llvm-6502/lib/Analysis/AliasAnalysis.cpp
2002-11-06 17:17:55 +00:00

222 lines
8.8 KiB
C++

//===- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation -==//
//
// This file implements the generic AliasAnalysis interface which is used as the
// common interface used by all clients and implementations of alias analysis.
//
// This file also implements the default version of the AliasAnalysis interface
// that is to be used when no other implementation is specified. This does some
// simple tests that detect obvious cases: two different global pointers cannot
// alias, a global cannot alias a malloc, two different mallocs cannot alias,
// etc.
//
// This alias analysis implementation really isn't very good for anything, but
// it is very fast, and makes a nice clean default implementation. Because it
// handles lots of little corner cases, other, more complex, alias analysis
// implementations may choose to rely on this pass to resolve these simple and
// easy cases.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/BasicBlock.h"
#include "llvm/Support/InstVisitor.h"
#include "llvm/iMemory.h"
#include "llvm/iOther.h"
#include "llvm/Constants.h"
#include "llvm/GlobalValue.h"
#include "llvm/DerivedTypes.h"
// Register the AliasAnalysis interface, providing a nice name to refer to.
static RegisterAnalysisGroup<AliasAnalysis> X("Alias Analysis");
// CanModify - Define a little visitor class that is used to check to see if
// arbitrary chunks of code can modify a specified pointer.
//
namespace {
struct CanModify : public InstVisitor<CanModify, bool> {
AliasAnalysis &AA;
const Value *Ptr;
CanModify(AliasAnalysis *aa, const Value *ptr)
: AA(*aa), Ptr(ptr) {}
bool visitInvokeInst(InvokeInst &II) {
return AA.canInvokeModify(II, Ptr);
}
bool visitCallInst(CallInst &CI) {
return AA.canCallModify(CI, Ptr);
}
bool visitStoreInst(StoreInst &SI) {
return AA.alias(Ptr, SI.getOperand(1));
}
// Other instructions do not alias anything.
bool visitInstruction(Instruction &I) { return false; }
};
}
// AliasAnalysis destructor: DO NOT move this to the header file for
// AliasAnalysis or else clients of the AliasAnalysis class may not depend on
// the AliasAnalysis.o file in the current .a file, causing alias analysis
// support to not be included in the tool correctly!
//
AliasAnalysis::~AliasAnalysis() {}
/// canBasicBlockModify - Return true if it is possible for execution of the
/// specified basic block to modify the value pointed to by Ptr.
///
bool AliasAnalysis::canBasicBlockModify(const BasicBlock &bb,
const Value *Ptr) {
CanModify CM(this, Ptr);
BasicBlock &BB = const_cast<BasicBlock&>(bb);
for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
if (CM.visit(I)) // Check every instruction in the basic block...
return true;
return false;
}
/// canInstructionRangeModify - Return true if it is possible for the execution
/// of the specified instructions to modify the value pointed to by Ptr. The
/// instructions to consider are all of the instructions in the range of [I1,I2]
/// INCLUSIVE. I1 and I2 must be in the same basic block.
///
bool AliasAnalysis::canInstructionRangeModify(const Instruction &I1,
const Instruction &I2,
const Value *Ptr) {
assert(I1.getParent() == I2.getParent() &&
"Instructions not in same basic block!");
CanModify CM(this, Ptr);
BasicBlock::iterator I = const_cast<Instruction*>(&I1);
BasicBlock::iterator E = const_cast<Instruction*>(&I2);
++E; // Convert from inclusive to exclusive range.
for (; I != E; ++I)
if (CM.visit(I)) // Check every instruction in the basic block...
return true;
return false;
}
//===----------------------------------------------------------------------===//
// BasicAliasAnalysis Pass Implementation
//===----------------------------------------------------------------------===//
//
// Because of the way .a files work, the implementation of the
// BasicAliasAnalysis class MUST be in the AliasAnalysis file itself, or else we
// run the risk of AliasAnalysis being used, but the default implementation not
// being linked into the tool that uses it. As such, we register and implement
// the class here.
//
namespace {
// Register this pass...
