llvm-6502/lib/Target/ARM/ARMAsmPrinter.cpp
Jim Grosbach 385cc5eede Enable the MC-ized ARM asm printer. Passing all local tests, so it's time to
enable it for real. Leaving the CL option in place to it's easy to disable it
again if (when) testers find something I've missed.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@114915 91177308-0d34-0410-b5e6-96231b3b80d8
2010-09-27 22:28:11 +00:00

2072 lines
76 KiB
C++

//===-- ARMAsmPrinter.cpp - Print machine code to an ARM .s file ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains a printer that converts from our internal representation
// of machine-dependent LLVM code to GAS-format ARM assembly language.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "asm-printer"
#include "ARM.h"
#include "ARMBuildAttrs.h"
#include "ARMAddressingModes.h"
#include "ARMConstantPoolValue.h"
#include "AsmPrinter/ARMInstPrinter.h"
#include "ARMMachineFunctionInfo.h"
#include "ARMMCInstLower.h"
#include "ARMTargetMachine.h"
#include "llvm/Analysis/DebugInfo.h"
#include "llvm/Constants.h"
#include "llvm/Module.h"
#include "llvm/Type.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/CodeGen/MachineModuleInfoImpls.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCSectionMachO.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Target/Mangler.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Target/TargetRegistry.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <cctype>
using namespace llvm;
static cl::opt<bool>
EnableMCInst("enable-arm-mcinst-printer", cl::Hidden, cl::init(true),
cl::desc("enable experimental asmprinter gunk in the arm backend"));
namespace llvm {
namespace ARM {
enum DW_ISA {
DW_ISA_ARM_thumb = 1,
DW_ISA_ARM_arm = 2
};
}
}
namespace {
class ARMAsmPrinter : public AsmPrinter {
/// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
/// make the right decision when printing asm code for different targets.
const ARMSubtarget *Subtarget;
/// AFI - Keep a pointer to ARMFunctionInfo for the current
/// MachineFunction.
ARMFunctionInfo *AFI;
/// MCP - Keep a pointer to constantpool entries of the current
/// MachineFunction.
const MachineConstantPool *MCP;
public:
explicit ARMAsmPrinter(TargetMachine &TM, MCStreamer &Streamer)
: AsmPrinter(TM, Streamer), AFI(NULL), MCP(NULL) {
Subtarget = &TM.getSubtarget<ARMSubtarget>();
}
virtual const char *getPassName() const {
return "ARM Assembly Printer";
}
void EmitJumpTable(const MachineInstr *MI);
void EmitJump2Table(const MachineInstr *MI);
void printInstructionThroughMCStreamer(const MachineInstr *MI);
void printOperand(const MachineInstr *MI, int OpNum, raw_ostream &O,
const char *Modifier = 0);
void printSOImmOperand(const MachineInstr *MI, int OpNum, raw_ostream &O);
void printSOImm2PartOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O);
void printSORegOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O);
void printAddrMode2Operand(const MachineInstr *MI, int OpNum,
raw_ostream &O);
void printAddrMode2OffsetOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O);
void printAddrMode3Operand(const MachineInstr *MI, int OpNum,
raw_ostream &O);
void printAddrMode3OffsetOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O);
void printAddrMode4Operand(const MachineInstr *MI, int OpNum,raw_ostream &O,
const char *Modifier = 0);
void printAddrMode5Operand(const MachineInstr *MI, int OpNum,raw_ostream &O,
const char *Modifier = 0);
void printAddrMode6Operand(const MachineInstr *MI, int OpNum,
raw_ostream &O);
void printAddrMode6OffsetOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O);
void printAddrModePCOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O,
const char *Modifier = 0);
void printBitfieldInvMaskImmOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O);
void printMemBOption(const MachineInstr *MI, int OpNum,
raw_ostream &O);
void printShiftImmOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O);
void printThumbS4ImmOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O);
void printThumbITMask(const MachineInstr *MI, int OpNum, raw_ostream &O);
void printThumbAddrModeRROperand(const MachineInstr *MI, int OpNum,
raw_ostream &O);
void printThumbAddrModeRI5Operand(const MachineInstr *MI, int OpNum,
raw_ostream &O,
unsigned Scale);
void printThumbAddrModeS1Operand(const MachineInstr *MI, int OpNum,
raw_ostream &O);
void printThumbAddrModeS2Operand(const MachineInstr *MI, int OpNum,
raw_ostream &O);
void printThumbAddrModeS4Operand(const MachineInstr *MI, int OpNum,
raw_ostream &O);
void printThumbAddrModeSPOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O);
void printT2SOOperand(const MachineInstr *MI, int OpNum, raw_ostream &O);
void printT2AddrModeImm12Operand(const MachineInstr *MI, int OpNum,
raw_ostream &O);
void printT2AddrModeImm8Operand(const MachineInstr *MI, int OpNum,
raw_ostream &O);
void printT2AddrModeImm8s4Operand(const MachineInstr *MI, int OpNum,
raw_ostream &O);
void printT2AddrModeImm8OffsetOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O);
void printT2AddrModeImm8s4OffsetOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O) {}
void printT2AddrModeSoRegOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O);
void printCPSOptionOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O) {}
void printMSRMaskOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O) {}
void printNegZeroOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O) {}
void printPredicateOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O);
void printMandatoryPredicateOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O);
void printSBitModifierOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O);
void printPCLabel(const MachineInstr *MI, int OpNum,
raw_ostream &O);
void printRegisterList(const MachineInstr *MI, int OpNum,
raw_ostream &O);
void printCPInstOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O,
const char *Modifier);
void printJTBlockOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O);
void printJT2BlockOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O);
void printTBAddrMode(const MachineInstr *MI, int OpNum,
raw_ostream &O);
void printNoHashImmediate(const MachineInstr *MI, int OpNum,
raw_ostream &O);
void printVFPf32ImmOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O);
void printVFPf64ImmOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O);
void printNEONModImmOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O);
virtual bool PrintAsmOperand(const MachineInstr *MI, unsigned OpNum,
unsigned AsmVariant, const char *ExtraCode,
raw_ostream &O);
virtual bool PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNum,
unsigned AsmVariant,
const char *ExtraCode, raw_ostream &O);
void printInstruction(const MachineInstr *MI, raw_ostream &O); // autogen
static const char *getRegisterName(unsigned RegNo);
virtual void EmitInstruction(const MachineInstr *MI);
bool runOnMachineFunction(MachineFunction &F);
virtual void EmitConstantPool() {} // we emit constant pools customly!
