Chris Lattner e68bf61f6f Changes to work with Statistics rework
* Renamed StatisticReporter.h/cpp to Statistic.h/cpp
    * Broke constructor to take two const char * arguments instead of one, so
      that indendation can be taken care of automatically.
    * Sort the list by pass name when printing
    * Make sure to print all statistics as a group, instead of randomly when
      the statistics dtors are called.
    * Updated ProgrammersManual with new semantics.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@4004 91177308-0d34-0410-b5e6-96231b3b80d8
2002-10-01 22:40:31 +00:00

464 lines
13 KiB
C++

//===-- ------------------------llvm/graph.h ---------------------*- C++ -*--=//
//
//Header file for Graph: This Graph is used by
//PathProfiles class, and is used
//for detecting proper points in cfg for code insertion
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_GRAPH_H
#define LLVM_GRAPH_H
#include "llvm/BasicBlock.h"
#include <map>
#include <cstdlib>
class Module;
class Function;
//Class Node
//It forms the vertex for the graph
class Node{
public:
BasicBlock* element;
int weight;
public:
inline Node(BasicBlock* x) { element=x; weight=0; }
inline BasicBlock* &getElement() { return element; }
inline BasicBlock* const &getElement() const { return element; }
inline int getWeight() { return weight; }
inline void setElement(BasicBlock* e) { element=e; }
inline void setWeight(int w) { weight=w;}
inline bool operator<(Node& nd) const { return element<nd.element; }
inline bool operator==(Node& nd) const { return element==nd.element; }
};
//Class Edge
//Denotes an edge in the graph
class Edge{
private:
Node *first;
Node *second;
bool isnull;
int weight;
double randId;
public:
inline Edge(Node *f,Node *s, int wt=0){
first=f;
second=s;
weight=wt;
randId=rand();
isnull=false;
}
inline Edge(Node *f,Node *s, int wt, double rd){
first=f;
second=s;
weight=wt;
randId=rd;
isnull=false;
}
inline Edge() { isnull = true; }
inline double getRandId(){ return randId; }
inline Node* getFirst() { assert(!isNull()); return first; }
inline Node* const getFirst() const { assert(!isNull()); return first; }
inline Node* getSecond() { assert(!isNull()); return second; }
inline Node* const getSecond() const { assert(!isNull()); return second; }
inline int getWeight() { assert(!isNull()); return weight; }
inline void setWeight(int n) { assert(!isNull()); weight=n; }
inline void setFirst(Node *&f) { assert(!isNull()); first=f; }
inline void setSecond(Node *&s) { assert(!isNull()); second=s; }
inline bool isNull() const { return isnull;}
inline bool operator<(const Edge& ed) const{
// Can't be the same if one is null and the other isn't
if (isNull() != ed.isNull())
return true;
return (*first<*(ed.getFirst()))||
(*first==*(ed.getFirst()) && *second<*(ed.getSecond()));
}
inline bool operator==(const Edge& ed) const{
return !(*this<ed) && !(ed<*this);
}
inline bool operator!=(const Edge& ed) const{return !(*this==ed);}
};
//graphListElement
//This forms the "adjacency list element" of a
//vertex adjacency list in graph
struct graphListElement{
Node *element;
int weight;
double randId;
inline graphListElement(Node *n, int w, double rand){
element=n;
weight=w;
randId=rand;
}
};
namespace std {
struct less<Node *> : public binary_function<Node *, Node *,bool> {
bool operator()(Node *n1, Node *n2) const {
return n1->getElement() < n2->getElement();
}
};
struct less<Edge> : public binary_function<Edge,Edge,bool> {
bool operator()(Edge e1, Edge e2) const {
assert(!e1.isNull() && !e2.isNull());
Node *x1=e1.getFirst();
Node *x2=e1.getSecond();
Node *y1=e2.getFirst();
Node *y2=e2.getSecond();
return (*x1<*y1 ||(*x1==*y1 && *x2<*y2));
}
};
}
struct BBSort{
bool operator()(BasicBlock *BB1, BasicBlock *BB2) const{
std::string name1=BB1->getName();
std::string name2=BB2->getName();
return name1<name2;
}
};
struct NodeListSort{
bool operator()(graphListElement BB1, graphListElement BB2) const{
std::string name1=BB1.element->getElement()->getName();
std::string name2=BB2.element->getElement()->getName();
return name1<name2;
}
};
struct EdgeCompare2{
bool operator()(Edge e1, Edge e2) const {
assert(!e1.isNull() && !e2.isNull());
Node *x1=e1.getFirst();
Node *x2=e1.getSecond();
Node *y1=e2.getFirst();
Node *y2=e2.getSecond();
int w1=e1.getWeight();
int w2=e2.getWeight();
double r1 = e1.getRandId();
double r2 = e2.getRandId();
