llvm-6502/lib/Target/Mips/MipsFastISel.cpp
Reed Kotler 8b3a8d6343 Add load/store functionality
Summary:
This patches allows non conversions like i1=i2; where both are global ints.
In addition, arithmetic and other things start to work since fast-isel will use
existing patterns for non fast-isel from tablegen files where applicable.

In addition i8, i16 will work in this limited context for assignment without the need
for sign extension (zero or signed). It does not matter how i8 or i16 are loaded (zero or sign extended)
since only the 8 or 16 relevant bits are used and clang will ask for sign extension before using them in
arithmetic. This is all made more complete in forthcoming patches.

for example:
  int i, j=1, k=3;
 
  void foo() {
    i = j + k;
  }

Keep in mind that this pass is not enabled right now and is an experimental pass
It can only be enabled with a hidden option to llvm of -mips-fast-isel.

Test Plan: Run test-suite, loadstore2.ll and I will run some executable tests.

Reviewers: dsanders

Subscribers: mcrosier

Differential Revision: http://reviews.llvm.org/D3856

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211061 91177308-0d34-0410-b5e6-96231b3b80d8
2014-06-16 22:05:47 +00:00

401 lines
11 KiB
C++

//===-- MipsastISel.cpp - Mips FastISel implementation
//---------------------===//
#include "llvm/CodeGen/FunctionLoweringInfo.h"
#include "llvm/CodeGen/FastISel.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetLibraryInfo.h"
#include "MipsRegisterInfo.h"
#include "MipsISelLowering.h"
#include "MipsMachineFunction.h"
#include "MipsSubtarget.h"
#include "MipsTargetMachine.h"
using namespace llvm;
namespace {
// All possible address modes.
typedef struct Address {
enum { RegBase, FrameIndexBase } BaseType;
union {
unsigned Reg;
int FI;
} Base;
int64_t Offset;
// Innocuous defaults for our address.
Address() : BaseType(RegBase), Offset(0) { Base.Reg = 0; }
} Address;
class MipsFastISel final : public FastISel {
/// Subtarget - Keep a pointer to the MipsSubtarget around so that we can
/// make the right decision when generating code for different targets.
Module &M;
const TargetMachine &TM;
const TargetInstrInfo &TII;
const TargetLowering &TLI;
const MipsSubtarget &Subtarget;
MipsFunctionInfo *MFI;
// Convenience variables to avoid some queries.
LLVMContext *Context;
bool TargetSupported;
public:
explicit MipsFastISel(FunctionLoweringInfo &funcInfo,
const TargetLibraryInfo *libInfo)
: FastISel(funcInfo, libInfo),
M(const_cast<Module &>(*funcInfo.Fn->getParent())),
TM(funcInfo.MF->getTarget()), TII(*TM.getInstrInfo()),
TLI(*TM.getTargetLowering()),
Subtarget(TM.getSubtarget<MipsSubtarget>()) {
MFI = funcInfo.MF->getInfo<MipsFunctionInfo>();
Context = &funcInfo.Fn->getContext();
TargetSupported = ((Subtarget.getRelocationModel() == Reloc::PIC_) &&
(Subtarget.hasMips32r2() && (Subtarget.isABI_O32())));
}
bool TargetSelectInstruction(const Instruction *I) override;
unsigned TargetMaterializeConstant(const Constant *C) override;
bool ComputeAddress(const Value *Obj, Address &Addr);
private:
bool EmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
unsigned Alignment = 0);
bool EmitStore(MVT VT, unsigned SrcReg, Address &Addr,
unsigned Alignment = 0);
bool SelectLoad(const Instruction *I);
bool SelectRet(const Instruction *I);
bool SelectStore(const Instruction *I);
bool isTypeLegal(Type *Ty, MVT &VT);
bool isLoadTypeLegal(Type *Ty, MVT &VT);
unsigned MaterializeFP(const ConstantFP *CFP, MVT VT);
unsigned MaterializeGV(const GlobalValue *GV, MVT VT);
unsigned MaterializeInt(const Constant *C, MVT VT);
unsigned Materialize32BitInt(int64_t Imm, const TargetRegisterClass *RC);
// for some reason, this default is not generated by tablegen
// so we explicitly generate it here.
//
unsigned FastEmitInst_riir(uint64_t inst, const TargetRegisterClass *RC,
unsigned Op0, bool Op0IsKill, uint64_t imm1,