virtual void EmitFunctionEntryLabel();
void EmitStartOfAsmFile(Module &M);
void EmitEndOfAsmFile(Module &M);
MachineLocation getDebugValueLocation(const MachineInstr *MI) const {
MachineLocation Location;
assert (MI->getNumOperands() == 4 && "Invalid no. of machine operands!");
// Frame address. Currently handles register +- offset only.
if (MI->getOperand(0).isReg() && MI->getOperand(1).isImm())
Location.set(MI->getOperand(0).getReg(), MI->getOperand(1).getImm());
else {
DEBUG(dbgs() << "DBG_VALUE instruction ignored! " << *MI << "\n");
}
return Location;
}
virtual unsigned getISAEncoding() {
// ARM/Darwin adds ISA to the DWARF info for each function.
if (!Subtarget->isTargetDarwin())
return 0;
return Subtarget->isThumb() ?
llvm::ARM::DW_ISA_ARM_thumb : llvm::ARM::DW_ISA_ARM_arm;
}
MCSymbol *GetARMSetPICJumpTableLabel2(unsigned uid, unsigned uid2,
const MachineBasicBlock *MBB) const;
MCSymbol *GetARMJTIPICJumpTableLabel2(unsigned uid, unsigned uid2) const;
MCSymbol *GetARMSJLJEHLabel(void) const;
/// EmitMachineConstantPoolValue - Print a machine constantpool value to
/// the .s file.
virtual void EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
SmallString<128> Str;
raw_svector_ostream OS(Str);
EmitMachineConstantPoolValue(MCPV, OS);
OutStreamer.EmitRawText(OS.str());
}
void EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV,
raw_ostream &O) {
switch (TM.getTargetData()->getTypeAllocSize(MCPV->getType())) {
case 1: O << MAI->getData8bitsDirective(0); break;
case 2: O << MAI->getData16bitsDirective(0); break;
case 4: O << MAI->getData32bitsDirective(0); break;
default: assert(0 && "Unknown CPV size");
}
ARMConstantPoolValue *ACPV = static_cast<ARMConstantPoolValue*>(MCPV);
if (ACPV->isLSDA()) {
O << MAI->getPrivateGlobalPrefix() << "_LSDA_" << getFunctionNumber();
} else if (ACPV->isBlockAddress()) {
O << *GetBlockAddressSymbol(ACPV->getBlockAddress());
} else if (ACPV->isGlobalValue()) {
const GlobalValue *GV = ACPV->getGV();
bool isIndirect = Subtarget->isTargetDarwin() &&
Subtarget->GVIsIndirectSymbol(GV, TM.getRelocationModel());
if (!isIndirect)
O << *Mang->getSymbol(GV);
else {
// FIXME: Remove this when Darwin transition to @GOT like syntax.
MCSymbol *Sym = GetSymbolWithGlobalValueBase(GV, "$non_lazy_ptr");
O << *Sym;
MachineModuleInfoMachO &MMIMachO =
MMI->getObjFileInfo<MachineModuleInfoMachO>();
MachineModuleInfoImpl::StubValueTy &StubSym =
GV->hasHiddenVisibility() ? MMIMachO.getHiddenGVStubEntry(Sym) :
MMIMachO.getGVStubEntry(Sym);
if (StubSym.getPointer() == 0)
StubSym = MachineModuleInfoImpl::
StubValueTy(Mang->getSymbol(GV), !GV->hasInternalLinkage());
}
} else {
assert(ACPV->isExtSymbol() && "unrecognized constant pool value");
O << *GetExternalSymbolSymbol(ACPV->getSymbol());
}
if (ACPV->hasModifier()) O << "(" << ACPV->getModifier() << ")";
if (ACPV->getPCAdjustment() != 0) {
O << "-(" << MAI->getPrivateGlobalPrefix() << "PC"
<< getFunctionNumber() << "_" << ACPV->getLabelId()
<< "+" << (unsigned)ACPV->getPCAdjustment();
if (ACPV->mustAddCurrentAddress())
O << "-.";
O << ')';
}
}
};
} // end of anonymous namespace
#include "ARMGenAsmWriter.inc"
void ARMAsmPrinter::EmitFunctionEntryLabel() {
if (AFI->isThumbFunction()) {
OutStreamer.EmitRawText(StringRef("\t.code\t16"));
if (!Subtarget->isTargetDarwin())
OutStreamer.EmitRawText(StringRef("\t.thumb_func"));
else {
// This needs to emit to a temporary string to get properly quoted
// MCSymbols when they have spaces in them.