//return (*x1<*y1 || (*x1==*y1 && *x2<*y2) || (*x1==*y1 && *x2==*y2 && w1<w2));
return (*x1<*y1 || (*x1==*y1 && *x2<*y2) || (*x1==*y1 && *x2==*y2 && w1<w2) || (*x1==*y1 && *x2==*y2 && w1==w2 && r1<r2));
}
};
//struct EdgeCompare2{
//bool operator()(Edge e1, Edge e2) const {
// assert(!e1.isNull() && !e2.isNull());
// return (e1.getRandId()<e2.getRandId());
//}
//};
//this is used to color vertices
//during DFS
enum Color{
WHITE,
GREY,
BLACK
};
//For path profiling,
//We assume that the graph is connected (which is true for
//any method CFG)
//We also assume that the graph has single entry and single exit
//(For this, we make a pass over the graph that ensures this)
//The graph is a construction over any existing graph of BBs
//Its a construction "over" existing cfg: with
//additional features like edges and weights to edges
//graph uses adjacency list representation
class Graph{
public:
//typedef std::map<Node*, std::list<graphListElement> > nodeMapTy;
typedef std::map<Node*, std::vector<graphListElement> > nodeMapTy;//chng
private:
//the adjacency list of a vertex or node
nodeMapTy nodes;
//the start or root node
Node *strt;
//the exit node
Node *ext;
//a private method for doing DFS traversal of graph
//this is used in determining the reverse topological sort
//of the graph
void DFS_Visit(Node *nd, std::vector<Node *> &toReturn);
//Its a variation of DFS to get the backedges in the graph
//We get back edges by associating a time
//and a color with each vertex.
//The time of a vertex is the time when it was first visited
//The color of a vertex is initially WHITE,
//Changes to GREY when it is first visited,
//and changes to BLACK when ALL its neighbors
//have been visited
//So we have a back edge when we meet a successor of
//a node with smaller time, and GREY color
void getBackEdgesVisit(Node *u,
std::vector<Edge > &be,
std::map<Node *, Color> &clr,
std::map<Node *, int> &d,
int &time);
public:
typedef nodeMapTy::iterator elementIterator;
typedef nodeMapTy::const_iterator constElementIterator;
typedef std::vector<graphListElement > nodeList;//chng
//typedef std::vector<graphListElement > nodeList;
//graph constructors
//empty constructor: then add edges and nodes later on
Graph() {}
//constructor with root and exit node specified
Graph(std::vector<Node*> n,
std::vector<Edge> e, Node *rt, Node *lt);
//add a node
void addNode(Node *nd);
//add an edge
//this adds an edge ONLY when
//the edge to be added doesn not already exist
//we "equate" two edges here only with their
//end points
void addEdge(Edge ed, int w);
//add an edge EVEN IF such an edge already exists
//this may make a multi-graph
//which does happen when we add dummy edges
//to the graph, for compensating for back-edges
void addEdgeForce(Edge ed);
//set the weight of an edge
void setWeight(Edge ed);
//remove an edge
//Note that it removes just one edge,
//the first edge that is encountered
void removeEdge(Edge ed);
//remove edge with given wt
void removeEdgeWithWt(Edge ed);
//check whether graph has an edge
//having an edge simply means that there is an edge in the graph
//which has same endpoints as the given edge
//it may possibly have different weight though
bool hasEdge(Edge ed);
//check whether graph has an edge, with a given wt
bool hasEdgeAndWt(Edge ed);
//get the list of successor nodes
std::vector<Node *> getSuccNodes(Node *nd);
//get the number of outgoing edges
int getNumberOfOutgoingEdges(Node *nd) const;
//get the list of predecessor nodes
std::vector<Node *> getPredNodes(Node *nd);
//to get the no of incoming edges
int getNumberOfIncomingEdges(Node *nd);
//get the list of all the vertices in graph
std::vector<Node *> getAllNodes() const;
std::vector<Node *> getAllNodes();
//get a list of nodes in the graph
//in r-topological sorted order
//note that we assumed graph to be connected
std::vector<Node *> reverseTopologicalSort();
//reverse the sign of weights on edges
//this way, max-spanning tree could be obtained
//usin min-spanning tree, and vice versa
void reverseWts();
//Ordinarily, the graph is directional
//this converts the graph into an
//undirectional graph
//This is done by adding an edge
//v->u for all existing edges u->v
void makeUnDirectional();
//print graph: for debugging
void printGraph();
//get a vector of back edges in the graph
void getBackEdges(std::vector<Edge> &be, std::map<Node *, int> &d);
