mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-06 04:31:08 +00:00
a71d72a059
This is done to avoid spilling the result of the 64-bit instructions to a 4-byte slot. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198157 91177308-0d34-0410-b5e6-96231b3b80d8
444 lines
18 KiB
TableGen
444 lines
18 KiB
TableGen
//===-- SparcInstr64Bit.td - 64-bit instructions for Sparc Target ---------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains instruction definitions and patterns needed for 64-bit
|
|
// code generation on SPARC v9.
|
|
//
|
|
// Some SPARC v9 instructions are defined in SparcInstrInfo.td because they can
|
|
// also be used in 32-bit code running on a SPARC v9 CPU.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
let Predicates = [Is64Bit] in {
|
|
// The same integer registers are used for i32 and i64 values.
|
|
// When registers hold i32 values, the high bits are don't care.
|
|
// This give us free trunc and anyext.
|
|
def : Pat<(i64 (anyext i32:$val)), (COPY_TO_REGCLASS $val, I64Regs)>;
|
|
def : Pat<(i32 (trunc i64:$val)), (COPY_TO_REGCLASS $val, IntRegs)>;
|
|
|
|
} // Predicates = [Is64Bit]
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// 64-bit Shift Instructions.
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// The 32-bit shift instructions are still available. The left shift srl
|
|
// instructions shift all 64 bits, but it only accepts a 5-bit shift amount.
|
|
//
|
|
// The srl instructions only shift the low 32 bits and clear the high 32 bits.
|
|
// Finally, sra shifts the low 32 bits and sign-extends to 64 bits.
|
|
|
|
let Predicates = [Is64Bit] in {
|
|
|
|
def : Pat<(i64 (zext i32:$val)), (SRLri $val, 0)>;
|
|
def : Pat<(i64 (sext i32:$val)), (SRAri $val, 0)>;
|
|
|
|
def : Pat<(i64 (and i64:$val, 0xffffffff)), (SRLri $val, 0)>;
|
|
def : Pat<(i64 (sext_inreg i64:$val, i32)), (SRAri $val, 0)>;
|
|
|
|
defm SLLX : F3_S<"sllx", 0b100101, 1, shl, i64, I64Regs>;
|
|
defm SRLX : F3_S<"srlx", 0b100110, 1, srl, i64, I64Regs>;
|
|
defm SRAX : F3_S<"srax", 0b100111, 1, sra, i64, I64Regs>;
|
|
|
|
} // Predicates = [Is64Bit]
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// 64-bit Immediates.
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// All 32-bit immediates can be materialized with sethi+or, but 64-bit
|
|
// immediates may require more code. There may be a point where it is
|
|
// preferable to use a constant pool load instead, depending on the
|
|
// microarchitecture.
|
|
|
|
// Single-instruction patterns.
|
|
|
|
// The ALU instructions want their simm13 operands as i32 immediates.
|
|
def as_i32imm : SDNodeXForm<imm, [{
|
|
return CurDAG->getTargetConstant(N->getSExtValue(), MVT::i32);
|
|
}]>;
|
|
def : Pat<(i64 simm13:$val), (ORri (i64 G0), (as_i32imm $val))>;
|
|
def : Pat<(i64 SETHIimm:$val), (SETHIi (HI22 $val))>;
|
|
|
|
// Double-instruction patterns.
|
|
|
|
// All unsigned i32 immediates can be handled by sethi+or.
|
|
def uimm32 : PatLeaf<(imm), [{ return isUInt<32>(N->getZExtValue()); }]>;
|
|
def : Pat<(i64 uimm32:$val), (ORri (SETHIi (HI22 $val)), (LO10 $val))>,
|
|
Requires<[Is64Bit]>;
|
|
|
|
// All negative i33 immediates can be handled by sethi+xor.
|
|
def nimm33 : PatLeaf<(imm), [{
|
|
int64_t Imm = N->getSExtValue();
|
|
return Imm < 0 && isInt<33>(Imm);
|
|
}]>;
|
|
// Bits 10-31 inverted. Same as assembler's %hix.
|
|
def HIX22 : SDNodeXForm<imm, [{
|
|
uint64_t Val = (~N->getZExtValue() >> 10) & ((1u << 22) - 1);
|
|
return CurDAG->getTargetConstant(Val, MVT::i32);
|
|
}]>;
|
|
// Bits 0-9 with ones in bits 10-31. Same as assembler's %lox.