SmallString<128> Tmp;
raw_svector_ostream OS(Tmp);
OS << "\t.thumb_func\t" << *CurrentFnSym;
OutStreamer.EmitRawText(OS.str());
}
}
OutStreamer.EmitLabel(CurrentFnSym);
}
/// runOnMachineFunction - This uses the printInstruction()
/// method to print assembly for each instruction.
///
bool ARMAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
AFI = MF.getInfo<ARMFunctionInfo>();
MCP = MF.getConstantPool();
return AsmPrinter::runOnMachineFunction(MF);
}
void ARMAsmPrinter::printOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O, const char *Modifier) {
const MachineOperand &MO = MI->getOperand(OpNum);
unsigned TF = MO.getTargetFlags();
switch (MO.getType()) {
default:
assert(0 && "<unknown operand type>");
case MachineOperand::MO_Register: {
unsigned Reg = MO.getReg();
assert(TargetRegisterInfo::isPhysicalRegister(Reg));
if (Modifier && strcmp(Modifier, "lane") == 0) {
unsigned RegNum = getARMRegisterNumbering(Reg);
unsigned DReg =
TM.getRegisterInfo()->getMatchingSuperReg(Reg,
RegNum & 1 ? ARM::ssub_1 : ARM::ssub_0, &ARM::DPR_VFP2RegClass);
O << getRegisterName(DReg) << '[' << (RegNum & 1) << ']';
} else {
assert(!MO.getSubReg() && "Subregs should be eliminated!");
O << getRegisterName(Reg);
}
break;
}
case MachineOperand::MO_Immediate: {
int64_t Imm = MO.getImm();
O << '#';
if ((Modifier && strcmp(Modifier, "lo16") == 0) ||
(TF & ARMII::MO_LO16))
O << ":lower16:";
else if ((Modifier && strcmp(Modifier, "hi16") == 0) ||
(TF & ARMII::MO_HI16))
O << ":upper16:";
O << Imm;
break;
}
case MachineOperand::MO_MachineBasicBlock:
O << *MO.getMBB()->getSymbol();
return;
case MachineOperand::MO_GlobalAddress: {
bool isCallOp = Modifier && !strcmp(Modifier, "call");
const GlobalValue *GV = MO.getGlobal();
if ((Modifier && strcmp(Modifier, "lo16") == 0) ||
(TF & ARMII::MO_LO16))
O << ":lower16:";
else if ((Modifier && strcmp(Modifier, "hi16") == 0) ||
(TF & ARMII::MO_HI16))
O << ":upper16:";
O << *Mang->getSymbol(GV);
printOffset(MO.getOffset(), O);
if (isCallOp && Subtarget->isTargetELF() &&
TM.getRelocationModel() == Reloc::PIC_)
O << "(PLT)";
break;
}
case MachineOperand::MO_ExternalSymbol: {
bool isCallOp = Modifier && !strcmp(Modifier, "call");
O << *GetExternalSymbolSymbol(MO.getSymbolName());
if (isCallOp && Subtarget->isTargetELF() &&
TM.getRelocationModel() == Reloc::PIC_)
O << "(PLT)";
break;
}
case MachineOperand::MO_ConstantPoolIndex:
O << *GetCPISymbol(MO.getIndex());
break;
case MachineOperand::MO_JumpTableIndex:
O << *GetJTISymbol(MO.getIndex());
break;
}
}
static void printSOImm(raw_ostream &O, int64_t V, bool VerboseAsm,
const MCAsmInfo *MAI) {
// Break it up into two parts that make up a shifter immediate.
V = ARM_AM::getSOImmVal(V);
assert(V != -1 && "Not a valid so_imm value!");
unsigned Imm = ARM_AM::getSOImmValImm(V);
unsigned Rot = ARM_AM::getSOImmValRot(V);
// Print low-level immediate formation info, per
// A5.1.3: "Data-processing operands - Immediate".
if (Rot) {
O << "#" << Imm << ", " << Rot;
// Pretty printed version.
if (VerboseAsm) {
O << "\t" << MAI->getCommentString() << ' ';
O << (int)ARM_AM::rotr32(Imm, Rot);
}
} else {
O << "#" << Imm;
}
}
/// printSOImmOperand - SOImm is 4-bit rotate amount in bits 8-11 with 8-bit
/// immediate in bits 0-7.
void ARMAsmPrinter::printSOImmOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O) {
const MachineOperand &MO = MI->getOperand(OpNum);
assert(MO.isImm() && "Not a valid so_imm value!");
printSOImm(O, MO.getImm(), isVerbose(), MAI);
}
/// printSOImm2PartOperand - SOImm is broken into two pieces using a 'mov'
/// followed by an 'orr' to materialize.
