mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-10-31 09:11:13 +00:00
d0fde30ce8
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@9903 91177308-0d34-0410-b5e6-96231b3b80d8
365 lines
13 KiB
C++
365 lines
13 KiB
C++
//===- Dominators.cpp - Dominator Calculation -----------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements simple dominator construction algorithms for finding
|
|
// forward dominators. Postdominators are available in libanalysis, but are not
|
|
// included in libvmcore, because it's not needed. Forward dominators are
|
|
// needed to support the Verifier pass.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/Dominators.h"
|
|
#include "llvm/Support/CFG.h"
|
|
#include "llvm/Assembly/Writer.h"
|
|
#include "Support/DepthFirstIterator.h"
|
|
#include "Support/SetOperations.h"
|
|
|
|
namespace llvm {
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// DominatorSet Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static RegisterAnalysis<DominatorSet>
|
|
A("domset", "Dominator Set Construction", true);
|
|
|
|
// dominates - Return true if A dominates B. This performs the special checks
|
|
// necessary if A and B are in the same basic block.
|
|
//
|
|
bool DominatorSetBase::dominates(Instruction *A, Instruction *B) const {
|
|
BasicBlock *BBA = A->getParent(), *BBB = B->getParent();
|
|
if (BBA != BBB) return dominates(BBA, BBB);
|
|
|
|
// Loop through the basic block until we find A or B.
|
|
BasicBlock::iterator I = BBA->begin();
|
|
for (; &*I != A && &*I != B; ++I) /*empty*/;
|
|
|
|
// A dominates B if it is found first in the basic block...
|
|
return &*I == A;
|
|
}
|
|
|
|
|
|
void DominatorSet::calculateDominatorsFromBlock(BasicBlock *RootBB) {
|
|
bool Changed;
|
|
Doms[RootBB].insert(RootBB); // Root always dominates itself...
|
|
do {
|
|
Changed = false;
|
|
|
|
DomSetType WorkingSet;
|
|
df_iterator<BasicBlock*> It = df_begin(RootBB), End = df_end(RootBB);
|
|
for ( ; It != End; ++It) {
|
|
BasicBlock *BB = *It;
|
|
pred_iterator PI = pred_begin(BB), PEnd = pred_end(BB);
|
|
if (PI != PEnd) { // Is there SOME predecessor?
|
|
// Loop until we get to a predecessor that has had its dom set filled
|
|
// in at least once. We are guaranteed to have this because we are
|
|
// traversing the graph in DFO and have handled start nodes specially,
|
|
// except when there are unreachable blocks.
|
|
//
|
|
while (PI != PEnd && Doms[*PI].empty()) ++PI;
|
|
if (PI != PEnd) { // Not unreachable code case?
|
|
WorkingSet = Doms[*PI];
|
|
|
|
// Intersect all of the predecessor sets
|
|
for (++PI; PI != PEnd; ++PI) {
|
|
DomSetType &PredSet = Doms[*PI];
|
|
if (PredSet.size())
|
|
set_intersect(WorkingSet, PredSet);
|
|
}
|
|
}
|
|
} else {
|
|
assert(Roots.size() == 1 && BB == Roots[0] &&
|
|
"We got into unreachable code somehow!");
|
|
}
|
|
|
|
WorkingSet.insert(BB); // A block always dominates itself
|
|
DomSetType &BBSet = Doms[BB];
|
|
if (BBSet != WorkingSet) {
|
|
//assert(WorkingSet.size() > BBSet.size() && "Must only grow sets!");
|
|
BBSet.swap(WorkingSet); // Constant time operation!
|
|
Changed = true; // The sets changed.
|
|
}
|
|
WorkingSet.clear(); // Clear out the set for next iteration
|
|
}
|
|
} while (Changed);
|
|
}
|
|
|
|
|
|
|
|
// runOnFunction - This method calculates the forward dominator sets for the
|
|
// specified function.
|
|
//
|
|
bool DominatorSet::runOnFunction(Function &F) {
|
|
BasicBlock *Root = &F.getEntryBlock();
|
|
Roots.clear();
|
|
Roots.push_back(Root);
|
|
assert(pred_begin(Root) == pred_end(Root) &&
|
|
"Root node has predecessors in function!");
|
|
recalculate();
|
|
return false;
|
|
}
|
|
|
|
void DominatorSet::recalculate() {
|
|
assert(Roots.size() == 1 && "DominatorSet should have single root block!");
|
|
Doms.clear(); // Reset from the last time we were run...
|
|
|
|
// Calculate dominator sets for the reachable basic blocks...
|
|
calculateDominatorsFromBlock(Roots[0]);
|
|
|
|
|
|
// Loop through the function, ensuring that every basic block has at least an
|
|
// empty set of nodes. This is important for the case when there is
|
|
// unreachable blocks.