|
|
def LOX10 : SDNodeXForm<imm, [{
|
|
return CurDAG->getTargetConstant(~(~N->getZExtValue() & 0x3ff), MVT::i32);
|
|
}]>;
|
|
def : Pat<(i64 nimm33:$val), (XORri (SETHIi (HIX22 $val)), (LOX10 $val))>,
|
|
Requires<[Is64Bit]>;
|
|
|
|
// More possible patterns:
|
|
//
|
|
// (sllx sethi, n)
|
|
// (sllx simm13, n)
|
|
//
|
|
// 3 instrs:
|
|
//
|
|
// (xor (sllx sethi), simm13)
|
|
// (sllx (xor sethi, simm13))
|
|
//
|
|
// 4 instrs:
|
|
//
|
|
// (or sethi, (sllx sethi))
|
|
// (xnor sethi, (sllx sethi))
|
|
//
|
|
// 5 instrs:
|
|
//
|
|
// (or (sllx sethi), (or sethi, simm13))
|
|
// (xnor (sllx sethi), (or sethi, simm13))
|
|
// (or (sllx sethi), (sllx sethi))
|
|
// (xnor (sllx sethi), (sllx sethi))
|
|
//
|
|
// Worst case is 6 instrs:
|
|
//
|
|
// (or (sllx (or sethi, simmm13)), (or sethi, simm13))
|
|
|
|
// Bits 42-63, same as assembler's %hh.
|
|
def HH22 : SDNodeXForm<imm, [{
|
|
uint64_t Val = (N->getZExtValue() >> 42) & ((1u << 22) - 1);
|
|
return CurDAG->getTargetConstant(Val, MVT::i32);
|
|
}]>;
|
|
// Bits 32-41, same as assembler's %hm.
|
|
def HM10 : SDNodeXForm<imm, [{
|
|
uint64_t Val = (N->getZExtValue() >> 32) & ((1u << 10) - 1);
|
|
return CurDAG->getTargetConstant(Val, MVT::i32);
|
|
}]>;
|
|
def : Pat<(i64 imm:$val),
|
|
(ORrr (SLLXri (ORri (SETHIi (HH22 $val)), (HM10 $val)), (i32 32)),
|
|
(ORri (SETHIi (HI22 $val)), (LO10 $val)))>,
|
|
Requires<[Is64Bit]>;
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// 64-bit Integer Arithmetic and Logic.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
let Predicates = [Is64Bit] in {
|
|
|
|
// Register-register instructions.
|
|
defm ANDX : F3_12<"and", 0b000001, and, I64Regs, i64, i64imm>;
|
|
defm ORX : F3_12<"or", 0b000010, or, I64Regs, i64, i64imm>;
|
|
defm XORX : F3_12<"xor", 0b000011, xor, I64Regs, i64, i64imm>;
|
|
|
|
def ANDXNrr : F3_1<2, 0b000101,
|
|
(outs I64Regs:$dst), (ins I64Regs:$b, I64Regs:$c),
|
|
"andn $b, $c, $dst",
|
|
[(set i64:$dst, (and i64:$b, (not i64:$c)))]>;
|
|
def ORXNrr : F3_1<2, 0b000110,
|
|
(outs I64Regs:$dst), (ins I64Regs:$b, I64Regs:$c),
|
|
"orn $b, $c, $dst",
|
|
[(set i64:$dst, (or i64:$b, (not i64:$c)))]>;
|
|
def XNORXrr : F3_1<2, 0b000111,
|
|
(outs I64Regs:$dst), (ins I64Regs:$b, I64Regs:$c),
|
|
"xnor $b, $c, $dst",
|
|
[(set i64:$dst, (not (xor i64:$b, i64:$c)))]>;
|
|
|
|
defm ADDX : F3_12<"add", 0b000000, add, I64Regs, i64, i64imm>;
|
|
defm SUBX : F3_12<"sub", 0b000100, sub, I64Regs, i64, i64imm>;
|
|
|
|
def : Pat<(SPcmpicc i64:$a, i64:$b), (CMPrr $a, $b)>;
|
|
|
|
def TLS_ADDXrr : F3_1<2, 0b000000, (outs I64Regs:$rd),
|
|
(ins I64Regs:$rs1, I64Regs:$rs2, TLSSym:$sym),
|
|
"add $rs1, $rs2, $rd, $sym",
|
|
[(set i64:$rd,
|
|
(tlsadd i64:$rs1, i64:$rs2, tglobaltlsaddr:$sym))]>;
|
|
|
|
// Register-immediate instructions.