RegisterOpt<BasicAliasAnalysis>
X("basicaa", "Basic Alias Analysis (default AA impl)");
// Declare that we implement the AliasAnalysis interface
RegisterAnalysisGroup<AliasAnalysis, BasicAliasAnalysis, true> Y;
} // End of anonymous namespace
// hasUniqueAddress - Return true if the
static inline bool hasUniqueAddress(const Value *V) {
return isa<GlobalValue>(V) || isa<MallocInst>(V) || isa<AllocaInst>(V);
}
static const Value *getUnderlyingObject(const Value *V) {
if (!isa<PointerType>(V->getType())) return 0;
// If we are at some type of object... return it.
if (hasUniqueAddress(V)) return V;
// Traverse through different addressing mechanisms...
if (const Instruction *I = dyn_cast<Instruction>(V)) {
if (isa<CastInst>(I) || isa<GetElementPtrInst>(I))
return getUnderlyingObject(I->getOperand(0));
}
return 0;
}
// alias - Provide a bunch of ad-hoc rules to disambiguate in common cases, such
// as array references. Note that this function is heavily tail recursive.
// Hopefully we have a smart C++ compiler. :)
//
AliasAnalysis::Result BasicAliasAnalysis::alias(const Value *V1,
const Value *V2) {
// Strip off constant pointer refs if they exist
if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(V1))
V1 = CPR->getValue();
if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(V2))
V2 = CPR->getValue();
// Are we checking for alias of the same value?
if (V1 == V2) return MustAlias;
if ((!isa<PointerType>(V1->getType()) || !isa<PointerType>(V2->getType())) &&
V1->getType() != Type::LongTy && V2->getType() != Type::LongTy)
return NoAlias; // Scalars cannot alias each other
// Strip off cast instructions...
if (const Instruction *I = dyn_cast<CastInst>(V1))
return alias(I->getOperand(0), V2);
if (const Instruction *I = dyn_cast<CastInst>(V2))
return alias(I->getOperand(0), V1);
// If we have two gep instructions with identical indices, return an alias
// result equal to the alias result of the original pointer...
//
if (const GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(V1))
if (const GetElementPtrInst *GEP2 = dyn_cast<GetElementPtrInst>(V2))
if (GEP1->getNumOperands() == GEP2->getNumOperands() &&
GEP1->getOperand(0)->getType() == GEP2->getOperand(0)->getType()) {
if (std::equal(GEP1->op_begin()+1, GEP1->op_end(), GEP2->op_begin()+1))
return alias(GEP1->getOperand(0), GEP2->getOperand(0));
// If all of the indexes to the getelementptr are constant, but
// different (well we already know they are different), then we know
// that there cannot be an alias here if the two base pointers DO alias.
//
bool AllConstant = true;
for (unsigned i = 1, e = GEP1->getNumOperands(); i != e; ++i)
if (!isa<Constant>(GEP1->getOperand(i)) ||
!isa<Constant>(GEP2->getOperand(i))) {
AllConstant = false;
break;
}
// If we are all constant, then look at where the the base pointers
// alias. If they are known not to alias, then we are dealing with two
// different arrays or something, so no alias is possible. If they are
// known to be the same object, then we cannot alias because we are
// indexing into a different part of the object. As usual, MayAlias
// doesn't tell us anything.
//
if (AllConstant &&
alias(GEP1->getOperand(0), GEP2->getOperand(1)) != MayAlias)
return NoAlias;
}
// Figure out what objects these things are pointing to if we can...
const Value *O1 = getUnderlyingObject(V1);
const Value *O2 = getUnderlyingObject(V2);
// Pointing at a discernable object?
if (O1 && O2) {
// If they are two different objects, we know that we have no alias...
if (O1 != O2) return NoAlias;
// If they are the same object, they we can look at the indexes. If they
// index off of the object is the same for both pointers, they must alias.
// If they are provably different, they must not alias. Otherwise, we can't
// tell anything.
} else if (O1 && isa<ConstantPointerNull>(V2)) {
return NoAlias; // Unique values don't alias null
} else if (O2 && isa<ConstantPointerNull>(V1)) {
return NoAlias; // Unique values don't alias null
}
return MayAlias;
}