$dst),
(ins VR256:$src1, VR256:$src2, i8imm:$src3),
"vperm2i128\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
[(set VR256:$dst, (v4i64 (X86VPerm2x128 VR256:$src1, VR256:$src2,
(i8 imm:$src3))))]>, Sched<[WriteShuffle256]>,
VEX_4V, VEX_L;
def VPERM2I128rm : AVX2AIi8<0x46, MRMSrcMem, (outs VR256:$dst),
(ins VR256:$src1, f256mem:$src2, i8imm:$src3),
"vperm2i128\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
[(set VR256:$dst, (X86VPerm2x128 VR256:$src1, (loadv4i64 addr:$src2),
(i8 imm:$src3)))]>,
Sched<[WriteShuffle256Ld, ReadAfterLd]>, VEX_4V, VEX_L;
let Predicates = [HasAVX2] in {
def : Pat<(v8i32 (X86VPerm2x128 VR256:$src1, VR256:$src2, (i8 imm:$imm))),
(VPERM2I128rr VR256:$src1, VR256:$src2, imm:$imm)>;
def : Pat<(v32i8 (X86VPerm2x128 VR256:$src1, VR256:$src2, (i8 imm:$imm))),
(VPERM2I128rr VR256:$src1, VR256:$src2, imm:$imm)>;
def : Pat<(v16i16 (X86VPerm2x128 VR256:$src1, VR256:$src2, (i8 imm:$imm))),
(VPERM2I128rr VR256:$src1, VR256:$src2, imm:$imm)>;
def : Pat<(v32i8 (X86VPerm2x128 VR256:$src1, (bc_v32i8 (loadv4i64 addr:$src2)),
(i8 imm:$imm))),
(VPERM2I128rm VR256:$src1, addr:$src2, imm:$imm)>;
def : Pat<(v16i16 (X86VPerm2x128 VR256:$src1,
(bc_v16i16 (loadv4i64 addr:$src2)), (i8 imm:$imm))),
(VPERM2I128rm VR256:$src1, addr:$src2, imm:$imm)>;
def : Pat<(v8i32 (X86VPerm2x128 VR256:$src1, (bc_v8i32 (loadv4i64 addr:$src2)),
(i8 imm:$imm))),
(VPERM2I128rm VR256:$src1, addr:$src2, imm:$imm)>;
}
//===----------------------------------------------------------------------===//
// VINSERTI128 - Insert packed integer values
//
let neverHasSideEffects = 1 in {
def VINSERTI128rr : AVX2AIi8<0x38, MRMSrcReg, (outs VR256:$dst),
(ins VR256:$src1, VR128:$src2, i8imm:$src3),
"vinserti128\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
[]>, Sched<[WriteShuffle256]>, VEX_4V, VEX_L;
let mayLoad = 1 in
def VINSERTI128rm : AVX2AIi8<0x38, MRMSrcMem, (outs VR256:$dst),
(ins VR256:$src1, i128mem:$src2, i8imm:$src3),
"vinserti128\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
[]>, Sched<[WriteShuffle256Ld, ReadAfterLd]>, VEX_4V, VEX_L;
}
let Predicates = [HasAVX2] in {
def : Pat<(vinsert128_insert:$ins (v4i64 VR256:$src1), (v2i64 VR128:$src2),
(iPTR imm)),
(VINSERTI128rr VR256:$src1, VR128:$src2,
(INSERT_get_vinsert128_imm VR256:$ins))>;
def : Pat<(vinsert128_insert:$ins (v8i32 VR256:$src1), (v4i32 VR128:$src2),
(iPTR imm)),
(VINSERTI128rr VR256:$src1, VR128:$src2,
(INSERT_get_vinsert128_imm VR256:$ins))>;
def : Pat<(vinsert128_insert:$ins (v32i8 VR256:$src1), (v16i8 VR128:$src2),
(iPTR imm)),
(VINSERTI128rr VR256:$src1, VR128:$src2,
(INSERT_get_vinsert128_imm VR256:$ins))>;
def : Pat<(vinsert128_insert:$ins (v16i16 VR256:$src1), (v8i16 VR128:$src2),
(iPTR imm)),
(VINSERTI128rr VR256:$src1, VR128:$src2,
(INSERT_get_vinsert128_imm VR256:$ins))>;
def : Pat<(vinsert128_insert:$ins (v4i64 VR256:$src1), (loadv2i64 addr:$src2),
(iPTR imm)),
(VINSERTI128rm VR256:$src1, addr:$src2,
(INSERT_get_vinsert128_imm VR256:$ins))>;
def : Pat<(vinsert128_insert:$ins (v8i32 VR256:$src1),
(bc_v4i32 (loadv2i64 addr:$src2)),
(iPTR imm)),
(VINSERTI128rm VR256:$src1, addr:$src2,
(INSERT_get_vinsert128_imm VR256:$ins))>;
def : Pat<(vinsert128_insert:$ins (v32i8 VR256:$src1),
(bc_v16i8 (loadv2i64 addr:$src2)),
(iPTR imm)),
(VINSERTI128rm VR256:$src1, addr:$src2,