|
|
|
|
def : Pat<(SPcmpicc i64:$a, (i64 simm13:$b)), (CMPri $a, (as_i32imm $b))>;
|
|
|
|
def : Pat<(ctpop i64:$src), (POPCrr $src)>;
|
|
|
|
// "LEA" form of add
|
|
def LEAX_ADDri : F3_2<2, 0b000000,
|
|
(outs I64Regs:$dst), (ins MEMri:$addr),
|
|
"add ${addr:arith}, $dst",
|
|
[(set iPTR:$dst, ADDRri:$addr)]>;
|
|
|
|
} // Predicates = [Is64Bit]
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// 64-bit Integer Multiply and Divide.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
let Predicates = [Is64Bit] in {
|
|
|
|
def MULXrr : F3_1<2, 0b001001,
|
|
(outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2),
|
|
"mulx $rs1, $rs2, $rd",
|
|
[(set i64:$rd, (mul i64:$rs1, i64:$rs2))]>;
|
|
def MULXri : F3_2<2, 0b001001,
|
|
(outs IntRegs:$rd), (ins IntRegs:$rs1, i64imm:$i),
|
|
"mulx $rs1, $i, $rd",
|
|
[(set i64:$rd, (mul i64:$rs1, (i64 simm13:$i)))]>;
|
|
|
|
// Division can trap.
|
|
let hasSideEffects = 1 in {
|
|
def SDIVXrr : F3_1<2, 0b101101,
|
|
(outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2),
|
|
"sdivx $rs1, $rs2, $rd",
|
|
[(set i64:$rd, (sdiv i64:$rs1, i64:$rs2))]>;
|
|
def SDIVXri : F3_2<2, 0b101101,
|
|
(outs IntRegs:$rd), (ins IntRegs:$rs1, i64imm:$i),
|
|
"sdivx $rs1, $i, $rd",
|
|
[(set i64:$rd, (sdiv i64:$rs1, (i64 simm13:$i)))]>;
|
|
|
|
def UDIVXrr : F3_1<2, 0b001101,
|
|
(outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2),
|
|
"udivx $rs1, $rs2, $rd",
|
|
[(set i64:$rd, (udiv i64:$rs1, i64:$rs2))]>;
|
|
def UDIVXri : F3_2<2, 0b001101,
|
|
(outs IntRegs:$rd), (ins IntRegs:$rs1, i64imm:$i),
|
|
"udivx $rs1, $i, $rd",
|
|
[(set i64:$rd, (udiv i64:$rs1, (i64 simm13:$i)))]>;
|
|
} // hasSideEffects = 1
|
|
|
|
} // Predicates = [Is64Bit]
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// 64-bit Loads and Stores.
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// All the 32-bit loads and stores are available. The extending loads are sign
|
|
// or zero-extending to 64 bits. The LDrr and LDri instructions load 32 bits
|
|
// zero-extended to i64. Their mnemonic is lduw in SPARC v9 (Load Unsigned
|
|
// Word).
|
|
//
|
|
// SPARC v9 adds 64-bit loads as well as a sign-extending ldsw i32 loads.
|
|
|
|
let Predicates = [Is64Bit] in {
|
|
|
|
// 64-bit loads.
|
|
def LDXrr : F3_1<3, 0b001011,
|
|
(outs I64Regs:$dst), (ins MEMrr:$addr),
|
|
"ldx [$addr], $dst",
|
|
[(set i64:$dst, (load ADDRrr:$addr))]>;
|
|
def LDXri : F3_2<3, 0b001011,
|
|
(outs I64Regs:$dst), (ins MEMri:$addr),
|
|
"ldx [$addr], $dst",
|
|
[(set i64:$dst, (load ADDRri:$addr))]>;
|
|
let mayLoad = 1 in
|
|
def TLS_LDXrr : F3_1<3, 0b001011,
|
|
(outs IntRegs:$dst), (ins MEMrr:$addr, TLSSym:$sym),
|
|
"ldx [$addr], $dst, $sym",
|
|
[(set i64:$dst,
|
|
(tlsld ADDRrr:$addr, tglobaltlsaddr:$sym))]>;
|
|
|
|
// Extending loads to i64.