void ARMAsmPrinter::printSOImm2PartOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O) {
const MachineOperand &MO = MI->getOperand(OpNum);
assert(MO.isImm() && "Not a valid so_imm value!");
unsigned V1 = ARM_AM::getSOImmTwoPartFirst(MO.getImm());
unsigned V2 = ARM_AM::getSOImmTwoPartSecond(MO.getImm());
printSOImm(O, V1, isVerbose(), MAI);
O << "\n\torr";
printPredicateOperand(MI, 2, O);
O << "\t";
printOperand(MI, 0, O);
O << ", ";
printOperand(MI, 0, O);
O << ", ";
printSOImm(O, V2, isVerbose(), MAI);
}
// so_reg is a 4-operand unit corresponding to register forms of the A5.1
// "Addressing Mode 1 - Data-processing operands" forms. This includes:
// REG 0 0 - e.g. R5
// REG REG 0,SH_OPC - e.g. R5, ROR R3
// REG 0 IMM,SH_OPC - e.g. R5, LSL #3
void ARMAsmPrinter::printSORegOperand(const MachineInstr *MI, int Op,
raw_ostream &O) {
const MachineOperand &MO1 = MI->getOperand(Op);
const MachineOperand &MO2 = MI->getOperand(Op+1);
const MachineOperand &MO3 = MI->getOperand(Op+2);
O << getRegisterName(MO1.getReg());
// Print the shift opc.
ARM_AM::ShiftOpc ShOpc = ARM_AM::getSORegShOp(MO3.getImm());
O << ", " << ARM_AM::getShiftOpcStr(ShOpc);
if (MO2.getReg()) {
O << ' ' << getRegisterName(MO2.getReg());
assert(ARM_AM::getSORegOffset(MO3.getImm()) == 0);
} else if (ShOpc != ARM_AM::rrx) {
O << " #" << ARM_AM::getSORegOffset(MO3.getImm());
}
}
void ARMAsmPrinter::printAddrMode2Operand(const MachineInstr *MI, int Op,
raw_ostream &O) {
const MachineOperand &MO1 = MI->getOperand(Op);
const MachineOperand &MO2 = MI->getOperand(Op+1);
const MachineOperand &MO3 = MI->getOperand(Op+2);
if (!MO1.isReg()) { // FIXME: This is for CP entries, but isn't right.
printOperand(MI, Op, O);
return;
}
O << "[" << getRegisterName(MO1.getReg());
if (!MO2.getReg()) {
if (ARM_AM::getAM2Offset(MO3.getImm())) // Don't print +0.
O << ", #"
<< ARM_AM::getAddrOpcStr(ARM_AM::getAM2Op(MO3.getImm()))
<< ARM_AM::getAM2Offset(MO3.getImm());
O << "]";
return;
}
O << ", "
<< ARM_AM::getAddrOpcStr(ARM_AM::getAM2Op(MO3.getImm()))
<< getRegisterName(MO2.getReg());
if (unsigned ShImm = ARM_AM::getAM2Offset(MO3.getImm()))
O << ", "
<< ARM_AM::getShiftOpcStr(ARM_AM::getAM2ShiftOpc(MO3.getImm()))
<< " #" << ShImm;
O << "]";
}
void ARMAsmPrinter::printAddrMode2OffsetOperand(const MachineInstr *MI, int Op,
raw_ostream &O) {
const MachineOperand &MO1 = MI->getOperand(Op);
const MachineOperand &MO2 = MI->getOperand(Op+1);
if (!MO1.getReg()) {
unsigned ImmOffs = ARM_AM::getAM2Offset(MO2.getImm());
O << "#"
<< ARM_AM::getAddrOpcStr(ARM_AM::getAM2Op(MO2.getImm()))
<< ImmOffs;
return;
}
O << ARM_AM::getAddrOpcStr(ARM_AM::getAM2Op(MO2.getImm()))
<< getRegisterName(MO1.getReg());
if (unsigned ShImm = ARM_AM::getAM2Offset(MO2.getImm()))
O << ", "
<< ARM_AM::getShiftOpcStr(ARM_AM::getAM2ShiftOpc(MO2.getImm()))
<< " #" << ShImm;
}
void ARMAsmPrinter::printAddrMode3Operand(const MachineInstr *MI, int Op,
raw_ostream &O) {
const MachineOperand &MO1 = MI->getOperand(Op);
const MachineOperand &MO2 = MI->getOperand(Op+1);
const MachineOperand &MO3 = MI->getOperand(Op+2);
assert(TargetRegisterInfo::isPhysicalRegister(MO1.getReg()));
O << "[" << getRegisterName(MO1.getReg());
if (MO2.getReg()) {
O << ", "
<< (char)ARM_AM::getAM3Op(MO3.getImm())
<< getRegisterName(MO2.getReg())
<< "]";
return;
}
if (unsigned ImmOffs = ARM_AM::getAM3Offset(MO3.getImm()))
O << ", #"
<< ARM_AM::getAddrOpcStr(ARM_AM::getAM3Op(MO3.getImm()))
<< ImmOffs;
O << "]";
}
void ARMAsmPrinter::printAddrMode3OffsetOperand(const MachineInstr *MI, int Op,
raw_ostream &O){
const MachineOperand &MO1 = MI->getOperand(Op);
const MachineOperand &MO2 = MI->getOperand(Op+1);
if (MO1.getReg()) {
O << (char)ARM_AM::getAM3Op(MO2.getImm())
<< getRegisterName(MO1.getReg());
return;
}
unsigned ImmOffs = ARM_AM::getAM3Offset(MO2.getImm());
O << "#"
<< ARM_AM::getAddrOpcStr(ARM_AM::getAM3Op(MO2.getImm()))
<< ImmOffs;
}
void ARMAsmPrinter::printAddrMode4Operand(const MachineInstr *MI, int Op,
raw_ostream &O,
const char *Modifier) {
const MachineOperand &MO2 = MI->getOperand(Op+1);
ARM_AM::AMSubMode Mode = ARM_AM::getAM4SubMode(MO2.getImm());
if (Modifier && strcmp(Modifier, "submode") == 0) {
O << ARM_AM::getAMSubModeStr(Mode);
} else if (Modifier && strcmp(Modifier, "wide") == 0) {
ARM_AM::AMSubMode Mode = ARM_AM::getAM4SubMode(MO2.getImm());
if (Mode == ARM_AM::ia)
O << ".w";
} else {
printOperand(MI, Op, O);
}
}
void ARMAsmPrinter::printAddrMode5Operand(const MachineInstr *MI, int Op,
raw_ostream &O,
const char *Modifier) {
const MachineOperand &MO1 = MI->getOperand(Op);
const MachineOperand &MO2 = MI->getOperand(Op+1);
if (!MO1.isReg()) { // FIXME: This is for CP entries, but isn't right.