(INSERT_get_vinsert128_imm VR256:$ins))>;
def : Pat<(vinsert128_insert:$ins (v16i16 VR256:$src1),
(bc_v8i16 (loadv2i64 addr:$src2)),
(iPTR imm)),
(VINSERTI128rm VR256:$src1, addr:$src2,
(INSERT_get_vinsert128_imm VR256:$ins))>;
}
//===----------------------------------------------------------------------===//
// VEXTRACTI128 - Extract packed integer values
//
def VEXTRACTI128rr : AVX2AIi8<0x39, MRMDestReg, (outs VR128:$dst),
(ins VR256:$src1, i8imm:$src2),
"vextracti128\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set VR128:$dst,
(int_x86_avx2_vextracti128 VR256:$src1, imm:$src2))]>,
Sched<[WriteShuffle256]>, VEX, VEX_L;
let neverHasSideEffects = 1, mayStore = 1 in
def VEXTRACTI128mr : AVX2AIi8<0x39, MRMDestMem, (outs),
(ins i128mem:$dst, VR256:$src1, i8imm:$src2),
"vextracti128\t{$src2, $src1, $dst|$dst, $src1, $src2}", []>,
Sched<[WriteStore]>, VEX, VEX_L;
let Predicates = [HasAVX2] in {
def : Pat<(vextract128_extract:$ext VR256:$src1, (iPTR imm)),
(v2i64 (VEXTRACTI128rr
(v4i64 VR256:$src1),
(EXTRACT_get_vextract128_imm VR128:$ext)))>;
def : Pat<(vextract128_extract:$ext VR256:$src1, (iPTR imm)),
(v4i32 (VEXTRACTI128rr
(v8i32 VR256:$src1),
(EXTRACT_get_vextract128_imm VR128:$ext)))>;
def : Pat<(vextract128_extract:$ext VR256:$src1, (iPTR imm)),
(v8i16 (VEXTRACTI128rr
(v16i16 VR256:$src1),
(EXTRACT_get_vextract128_imm VR128:$ext)))>;
def : Pat<(vextract128_extract:$ext VR256:$src1, (iPTR imm)),
(v16i8 (VEXTRACTI128rr
(v32i8 VR256:$src1),
(EXTRACT_get_vextract128_imm VR128:$ext)))>;
def : Pat<(store (v2i64 (vextract128_extract:$ext (v4i64 VR256:$src1),
(iPTR imm))), addr:$dst),
(VEXTRACTI128mr addr:$dst, VR256:$src1,
(EXTRACT_get_vextract128_imm VR128:$ext))>;
def : Pat<(store (v4i32 (vextract128_extract:$ext (v8i32 VR256:$src1),
(iPTR imm))), addr:$dst),
(VEXTRACTI128mr addr:$dst, VR256:$src1,
(EXTRACT_get_vextract128_imm VR128:$ext))>;
def : Pat<(store (v8i16 (vextract128_extract:$ext (v16i16 VR256:$src1),
(iPTR imm))), addr:$dst),
(VEXTRACTI128mr addr:$dst, VR256:$src1,
(EXTRACT_get_vextract128_imm VR128:$ext))>;
def : Pat<(store (v16i8 (vextract128_extract:$ext (v32i8 VR256:$src1),
(iPTR imm))), addr:$dst),
(VEXTRACTI128mr addr:$dst, VR256:$src1,
(EXTRACT_get_vextract128_imm VR128:$ext))>;
}
//===----------------------------------------------------------------------===//
// VPMASKMOV - Conditional SIMD Integer Packed Loads and Stores
//
multiclass avx2_pmovmask<string OpcodeStr,
Intrinsic IntLd128, Intrinsic IntLd256,
Intrinsic IntSt128, Intrinsic IntSt256> {
def rm : AVX28I<0x8c, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, i128mem:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set VR128:$dst, (IntLd128 addr:$src2, VR128:$src1))]>, VEX_4V;
def Yrm : AVX28I<0x8c, MRMSrcMem, (outs VR256:$dst),
(ins VR256:$src1, i256mem:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set VR256:$dst, (IntLd256 addr:$src2, VR256:$src1))]>,
VEX_4V, VEX_L;
def mr : AVX28I<0x8e, MRMDestMem, (outs),
(ins i128mem:$dst, VR128:$src1, VR128:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(IntSt128 addr:$dst, VR128:$src1, VR128:$src2)]>, VEX_4V;
def Ymr : AVX28I<0x8e, MRMDestMem, (outs),
(ins i256mem:$dst, VR256:$src1, VR256:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(IntSt256 addr:$dst, VR256:$src1, VR256:$src2)]>, VEX_4V, VEX_L;
}