uint64_t imm2, unsigned Op3, bool Op3IsKill) {
return 0;
}
MachineInstrBuilder EmitInst(unsigned Opc) {
return BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc));
}
MachineInstrBuilder EmitInst(unsigned Opc, unsigned DstReg) {
return BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
DstReg);
}
MachineInstrBuilder EmitInstStore(unsigned Opc, unsigned SrcReg,
unsigned MemReg, int64_t MemOffset) {
return EmitInst(Opc).addReg(SrcReg).addReg(MemReg).addImm(MemOffset);
}
MachineInstrBuilder EmitInstLoad(unsigned Opc, unsigned DstReg,
unsigned MemReg, int64_t MemOffset) {
return EmitInst(Opc, DstReg).addReg(MemReg).addImm(MemOffset);
}
#include "MipsGenFastISel.inc"
};
bool MipsFastISel::isTypeLegal(Type *Ty, MVT &VT) {
EVT evt = TLI.getValueType(Ty, true);
// Only handle simple types.
if (evt == MVT::Other || !evt.isSimple())
return false;
VT = evt.getSimpleVT();
// Handle all legal types, i.e. a register that will directly hold this
// value.
return TLI.isTypeLegal(VT);
}
bool MipsFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
if (isTypeLegal(Ty, VT))
return true;
// We will extend this in a later patch:
// If this is a type than can be sign or zero-extended to a basic operation
// go ahead and accept it now.
if (VT == MVT::i8 || VT == MVT::i16)
return true;
return false;
}
bool MipsFastISel::ComputeAddress(const Value *Obj, Address &Addr) {
// This construct looks a big awkward but it is how other ports handle this
// and as this function is more fully completed, these cases which
// return false will have additional code in them.
//
if (isa<Instruction>(Obj))
return false;
else if (isa<ConstantExpr>(Obj))
return false;
Addr.Base.Reg = getRegForValue(Obj);
return Addr.Base.Reg != 0;
}
bool MipsFastISel::EmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
unsigned Alignment) {
//
// more cases will be handled here in following patches.
//
unsigned Opc;
switch (VT.SimpleTy) {
case MVT::i32: {
ResultReg = createResultReg(&Mips::GPR32RegClass);
Opc = Mips::LW;
break;
}
case MVT::i16: {
ResultReg = createResultReg(&Mips::GPR32RegClass);
Opc = Mips::LHu;
break;
}
case MVT::i8: {
ResultReg = createResultReg(&Mips::GPR32RegClass);
Opc = Mips::LBu;
break;
}
case MVT::f32: {
ResultReg = createResultReg(&Mips::FGR32RegClass);
Opc = Mips::LWC1;
break;
}
case MVT::f64: {
ResultReg = createResultReg(&Mips::AFGR64RegClass);
Opc = Mips::LDC1;
break;
}
default:
return false;
}
EmitInstLoad(Opc, ResultReg, Addr.Base.Reg, Addr.Offset);
return true;
}
// Materialize a constant into a register, and return the register
// number (or zero if we failed to handle it).
unsigned MipsFastISel::TargetMaterializeConstant(const Constant *C) {
EVT CEVT = TLI.getValueType(C->getType(), true);
// Only handle simple types.
if (!CEVT.isSimple())
return 0;
MVT VT = CEVT.getSimpleVT();
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
return MaterializeFP(CFP, VT);
else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
return MaterializeGV(GV, VT);
else if (isa<ConstantInt>(C))
return MaterializeInt(C, VT);
return 0;
}
bool MipsFastISel::EmitStore(MVT VT, unsigned SrcReg, Address &Addr,
unsigned Alignment) {
//
// more cases will be handled here in following patches.
//
unsigned Opc;
switch (VT.SimpleTy) {
case MVT::i8:
Opc = Mips::SB;
break;
case MVT::i16:
Opc = Mips::SH;
break;
case MVT::i32:
Opc = Mips::SW;
break;
case MVT::f32:
Opc = Mips::SWC1;
break;
case MVT::f64:
Opc = Mips::SDC1;
break;
default:
return false;
}
EmitInstStore(Opc, SrcReg, Addr.Base.Reg, Addr.Offset);
return true;
}
bool MipsFastISel::SelectLoad(const Instruction *I) {
// Atomic loads need special handling.
if (cast<LoadInst>(I)->isAtomic())
return false;
// Verify we have a legal type before going any further.
MVT VT;
if (!isLoadTypeLegal(I->getType(), VT))
return false;
// See if we can handle this address.
Address Addr;