|
|
def : Pat<(i64 (zextloadi1 ADDRrr:$addr)), (LDUBrr ADDRrr:$addr)>;
|
|
def : Pat<(i64 (zextloadi1 ADDRri:$addr)), (LDUBri ADDRri:$addr)>;
|
|
def : Pat<(i64 (extloadi1 ADDRrr:$addr)), (LDUBrr ADDRrr:$addr)>;
|
|
def : Pat<(i64 (extloadi1 ADDRri:$addr)), (LDUBri ADDRri:$addr)>;
|
|
|
|
def : Pat<(i64 (zextloadi8 ADDRrr:$addr)), (LDUBrr ADDRrr:$addr)>;
|
|
def : Pat<(i64 (zextloadi8 ADDRri:$addr)), (LDUBri ADDRri:$addr)>;
|
|
def : Pat<(i64 (extloadi8 ADDRrr:$addr)), (LDUBrr ADDRrr:$addr)>;
|
|
def : Pat<(i64 (extloadi8 ADDRri:$addr)), (LDUBri ADDRri:$addr)>;
|
|
def : Pat<(i64 (sextloadi8 ADDRrr:$addr)), (LDSBrr ADDRrr:$addr)>;
|
|
def : Pat<(i64 (sextloadi8 ADDRri:$addr)), (LDSBri ADDRri:$addr)>;
|
|
|
|
def : Pat<(i64 (zextloadi16 ADDRrr:$addr)), (LDUHrr ADDRrr:$addr)>;
|
|
def : Pat<(i64 (zextloadi16 ADDRri:$addr)), (LDUHri ADDRri:$addr)>;
|
|
def : Pat<(i64 (extloadi16 ADDRrr:$addr)), (LDUHrr ADDRrr:$addr)>;
|
|
def : Pat<(i64 (extloadi16 ADDRri:$addr)), (LDUHri ADDRri:$addr)>;
|
|
def : Pat<(i64 (sextloadi16 ADDRrr:$addr)), (LDSHrr ADDRrr:$addr)>;
|
|
def : Pat<(i64 (sextloadi16 ADDRri:$addr)), (LDSHri ADDRri:$addr)>;
|
|
|
|
def : Pat<(i64 (zextloadi32 ADDRrr:$addr)), (LDrr ADDRrr:$addr)>;
|
|
def : Pat<(i64 (zextloadi32 ADDRri:$addr)), (LDri ADDRri:$addr)>;
|
|
def : Pat<(i64 (extloadi32 ADDRrr:$addr)), (LDrr ADDRrr:$addr)>;
|
|
def : Pat<(i64 (extloadi32 ADDRri:$addr)), (LDri ADDRri:$addr)>;
|
|
|
|
// Sign-extending load of i32 into i64 is a new SPARC v9 instruction.
|
|
def LDSWrr : F3_1<3, 0b001011,
|
|
(outs I64Regs:$dst), (ins MEMrr:$addr),
|
|
"ldsw [$addr], $dst",
|
|
[(set i64:$dst, (sextloadi32 ADDRrr:$addr))]>;
|
|
def LDSWri : F3_2<3, 0b001011,
|
|
(outs I64Regs:$dst), (ins MEMri:$addr),
|
|
"ldsw [$addr], $dst",
|
|
[(set i64:$dst, (sextloadi32 ADDRri:$addr))]>;
|
|
|
|
// 64-bit stores.
|
|
def STXrr : F3_1<3, 0b001110,
|
|
(outs), (ins MEMrr:$addr, I64Regs:$src),
|
|
"stx $src, [$addr]",
|
|
[(store i64:$src, ADDRrr:$addr)]>;
|
|
def STXri : F3_2<3, 0b001110,
|
|
(outs), (ins MEMri:$addr, I64Regs:$src),
|
|
"stx $src, [$addr]",
|
|
[(store i64:$src, ADDRri:$addr)]>;
|
|
|
|
// Truncating stores from i64 are identical to the i32 stores.