printOperand(MI, Op, O);
return;
}
assert(TargetRegisterInfo::isPhysicalRegister(MO1.getReg()));
O << "[" << getRegisterName(MO1.getReg());
if (unsigned ImmOffs = ARM_AM::getAM5Offset(MO2.getImm())) {
O << ", #"
<< ARM_AM::getAddrOpcStr(ARM_AM::getAM5Op(MO2.getImm()))
<< ImmOffs*4;
}
O << "]";
}
void ARMAsmPrinter::printAddrMode6Operand(const MachineInstr *MI, int Op,
raw_ostream &O) {
const MachineOperand &MO1 = MI->getOperand(Op);
const MachineOperand &MO2 = MI->getOperand(Op+1);
O << "[" << getRegisterName(MO1.getReg());
if (MO2.getImm()) {
// FIXME: Both darwin as and GNU as violate ARM docs here.
O << ", :" << (MO2.getImm() << 3);
}
O << "]";
}
void ARMAsmPrinter::printAddrMode6OffsetOperand(const MachineInstr *MI, int Op,
raw_ostream &O){
const MachineOperand &MO = MI->getOperand(Op);
if (MO.getReg() == 0)
O << "!";
else
O << ", " << getRegisterName(MO.getReg());
}
void ARMAsmPrinter::printAddrModePCOperand(const MachineInstr *MI, int Op,
raw_ostream &O,
const char *Modifier) {
if (Modifier && strcmp(Modifier, "label") == 0) {
printPCLabel(MI, Op+1, O);
return;
}
const MachineOperand &MO1 = MI->getOperand(Op);
assert(TargetRegisterInfo::isPhysicalRegister(MO1.getReg()));
O << "[pc, " << getRegisterName(MO1.getReg()) << "]";
}
void
ARMAsmPrinter::printBitfieldInvMaskImmOperand(const MachineInstr *MI, int Op,
raw_ostream &O) {
const MachineOperand &MO = MI->getOperand(Op);
uint32_t v = ~MO.getImm();
int32_t lsb = CountTrailingZeros_32(v);
int32_t width = (32 - CountLeadingZeros_32 (v)) - lsb;
assert(MO.isImm() && "Not a valid bf_inv_mask_imm value!");
O << "#" << lsb << ", #" << width;
}
void
ARMAsmPrinter::printMemBOption(const MachineInstr *MI, int OpNum,
raw_ostream &O) {
unsigned val = MI->getOperand(OpNum).getImm();
O << ARM_MB::MemBOptToString(val);
}
void ARMAsmPrinter::printShiftImmOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O) {
unsigned ShiftOp = MI->getOperand(OpNum).getImm();
ARM_AM::ShiftOpc Opc = ARM_AM::getSORegShOp(ShiftOp);
switch (Opc) {
case ARM_AM::no_shift:
return;
case ARM_AM::lsl:
O << ", lsl #";
break;
case ARM_AM::asr:
O << ", asr #";
break;
default:
assert(0 && "unexpected shift opcode for shift immediate operand");
}
O << ARM_AM::getSORegOffset(ShiftOp);
}
//===--------------------------------------------------------------------===//
void ARMAsmPrinter::printThumbS4ImmOperand(const MachineInstr *MI, int Op,
raw_ostream &O) {
O << "#" << MI->getOperand(Op).getImm() * 4;
}
void
ARMAsmPrinter::printThumbITMask(const MachineInstr *MI, int Op,
raw_ostream &O) {
// (3 - the number of trailing zeros) is the number of then / else.
unsigned Mask = MI->getOperand(Op).getImm();
unsigned CondBit0 = Mask >> 4 & 1;
unsigned NumTZ = CountTrailingZeros_32(Mask);
assert(NumTZ <= 3 && "Invalid IT mask!");
for (unsigned Pos = 3, e = NumTZ; Pos > e; --Pos) {
bool T = ((Mask >> Pos) & 1) == CondBit0;
if (T)
O << 't';
else
O << 'e';
}
}
void
ARMAsmPrinter::printThumbAddrModeRROperand(const MachineInstr *MI, int Op,
raw_ostream &O) {
const MachineOperand &MO1 = MI->getOperand(Op);
const MachineOperand &MO2 = MI->getOperand(Op+1);
O << "[" << getRegisterName(MO1.getReg());
O << ", " << getRegisterName(MO2.getReg()) << "]";
}
void
ARMAsmPrinter::printThumbAddrModeRI5Operand(const MachineInstr *MI, int Op,
raw_ostream &O,
unsigned Scale) {
const MachineOperand &MO1 = MI->getOperand(Op);
const MachineOperand &MO2 = MI->getOperand(Op+1);
const MachineOperand &MO3 = MI->getOperand(Op+2);
if (!MO1.isReg()) { // FIXME: This is for CP entries, but isn't right.