defm VPMASKMOVD : avx2_pmovmask<"vpmaskmovd",
int_x86_avx2_maskload_d,
int_x86_avx2_maskload_d_256,
int_x86_avx2_maskstore_d,
int_x86_avx2_maskstore_d_256>;
defm VPMASKMOVQ : avx2_pmovmask<"vpmaskmovq",
int_x86_avx2_maskload_q,
int_x86_avx2_maskload_q_256,
int_x86_avx2_maskstore_q,
int_x86_avx2_maskstore_q_256>, VEX_W;
//===----------------------------------------------------------------------===//
// Variable Bit Shifts
//
multiclass avx2_var_shift<bits<8> opc, string OpcodeStr, SDNode OpNode,
ValueType vt128, ValueType vt256> {
def rr : AVX28I<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set VR128:$dst,
(vt128 (OpNode VR128:$src1, (vt128 VR128:$src2))))]>,
VEX_4V, Sched<[WriteVarVecShift]>;
def rm : AVX28I<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, i128mem:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set VR128:$dst,
(vt128 (OpNode VR128:$src1,
(vt128 (bitconvert (loadv2i64 addr:$src2))))))]>,
VEX_4V, Sched<[WriteVarVecShiftLd, ReadAfterLd]>;
def Yrr : AVX28I<opc, MRMSrcReg, (outs VR256:$dst),
(ins VR256:$src1, VR256:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set VR256:$dst,
(vt256 (OpNode VR256:$src1, (vt256 VR256:$src2))))]>,
VEX_4V, VEX_L, Sched<[WriteVarVecShift]>;
def Yrm : AVX28I<opc, MRMSrcMem, (outs VR256:$dst),
(ins VR256:$src1, i256mem:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set VR256:$dst,
(vt256 (OpNode VR256:$src1,
(vt256 (bitconvert (loadv4i64 addr:$src2))))))]>,
VEX_4V, VEX_L, Sched<[WriteVarVecShiftLd, ReadAfterLd]>;
}
defm VPSLLVD : avx2_var_shift<0x47, "vpsllvd", shl, v4i32, v8i32>;
defm VPSLLVQ : avx2_var_shift<0x47, "vpsllvq", shl, v2i64, v4i64>, VEX_W;
defm VPSRLVD : avx2_var_shift<0x45, "vpsrlvd", srl, v4i32, v8i32>;
defm VPSRLVQ : avx2_var_shift<0x45, "vpsrlvq", srl, v2i64, v4i64>, VEX_W;
defm VPSRAVD : avx2_var_shift<0x46, "vpsravd", sra, v4i32, v8i32>;
//===----------------------------------------------------------------------===//
// VGATHER - GATHER Operations
multiclass avx2_gather<bits<8> opc, string OpcodeStr, RegisterClass RC256,
X86MemOperand memop128, X86MemOperand memop256> {
def rm : AVX28I<opc, MRMSrcMem, (outs VR128:$dst, VR128:$mask_wb),
(ins VR128:$src1, memop128:$src2, VR128:$mask),
!strconcat(OpcodeStr,
"\t{$mask, $src2, $dst|$dst, $src2, $mask}"),
[]>, VEX_4VOp3;
def Yrm : AVX28I<opc, MRMSrcMem, (outs RC256:$dst, RC256:$mask_wb),
(ins RC256:$src1, memop256:$src2, RC256:$mask),
!strconcat(OpcodeStr,
"\t{$mask, $src2, $dst|$dst, $src2, $mask}"),
[]>, VEX_4VOp3, VEX_L;
}
let mayLoad = 1, Constraints
= "@earlyclobber $dst,@earlyclobber $mask_wb, $src1 = $dst, $mask = $mask_wb"
in {
defm VPGATHERDQ : avx2_gather<0x90, "vpgatherdq", VR256, vx64mem, vx64mem>, VEX_W;
defm VPGATHERQQ : avx2_gather<0x91, "vpgatherqq", VR256, vx64mem, vy64mem>, VEX_W;
defm VPGATHERDD : avx2_gather<0x90, "vpgatherdd", VR256, vx32mem, vy32mem>;
defm VPGATHERQD : avx2_gather<0x91, "vpgatherqd", VR128, vx32mem, vy32mem>;
let ExeDomain = SSEPackedDouble in {
defm VGATHERDPD : avx2_gather<0x92, "vgatherdpd", VR256, vx64mem, vx64mem>, VEX_W;
defm VGATHERQPD : avx2_gather<0x93, "vgatherqpd", VR256, vx64mem, vy64mem>, VEX_W;
}
let ExeDomain = SSEPackedSingle in {
defm VGATHERDPS : avx2_gather<0x92, "vgatherdps", VR256, vx32mem, vy32mem>;
defm VGATHERQPS : avx2_gather<0x93, "vgatherqps", VR128, vx32mem, vy32mem>;
}
}