|
|
Function *F = Roots[0]->getParent();
|
|
for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) Doms[I];
|
|
}
|
|
|
|
|
|
static std::ostream &operator<<(std::ostream &o,
|
|
const std::set<BasicBlock*> &BBs) {
|
|
for (std::set<BasicBlock*>::const_iterator I = BBs.begin(), E = BBs.end();
|
|
I != E; ++I)
|
|
if (*I)
|
|
WriteAsOperand(o, *I, false);
|
|
else
|
|
o << " <<exit node>>";
|
|
return o;
|
|
}
|
|
|
|
void DominatorSetBase::print(std::ostream &o) const {
|
|
for (const_iterator I = begin(), E = end(); I != E; ++I) {
|
|
o << " DomSet For BB: ";
|
|
if (I->first)
|
|
WriteAsOperand(o, I->first, false);
|
|
else
|
|
o << " <<exit node>>";
|
|
o << " is:\t" << I->second << "\n";
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ImmediateDominators Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static RegisterAnalysis<ImmediateDominators>
|
|
C("idom", "Immediate Dominators Construction", true);
|
|
|
|
// calcIDoms - Calculate the immediate dominator mapping, given a set of
|
|
// dominators for every basic block.
|
|
void ImmediateDominatorsBase::calcIDoms(const DominatorSetBase &DS) {
|
|
// Loop over all of the nodes that have dominators... figuring out the IDOM
|
|
// for each node...
|
|
//
|
|
for (DominatorSet::const_iterator DI = DS.begin(), DEnd = DS.end();
|
|
DI != DEnd; ++DI) {
|
|
BasicBlock *BB = DI->first;
|
|
const DominatorSet::DomSetType &Dominators = DI->second;
|
|
unsigned DomSetSize = Dominators.size();
|
|
if (DomSetSize == 1) continue; // Root node... IDom = null
|
|
|
|
// Loop over all dominators of this node. This corresponds to looping over
|
|
// nodes in the dominator chain, looking for a node whose dominator set is
|
|
// equal to the current nodes, except that the current node does not exist
|
|
// in it. This means that it is one level higher in the dom chain than the
|
|
// current node, and it is our idom!
|
|
//
|
|
DominatorSet::DomSetType::const_iterator I = Dominators.begin();
|
|
DominatorSet::DomSetType::const_iterator End = Dominators.end();
|
|
for (; I != End; ++I) { // Iterate over dominators...
|
|
// All of our dominators should form a chain, where the number of elements
|
|
// in the dominator set indicates what level the node is at in the chain.
|
|
// We want the node immediately above us, so it will have an identical
|
|
// dominator set, except that BB will not dominate it... therefore it's
|
|
// dominator set size will be one less than BB's...
|
|
//
|
|
if (DS.getDominators(*I).size() == DomSetSize - 1) {
|
|
IDoms[BB] = *I;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void ImmediateDominatorsBase::print(std::ostream &o) const {
|
|
for (const_iterator I = begin(), E = end(); I != E; ++I) {
|
|
o << " Immediate Dominator For Basic Block:";
|
|
if (I->first)
|
|
WriteAsOperand(o, I->first, false);
|
|
else
|
|
o << " <<exit node>>";
|
|
o << " is:";
|
|
if (I->second)
|
|
WriteAsOperand(o, I->second, false);
|
|
else
|
|
o << " <<exit node>>";
|
|
o << "\n";
|
|
}
|
|
o << "\n";
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// DominatorTree Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static RegisterAnalysis<DominatorTree>
|
|
E("domtree", "Dominator Tree Construction", true);
|
|
|
|
// DominatorTreeBase::reset - Free all of the tree node memory.
|
|
//
|
|
void DominatorTreeBase::reset() {
|
|
for (NodeMapType::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I)
|
|
delete I->second;
|
|
Nodes.clear();
|
|
RootNode = 0;
|
|
}
|
|
|
|
void DominatorTreeBase::Node::setIDom(Node *NewIDom) {
|
|
assert(IDom && "No immediate dominator?");
|
|
if (IDom != NewIDom) {
|
|
std::vector<Node*>::iterator I =
|
|
std::find(IDom->Children.begin(), IDom->Children.end(), this);
|
|
assert(I != IDom->Children.end() &&
|
|
"Not in immediate dominator children set!");
|
|
// I am no longer your child...
|
|
IDom->Children.erase(I);
|
|
|
|
// Switch to new dominator
|
|
IDom = NewIDom;
|
|
IDom->Children.push_back(this);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
void DominatorTree::calculate(const DominatorSet &DS) {
|
|
assert(Roots.size() == 1 && "DominatorTree should have 1 root block!");
|
|
BasicBlock *Root = Roots[0];
|
|
Nodes[Root] = RootNode = new Node(Root, 0); // Add a node for the root...
|
|
|
|
// Iterate over all nodes in depth first order...