printOperand(MI, Op, O);
return;
}
O << "[" << getRegisterName(MO1.getReg());
if (MO3.getReg())
O << ", " << getRegisterName(MO3.getReg());
else if (unsigned ImmOffs = MO2.getImm())
O << ", #" << ImmOffs * Scale;
O << "]";
}
void
ARMAsmPrinter::printThumbAddrModeS1Operand(const MachineInstr *MI, int Op,
raw_ostream &O) {
printThumbAddrModeRI5Operand(MI, Op, O, 1);
}
void
ARMAsmPrinter::printThumbAddrModeS2Operand(const MachineInstr *MI, int Op,
raw_ostream &O) {
printThumbAddrModeRI5Operand(MI, Op, O, 2);
}
void
ARMAsmPrinter::printThumbAddrModeS4Operand(const MachineInstr *MI, int Op,
raw_ostream &O) {
printThumbAddrModeRI5Operand(MI, Op, O, 4);
}
void ARMAsmPrinter::printThumbAddrModeSPOperand(const MachineInstr *MI,int Op,
raw_ostream &O) {
const MachineOperand &MO1 = MI->getOperand(Op);
const MachineOperand &MO2 = MI->getOperand(Op+1);
O << "[" << getRegisterName(MO1.getReg());
if (unsigned ImmOffs = MO2.getImm())
O << ", #" << ImmOffs*4;
O << "]";
}
//===--------------------------------------------------------------------===//
// Constant shifts t2_so_reg is a 2-operand unit corresponding to the Thumb2
// register with shift forms.
// REG 0 0 - e.g. R5
// REG IMM, SH_OPC - e.g. R5, LSL #3
void ARMAsmPrinter::printT2SOOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O) {
const MachineOperand &MO1 = MI->getOperand(OpNum);
const MachineOperand &MO2 = MI->getOperand(OpNum+1);
unsigned Reg = MO1.getReg();
assert(TargetRegisterInfo::isPhysicalRegister(Reg));
O << getRegisterName(Reg);
// Print the shift opc.
assert(MO2.isImm() && "Not a valid t2_so_reg value!");
ARM_AM::ShiftOpc ShOpc = ARM_AM::getSORegShOp(MO2.getImm());
O << ", " << ARM_AM::getShiftOpcStr(ShOpc);
if (ShOpc != ARM_AM::rrx)
O << " #" << ARM_AM::getSORegOffset(MO2.getImm());
}
void ARMAsmPrinter::printT2AddrModeImm12Operand(const MachineInstr *MI,
int OpNum,
raw_ostream &O) {
const MachineOperand &MO1 = MI->getOperand(OpNum);
const MachineOperand &MO2 = MI->getOperand(OpNum+1);
O << "[" << getRegisterName(MO1.getReg());
unsigned OffImm = MO2.getImm();
if (OffImm) // Don't print +0.
O << ", #" << OffImm;
O << "]";
}
void ARMAsmPrinter::printT2AddrModeImm8Operand(const MachineInstr *MI,
int OpNum,
raw_ostream &O) {
const MachineOperand &MO1 = MI->getOperand(OpNum);
const MachineOperand &MO2 = MI->getOperand(OpNum+1);
O << "[" << getRegisterName(MO1.getReg());
int32_t OffImm = (int32_t)MO2.getImm();
// Don't print +0.
if (OffImm < 0)
O << ", #-" << -OffImm;
else if (OffImm > 0)
O << ", #" << OffImm;
O << "]";
}
void ARMAsmPrinter::printT2AddrModeImm8s4Operand(const MachineInstr *MI,
int OpNum,
raw_ostream &O) {
const MachineOperand &MO1 = MI->getOperand(OpNum);
const MachineOperand &MO2 = MI->getOperand(OpNum+1);
O << "[" << getRegisterName(MO1.getReg());
int32_t OffImm = (int32_t)MO2.getImm() / 4;
// Don't print +0.
if (OffImm < 0)
O << ", #-" << -OffImm * 4;
else if (OffImm > 0)
O << ", #" << OffImm * 4;
O << "]";
}
void ARMAsmPrinter::printT2AddrModeImm8OffsetOperand(const MachineInstr *MI,
int OpNum,
raw_ostream &O) {
const MachineOperand &MO1 = MI->getOperand(OpNum);
int32_t OffImm = (int32_t)MO1.getImm();
// Don't print +0.