if (!ComputeAddress(I->getOperand(0), Addr))
return false;
unsigned ResultReg;
if (!EmitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment()))
return false;
UpdateValueMap(I, ResultReg);
return true;
}
bool MipsFastISel::SelectStore(const Instruction *I) {
Value *Op0 = I->getOperand(0);
unsigned SrcReg = 0;
// Atomic stores need special handling.
if (cast<StoreInst>(I)->isAtomic())
return false;
// Verify we have a legal type before going any further.
MVT VT;
if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
return false;
// Get the value to be stored into a register.
SrcReg = getRegForValue(Op0);
if (SrcReg == 0)
return false;
// See if we can handle this address.
Address Addr;
if (!ComputeAddress(I->getOperand(1), Addr))
return false;
if (!EmitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment()))
return false;
return true;
}
bool MipsFastISel::SelectRet(const Instruction *I) {
const ReturnInst *Ret = cast<ReturnInst>(I);
if (!FuncInfo.CanLowerReturn)
return false;
if (Ret->getNumOperands() > 0) {
return false;
}
EmitInst(Mips::RetRA);
return true;
}
bool MipsFastISel::TargetSelectInstruction(const Instruction *I) {
if (!TargetSupported)
return false;
switch (I->getOpcode()) {
default:
break;
case Instruction::Load:
return SelectLoad(I);
case Instruction::Store:
return SelectStore(I);
case Instruction::Ret:
return SelectRet(I);
}
return false;
}
}
unsigned MipsFastISel::MaterializeFP(const ConstantFP *CFP, MVT VT) {
int64_t Imm = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
if (VT == MVT::f32) {
const TargetRegisterClass *RC = &Mips::FGR32RegClass;
unsigned DestReg = createResultReg(RC);
unsigned TempReg = Materialize32BitInt(Imm, &Mips::GPR32RegClass);
EmitInst(Mips::MTC1, DestReg).addReg(TempReg);
return DestReg;
} else if (VT == MVT::f64) {
const TargetRegisterClass *RC = &Mips::AFGR64RegClass;
unsigned DestReg = createResultReg(RC);
unsigned TempReg1 = Materialize32BitInt(Imm >> 32, &Mips::GPR32RegClass);
unsigned TempReg2 =
Materialize32BitInt(Imm & 0xFFFFFFFF, &Mips::GPR32RegClass);
EmitInst(Mips::BuildPairF64, DestReg).addReg(TempReg2).addReg(TempReg1);
return DestReg;
}
return 0;
}
unsigned MipsFastISel::MaterializeGV(const GlobalValue *GV, MVT VT) {
// For now 32-bit only.
if (VT != MVT::i32)
return 0;
const TargetRegisterClass *RC = &Mips::GPR32RegClass;
unsigned DestReg = createResultReg(RC);
const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
bool IsThreadLocal = GVar && GVar->isThreadLocal();
// TLS not supported at this time.
if (IsThreadLocal)
return 0;
EmitInst(Mips::LW, DestReg).addReg(MFI->getGlobalBaseReg()).addGlobalAddress(
GV, 0, MipsII::MO_GOT);
return DestReg;
}
unsigned MipsFastISel::MaterializeInt(const Constant *C, MVT VT) {
if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1)
return 0;
const TargetRegisterClass *RC = &Mips::GPR32RegClass;
const ConstantInt *CI = cast<ConstantInt>(C);
int64_t Imm;
if (CI->isNegative())
Imm = CI->getSExtValue();
else
Imm = CI->getZExtValue();
return Materialize32BitInt(Imm, RC);
}
unsigned MipsFastISel::Materialize32BitInt(int64_t Imm,
const TargetRegisterClass *RC) {
unsigned ResultReg = createResultReg(RC);
if (isInt<16>(Imm)) {
unsigned Opc = Mips::ADDiu;
EmitInst(Opc, ResultReg).addReg(Mips::ZERO).addImm(Imm);
return ResultReg;
} else if (isUInt<16>(Imm)) {
EmitInst(Mips::ORi, ResultReg).addReg(Mips::ZERO).addImm(Imm);
return ResultReg;
}
unsigned Lo = Imm & 0xFFFF;
unsigned Hi = (Imm >> 16) & 0xFFFF;
if (Lo) {
// Both Lo and Hi have nonzero bits.
unsigned TmpReg = createResultReg(RC);
EmitInst(Mips::LUi, TmpReg).addImm(Hi);
EmitInst(Mips::ORi, ResultReg).addReg(TmpReg).addImm(Lo);
} else {
EmitInst(Mips::LUi, ResultReg).addImm(Hi);
}
return ResultReg;
}
namespace llvm {
FastISel *Mips::createFastISel(FunctionLoweringInfo &funcInfo,
const TargetLibraryInfo *libInfo) {
return new MipsFastISel(funcInfo, libInfo);
}
}