|
|
def : Pat<(truncstorei8 i64:$src, ADDRrr:$addr), (STBrr ADDRrr:$addr, $src)>;
|
|
def : Pat<(truncstorei8 i64:$src, ADDRri:$addr), (STBri ADDRri:$addr, $src)>;
|
|
def : Pat<(truncstorei16 i64:$src, ADDRrr:$addr), (STHrr ADDRrr:$addr, $src)>;
|
|
def : Pat<(truncstorei16 i64:$src, ADDRri:$addr), (STHri ADDRri:$addr, $src)>;
|
|
def : Pat<(truncstorei32 i64:$src, ADDRrr:$addr), (STrr ADDRrr:$addr, $src)>;
|
|
def : Pat<(truncstorei32 i64:$src, ADDRri:$addr), (STri ADDRri:$addr, $src)>;
|
|
|
|
// store 0, addr -> store %g0, addr
|
|
def : Pat<(store (i64 0), ADDRrr:$dst), (STXrr ADDRrr:$dst, (i64 G0))>;
|
|
def : Pat<(store (i64 0), ADDRri:$dst), (STXri ADDRri:$dst, (i64 G0))>;
|
|
|
|
} // Predicates = [Is64Bit]
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// 64-bit Conditionals.
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Flag-setting instructions like subcc and addcc set both icc and xcc flags.
|
|
// The icc flags correspond to the 32-bit result, and the xcc are for the
|
|
// full 64-bit result.
|
|
//
|
|
// We reuse CMPICC SDNodes for compares, but use new BRXCC branch nodes for
|
|
// 64-bit compares. See LowerBR_CC.
|
|
|
|
let Predicates = [Is64Bit] in {
|
|
|
|
let Uses = [ICC] in
|
|
def BPXCC : BranchSP<(ins brtarget:$imm22, CCOp:$cond),
|
|
"b$cond %xcc, $imm22",
|
|
[(SPbrxcc bb:$imm22, imm:$cond)]>;
|
|
|
|
// Conditional moves on %xcc.
|
|
let Uses = [ICC], Constraints = "$f = $rd" in {
|
|
def MOVXCCrr : Pseudo<(outs IntRegs:$rd),
|
|
(ins IntRegs:$rs2, IntRegs:$f, CCOp:$cond),
|
|
"mov$cond %xcc, $rs2, $rd",
|
|
[(set i32:$rd,
|
|
(SPselectxcc i32:$rs2, i32:$f, imm:$cond))]>;
|
|
def MOVXCCri : Pseudo<(outs IntRegs:$rd),
|
|
(ins i32imm:$i, IntRegs:$f, CCOp:$cond),
|
|
"mov$cond %xcc, $i, $rd",
|
|
[(set i32:$rd,
|
|
(SPselectxcc simm11:$i, i32:$f, imm:$cond))]>;
|
|
def FMOVS_XCC : Pseudo<(outs FPRegs:$rd),
|
|
(ins FPRegs:$rs2, FPRegs:$f, CCOp:$cond),
|
|
"fmovs$cond %xcc, $rs2, $rd",
|
|
[(set f32:$rd,
|
|
(SPselectxcc f32:$rs2, f32:$f, imm:$cond))]>;
|
|
def FMOVD_XCC : Pseudo<(outs DFPRegs:$rd),
|
|
(ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond),
|
|
"fmovd$cond %xcc, $rs2, $rd",
|
|
[(set f64:$rd,
|
|
(SPselectxcc f64:$rs2, f64:$f, imm:$cond))]>;
|
|
} // Uses, Constraints
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// 64-bit Floating Point Conversions.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
let Predicates = [Is64Bit] in {
|
|
|
|
def FXTOS : F3_3u<2, 0b110100, 0b010000100,
|
|
(outs FPRegs:$dst), (ins DFPRegs:$src),
|
|
"fxtos $src, $dst",
|
|
[(set FPRegs:$dst, (SPxtof DFPRegs:$src))]>;
|
|
def FXTOD : F3_3u<2, 0b110100, 0b010001000,
|
|
(outs DFPRegs:$dst), (ins DFPRegs:$src),
|
|
"fxtod $src, $dst",
|
|
[(set DFPRegs:$dst, (SPxtof DFPRegs:$src))]>;
|
|
def FXTOQ : F3_3u<2, 0b110100, 0b010001100,
|
|
(outs QFPRegs:$dst), (ins DFPRegs:$src),
|
|
"fxtoq $src, $dst",