if (OffImm < 0)
O << "#-" << -OffImm;
else if (OffImm > 0)
O << "#" << OffImm;
}
void ARMAsmPrinter::printT2AddrModeSoRegOperand(const MachineInstr *MI,
int OpNum,
raw_ostream &O) {
const MachineOperand &MO1 = MI->getOperand(OpNum);
const MachineOperand &MO2 = MI->getOperand(OpNum+1);
const MachineOperand &MO3 = MI->getOperand(OpNum+2);
O << "[" << getRegisterName(MO1.getReg());
assert(MO2.getReg() && "Invalid so_reg load / store address!");
O << ", " << getRegisterName(MO2.getReg());
unsigned ShAmt = MO3.getImm();
if (ShAmt) {
assert(ShAmt <= 3 && "Not a valid Thumb2 addressing mode!");
O << ", lsl #" << ShAmt;
}
O << "]";
}
//===--------------------------------------------------------------------===//
void ARMAsmPrinter::printPredicateOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O) {
ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(OpNum).getImm();
if (CC != ARMCC::AL)
O << ARMCondCodeToString(CC);
}
void ARMAsmPrinter::printMandatoryPredicateOperand(const MachineInstr *MI,
int OpNum,
raw_ostream &O) {
ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(OpNum).getImm();
O << ARMCondCodeToString(CC);
}
void ARMAsmPrinter::printSBitModifierOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O){
unsigned Reg = MI->getOperand(OpNum).getReg();
if (Reg) {
assert(Reg == ARM::CPSR && "Expect ARM CPSR register!");
O << 's';
}
}
void ARMAsmPrinter::printPCLabel(const MachineInstr *MI, int OpNum,
raw_ostream &O) {
int Id = (int)MI->getOperand(OpNum).getImm();
O << MAI->getPrivateGlobalPrefix()
<< "PC" << getFunctionNumber() << "_" << Id;
}
void ARMAsmPrinter::printRegisterList(const MachineInstr *MI, int OpNum,
raw_ostream &O) {
O << "{";
for (unsigned i = OpNum, e = MI->getNumOperands(); i != e; ++i) {
if (MI->getOperand(i).isImplicit())
continue;
if ((int)i != OpNum) O << ", ";
printOperand(MI, i, O);
}
O << "}";
}
void ARMAsmPrinter::printCPInstOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O, const char *Modifier) {
assert(Modifier && "This operand only works with a modifier!");
// There are two aspects to a CONSTANTPOOL_ENTRY operand, the label and the
// data itself.
if (!strcmp(Modifier, "label")) {
unsigned ID = MI->getOperand(OpNum).getImm();
OutStreamer.EmitLabel(GetCPISymbol(ID));
} else {
assert(!strcmp(Modifier, "cpentry") && "Unknown modifier for CPE");
unsigned CPI = MI->getOperand(OpNum).getIndex();
const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI];
if (MCPE.isMachineConstantPoolEntry()) {
EmitMachineConstantPoolValue(MCPE.Val.MachineCPVal);
} else {
EmitGlobalConstant(MCPE.Val.ConstVal);
}
}
}
MCSymbol *ARMAsmPrinter::
GetARMSetPICJumpTableLabel2(unsigned uid, unsigned uid2,
const MachineBasicBlock *MBB) const {
SmallString<60> Name;
raw_svector_ostream(Name) << MAI->getPrivateGlobalPrefix()
<< getFunctionNumber() << '_' << uid << '_' << uid2
<< "_set_" << MBB->getNumber();
return OutContext.GetOrCreateSymbol(Name.str());
}
MCSymbol *ARMAsmPrinter::
GetARMJTIPICJumpTableLabel2(unsigned uid, unsigned uid2) const {
SmallString<60> Name;
raw_svector_ostream(Name) << MAI->getPrivateGlobalPrefix() << "JTI"
<< getFunctionNumber() << '_' << uid << '_' << uid2;
return OutContext.GetOrCreateSymbol(Name.str());
}
MCSymbol *ARMAsmPrinter::GetARMSJLJEHLabel(void) const {
SmallString<60> Name;
raw_svector_ostream(Name) << MAI->getPrivateGlobalPrefix() << "SJLJEH"
<< getFunctionNumber();
return OutContext.GetOrCreateSymbol(Name.str());
}
void ARMAsmPrinter::printJTBlockOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O) {
assert(!Subtarget->isThumb2() && "Thumb2 should use double-jump jumptables!");
const MachineOperand &MO1 = MI->getOperand(OpNum);
const MachineOperand &MO2 = MI->getOperand(OpNum+1); // Unique Id
unsigned JTI = MO1.getIndex();
MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel2(JTI, MO2.getImm());
// Can't use EmitLabel until instprinter happens, label comes out in the wrong
// order.
O << "\n" << *JTISymbol << ":\n";
const char *JTEntryDirective = MAI->getData32bitsDirective();
const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
bool UseSet= MAI->hasSetDirective() && TM.getRelocationModel() == Reloc::PIC_;
SmallPtrSet<MachineBasicBlock*, 8> JTSets;
for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) {
MachineBasicBlock *MBB = JTBBs[i];
bool isNew = JTSets.insert(MBB);
if (UseSet && isNew) {
O << "\t.set\t"
<< *GetARMSetPICJumpTableLabel2(JTI, MO2.getImm(), MBB) << ','
<< *MBB->getSymbol() << '-' << *JTISymbol << '\n';
}
O << JTEntryDirective << ' ';
if (UseSet)
O << *GetARMSetPICJumpTableLabel2(JTI, MO2.getImm(), MBB);
else if (TM.getRelocationModel() == Reloc::PIC_)
O << *MBB->getSymbol() << '-' << *JTISymbol;
else
O << *MBB->getSymbol();
if (i != e-1)
O << '\n';
}
}
void ARMAsmPrinter::printJT2BlockOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O) {
const MachineOperand &MO1 = MI->getOperand(OpNum);
const MachineOperand &MO2 = MI->getOperand(OpNum+1); // Unique Id
unsigned JTI = MO1.getIndex();
MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel2(JTI, MO2.getImm());
// Can't use EmitLabel until instprinter happens, label comes out in the wrong
// order.