nodeList &sortNodeList(Node *par, nodeList &nl, std::vector<Edge> &be);
//Get the Maximal spanning tree (also a graph)
//of the graph
Graph* getMaxSpanningTree();
//get the nodeList adjacent to a node
//a nodeList element contains a node, and the weight
//corresponding to the edge for that element
inline nodeList &getNodeList(Node *nd) {
elementIterator nli = nodes.find(nd);
assert(nli != nodes.end() && "Node must be in nodes map");
return nodes[nd];//sortNodeList(nd, nli->second);
}
nodeList &getSortedNodeList(Node *nd, std::vector<Edge> &be) {
elementIterator nli = nodes.find(nd);
assert(nli != nodes.end() && "Node must be in nodes map");
return sortNodeList(nd, nodes[nd], be);
}
//get the root of the graph
inline Node *getRoot() {return strt; }
inline Node * const getRoot() const {return strt; }
//get exit: we assumed there IS a unique exit :)
inline Node *getExit() {return ext; }
inline Node * const getExit() const {return ext; }
//Check if a given node is the root
inline bool isRoot(Node *n) const {return (*n==*strt); }
//check if a given node is leaf node
//here we hv only 1 leaf: which is the exit node
inline bool isLeaf(Node *n) const {return (*n==*ext); }
};
//This class is used to generate
//"appropriate" code to be inserted
//along an edge
//The code to be inserted can be of six different types
//as given below
//1: r=k (where k is some constant)
//2: r=0
//3: r+=k
//4: count[k]++
//5: Count[r+k]++
//6: Count[r]++
class getEdgeCode{
private:
//cond implies which
//"kind" of code is to be inserted
//(from 1-6 above)
int cond;
//inc is the increment: eg k, or 0
int inc;
//A backedge must carry the code
//of both incoming "dummy" edge
//and outgoing "dummy" edge
//If a->b is a backedge
//then incoming dummy edge is root->b
//and outgoing dummy edge is a->exit
//incoming dummy edge, if any
getEdgeCode *cdIn;
//outgoing dummy edge, if any
getEdgeCode *cdOut;
public:
getEdgeCode(){
cdIn=NULL;
cdOut=NULL;
inc=0;
cond=0;
}
//set condition: 1-6
inline void setCond(int n) {cond=n;}
//get the condition
inline int getCond() { return cond;}
//set increment
inline void setInc(int n) {inc=n;}
//get increment
inline int getInc() {return inc;}
//set CdIn (only used for backedges)
inline void setCdIn(getEdgeCode *gd){ cdIn=gd;}
//set CdOut (only used for backedges)
inline void setCdOut(getEdgeCode *gd){ cdOut=gd;}
//get the code to be inserted on the edge
//This is determined from cond (1-6)
void getCode(Instruction *a, Instruction *b, Function *M, BasicBlock *BB,
std::vector<Value *> &retVec);
};
//auxillary functions on graph
//print a given edge in the form BB1Label->BB2Label
void printEdge(Edge ed);
//Do graph processing: to determine minimal edge increments,
//appropriate code insertions etc and insert the code at
//appropriate locations
void processGraph(Graph &g, Instruction *rInst, Instruction *countInst, std::vector<Edge> &be, std::vector<Edge> &stDummy, std::vector<Edge> &exDummy, int n, int MethNo, Value *threshold);
//print the graph (for debugging)
void printGraph(Graph &g);
//void printGraph(const Graph g);
//insert a basic block with appropriate code
//along a given edge
void insertBB(Edge ed, getEdgeCode *edgeCode, Instruction *rInst, Instruction *countInst, int n, int Methno, Value *threshold);
//Insert the initialization code in the top BB
//this includes initializing r, and count
//r is like an accumulator, that
//keeps on adding increments as we traverse along a path
//and at the end of the path, r contains the path
//number of that path
//Count is an array, where Count[k] represents
//the number of executions of path k
void insertInTopBB(BasicBlock *front, int k, Instruction *rVar, Instruction *countVar, Value *threshold);
//Add dummy edges corresponding to the back edges
//If a->b is a backedge
//then incoming dummy edge is root->b
//and outgoing dummy edge is a->exit
void addDummyEdges(std::vector<Edge> &stDummy, std::vector<Edge> &exDummy, Graph &g, std::vector<Edge> &be);
//Assign a value to all the edges in the graph
//such that if we traverse along any path from root to exit, and
//add up the edge values, we get a path number that uniquely
//refers to the path we travelled
int valueAssignmentToEdges(Graph& g, std::map<Node *, int> nodePriority,
std::vector<Edge> &be);
void getBBtrace(std::vector<BasicBlock *> &vBB, int pathNo, Function *M);
#endif