|
|
for (df_iterator<BasicBlock*> I = df_begin(Root), E = df_end(Root);
|
|
I != E; ++I) {
|
|
BasicBlock *BB = *I;
|
|
const DominatorSet::DomSetType &Dominators = DS.getDominators(BB);
|
|
unsigned DomSetSize = Dominators.size();
|
|
if (DomSetSize == 1) continue; // Root node... IDom = null
|
|
|
|
// Loop over all dominators of this node. This corresponds to looping over
|
|
// nodes in the dominator chain, looking for a node whose dominator set is
|
|
// equal to the current nodes, except that the current node does not exist
|
|
// in it. This means that it is one level higher in the dom chain than the
|
|
// current node, and it is our idom! We know that we have already added
|
|
// a DominatorTree node for our idom, because the idom must be a
|
|
// predecessor in the depth first order that we are iterating through the
|
|
// function.
|
|
//
|
|
DominatorSet::DomSetType::const_iterator I = Dominators.begin();
|
|
DominatorSet::DomSetType::const_iterator End = Dominators.end();
|
|
for (; I != End; ++I) { // Iterate over dominators...
|
|
// All of our dominators should form a chain, where the number of
|
|
// elements in the dominator set indicates what level the node is at in
|
|
// the chain. We want the node immediately above us, so it will have
|
|
// an identical dominator set, except that BB will not dominate it...
|
|
// therefore it's dominator set size will be one less than BB's...
|
|
//
|
|
if (DS.getDominators(*I).size() == DomSetSize - 1) {
|
|
// We know that the immediate dominator should already have a node,
|
|
// because we are traversing the CFG in depth first order!
|
|
//
|
|
Node *IDomNode = Nodes[*I];
|
|
assert(IDomNode && "No node for IDOM?");
|
|
|
|
// Add a new tree node for this BasicBlock, and link it as a child of
|
|
// IDomNode
|
|
Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode));
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static std::ostream &operator<<(std::ostream &o,
|
|
const DominatorTreeBase::Node *Node) {
|
|
if (Node->getBlock())
|
|
WriteAsOperand(o, Node->getBlock(), false);
|
|
else
|
|
o << " <<exit node>>";
|
|
return o << "\n";
|
|
}
|
|
|
|
static void PrintDomTree(const DominatorTreeBase::Node *N, std::ostream &o,
|
|
unsigned Lev) {
|
|
o << std::string(2*Lev, ' ') << "[" << Lev << "] " << N;
|
|
for (DominatorTreeBase::Node::const_iterator I = N->begin(), E = N->end();
|
|
I != E; ++I)
|
|
PrintDomTree(*I, o, Lev+1);
|
|
}
|
|
|
|
void DominatorTreeBase::print(std::ostream &o) const {
|
|
o << "=============================--------------------------------\n"
|
|
<< "Inorder Dominator Tree:\n";
|
|
PrintDomTree(getRootNode(), o, 1);
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// DominanceFrontier Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static RegisterAnalysis<DominanceFrontier>
|
|
G("domfrontier", "Dominance Frontier Construction", true);
|
|
|
|
const DominanceFrontier::DomSetType &
|
|
DominanceFrontier::calculate(const DominatorTree &DT,
|
|
const DominatorTree::Node *Node) {
|
|
// Loop over CFG successors to calculate DFlocal[Node]
|
|
BasicBlock *BB = Node->getBlock();
|
|
DomSetType &S = Frontiers[BB]; // The new set to fill in...
|
|
|
|
for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB);
|
|
SI != SE; ++SI) {
|
|
// Does Node immediately dominate this successor?
|
|
if (DT[*SI]->getIDom() != Node)
|
|
S.insert(*SI);
|
|
}
|
|
|
|
// At this point, S is DFlocal. Now we union in DFup's of our children...
|
|
// Loop through and visit the nodes that Node immediately dominates (Node's
|
|
// children in the IDomTree)
|
|
//
|
|
for (DominatorTree::Node::const_iterator NI = Node->begin(), NE = Node->end();
|
|
NI != NE; ++NI) {
|
|
DominatorTree::Node *IDominee = *NI;
|
|
const DomSetType &ChildDF = calculate(DT, IDominee);
|
|
|
|
DomSetType::const_iterator CDFI = ChildDF.begin(), CDFE = ChildDF.end();
|
|
for (; CDFI != CDFE; ++CDFI) {
|
|
if (!Node->dominates(DT[*CDFI]))
|
|
S.insert(*CDFI);
|
|
}
|
|
}
|
|
|
|
return S;
|
|
}
|
|
|
|
void DominanceFrontierBase::print(std::ostream &o) const {
|
|
for (const_iterator I = begin(), E = end(); I != E; ++I) {
|
|
o << " DomFrontier for BB";
|
|
if (I->first)
|
|
WriteAsOperand(o, I->first, false);
|
|
else
|
|
o << " <<exit node>>";
|
|
o << " is:\t" << I->second << "\n";
|
|
}
|
|
}
|
|
|
|
} // End llvm namespace
|