|
|
[(set QFPRegs:$dst, (SPxtof DFPRegs:$src))]>,
|
|
Requires<[HasHardQuad]>;
|
|
|
|
def FSTOX : F3_3u<2, 0b110100, 0b010000001,
|
|
(outs DFPRegs:$dst), (ins FPRegs:$src),
|
|
"fstox $src, $dst",
|
|
[(set DFPRegs:$dst, (SPftox FPRegs:$src))]>;
|
|
def FDTOX : F3_3u<2, 0b110100, 0b010000010,
|
|
(outs DFPRegs:$dst), (ins DFPRegs:$src),
|
|
"fdtox $src, $dst",
|
|
[(set DFPRegs:$dst, (SPftox DFPRegs:$src))]>;
|
|
def FQTOX : F3_3u<2, 0b110100, 0b010000011,
|
|
(outs DFPRegs:$dst), (ins QFPRegs:$src),
|
|
"fqtox $src, $dst",
|
|
[(set DFPRegs:$dst, (SPftox QFPRegs:$src))]>,
|
|
Requires<[HasHardQuad]>;
|
|
|
|
} // Predicates = [Is64Bit]
|
|
|
|
def : Pat<(SPselectxcc i64:$t, i64:$f, imm:$cond),
|
|
(MOVXCCrr $t, $f, imm:$cond)>;
|
|
def : Pat<(SPselectxcc (i64 simm11:$t), i64:$f, imm:$cond),
|
|
(MOVXCCri (as_i32imm $t), $f, imm:$cond)>;
|
|
|
|
def : Pat<(SPselecticc i64:$t, i64:$f, imm:$cond),
|
|
(MOVICCrr $t, $f, imm:$cond)>;
|
|
def : Pat<(SPselecticc (i64 simm11:$t), i64:$f, imm:$cond),
|
|
(MOVICCri (as_i32imm $t), $f, imm:$cond)>;
|
|
|
|
def : Pat<(SPselectfcc i64:$t, i64:$f, imm:$cond),
|
|
(MOVFCCrr $t, $f, imm:$cond)>;
|
|
def : Pat<(SPselectfcc (i64 simm11:$t), i64:$f, imm:$cond),
|
|
(MOVFCCri (as_i32imm $t), $f, imm:$cond)>;
|
|
|
|
} // Predicates = [Is64Bit]
|
|
|
|
|
|
// 64 bit SETHI
|
|
let Predicates = [Is64Bit] in {
|
|
def SETHIXi : F2_1<0b100,
|
|
(outs IntRegs:$rd), (ins i64imm:$imm22),
|
|
"sethi $imm22, $rd",
|
|
[(set i64:$rd, SETHIimm:$imm22)]>;
|
|
}
|
|
// Global addresses, constant pool entries
|
|
let Predicates = [Is64Bit] in {
|
|
|
|
def : Pat<(SPhi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>;
|
|
def : Pat<(SPlo tglobaladdr:$in), (ORXri (i64 G0), tglobaladdr:$in)>;
|
|
def : Pat<(SPhi tconstpool:$in), (SETHIi tconstpool:$in)>;
|
|
def : Pat<(SPlo tconstpool:$in), (ORXri (i64 G0), tconstpool:$in)>;
|
|
|
|
// GlobalTLS addresses
|
|
def : Pat<(SPhi tglobaltlsaddr:$in), (SETHIi tglobaltlsaddr:$in)>;
|
|
def : Pat<(SPlo tglobaltlsaddr:$in), (ORXri (i64 G0), tglobaltlsaddr:$in)>;
|
|
def : Pat<(add (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)),
|
|
(ADDXri (SETHIXi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>;
|
|
def : Pat<(xor (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)),
|
|
(XORXri (SETHIXi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>;
|
|
|
|
// Blockaddress
|
|
def : Pat<(SPhi tblockaddress:$in), (SETHIi tblockaddress:$in)>;
|
|
def : Pat<(SPlo tblockaddress:$in), (ORXri (i64 G0), tblockaddress:$in)>;
|
|
|
|
// Add reg, lo. This is used when taking the addr of a global/constpool entry.
|
|
def : Pat<(add iPTR:$r, (SPlo tglobaladdr:$in)), (ADDXri $r, tglobaladdr:$in)>;
|
|
def : Pat<(add iPTR:$r, (SPlo tconstpool:$in)), (ADDXri $r, tconstpool:$in)>;
|
|
def : Pat<(add iPTR:$r, (SPlo tblockaddress:$in)),
|
|
(ADDXri $r, tblockaddress:$in)>;
|
|
}
|