O << "\n" << *JTISymbol << ":\n";
const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
bool ByteOffset = false, HalfWordOffset = false;
if (MI->getOpcode() == ARM::t2TBB)
ByteOffset = true;
else if (MI->getOpcode() == ARM::t2TBH)
HalfWordOffset = true;
for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) {
MachineBasicBlock *MBB = JTBBs[i];
if (ByteOffset)
O << MAI->getData8bitsDirective();
else if (HalfWordOffset)
O << MAI->getData16bitsDirective();
if (ByteOffset || HalfWordOffset)
O << '(' << *MBB->getSymbol() << "-" << *JTISymbol << ")/2";
else
O << "\tb.w " << *MBB->getSymbol();
if (i != e-1)
O << '\n';
}
}
void ARMAsmPrinter::printTBAddrMode(const MachineInstr *MI, int OpNum,
raw_ostream &O) {
O << "[pc, " << getRegisterName(MI->getOperand(OpNum).getReg());
if (MI->getOpcode() == ARM::t2TBH)
O << ", lsl #1";
O << ']';
}
void ARMAsmPrinter::printNoHashImmediate(const MachineInstr *MI, int OpNum,
raw_ostream &O) {
O << MI->getOperand(OpNum).getImm();
}
void ARMAsmPrinter::printVFPf32ImmOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O) {
const ConstantFP *FP = MI->getOperand(OpNum).getFPImm();
O << '#' << FP->getValueAPF().convertToFloat();
if (isVerbose()) {
O << "\t\t" << MAI->getCommentString() << ' ';
WriteAsOperand(O, FP, /*PrintType=*/false);
}
}
void ARMAsmPrinter::printVFPf64ImmOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O) {
const ConstantFP *FP = MI->getOperand(OpNum).getFPImm();
O << '#' << FP->getValueAPF().convertToDouble();
if (isVerbose()) {
O << "\t\t" << MAI->getCommentString() << ' ';
WriteAsOperand(O, FP, /*PrintType=*/false);
}
}
void ARMAsmPrinter::printNEONModImmOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O) {
unsigned EncodedImm = MI->getOperand(OpNum).getImm();
unsigned EltBits;
uint64_t Val = ARM_AM::decodeNEONModImm(EncodedImm, EltBits);
O << "#0x" << utohexstr(Val);
}
bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum,
unsigned AsmVariant, const char *ExtraCode,
raw_ostream &O) {
// Does this asm operand have a single letter operand modifier?
if (ExtraCode && ExtraCode[0]) {
if (ExtraCode[1] != 0) return true; // Unknown modifier.
switch (ExtraCode[0]) {
default: return true; // Unknown modifier.
case 'a': // Print as a memory address.
if (MI->getOperand(OpNum).isReg()) {
O << "[" << getRegisterName(MI->getOperand(OpNum).getReg()) << "]";
return false;
}
// Fallthrough
case 'c': // Don't print "#" before an immediate operand.
if (!MI->getOperand(OpNum).isImm())
return true;
printNoHashImmediate(MI, OpNum, O);
return false;
case 'P': // Print a VFP double precision register.
case 'q': // Print a NEON quad precision register.
printOperand(MI, OpNum, O);
return false;
case 'Q':
case 'R':
case 'H':
report_fatal_error("llvm does not support 'Q', 'R', and 'H' modifiers!");
return true;
}
}
printOperand(MI, OpNum, O);
return false;
}
bool ARMAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
unsigned OpNum, unsigned AsmVariant,
const char *ExtraCode,
raw_ostream &O) {
if (ExtraCode && ExtraCode[0])
return true; // Unknown modifier.
const MachineOperand &MO = MI->getOperand(OpNum);
assert(MO.isReg() && "unexpected inline asm memory operand");
O << "[" << getRegisterName(MO.getReg()) << "]";
return false;
}
void ARMAsmPrinter::EmitInstruction(const MachineInstr *MI) {
if (EnableMCInst) {
printInstructionThroughMCStreamer(MI);
return;
}
if (MI->getOpcode() == ARM::CONSTPOOL_ENTRY)
EmitAlignment(2);
SmallString<128> Str;
raw_svector_ostream OS(Str);
if (MI->getOpcode() == ARM::DBG_VALUE) {
unsigned NOps = MI->getNumOperands();
assert(NOps==4);
OS << '\t' << MAI->getCommentString() << "DEBUG_VALUE: ";
// cast away const; DIetc do not take const operands for some reason.
DIVariable V(const_cast<MDNode *>(MI->getOperand(NOps-1).getMetadata()));
OS << V.getName();
OS << " <- ";
// Frame address. Currently handles register +- offset only.
assert(MI->getOperand(0).isReg() && MI->getOperand(1).isImm());
OS << '['; printOperand(MI, 0, OS); OS << '+'; printOperand(MI, 1, OS);
OS << ']';
OS << "+";
printOperand(MI, NOps-2, OS);
} else if (MI->getOpcode() == ARM::MOVs) {
// FIXME: Thumb variants?
const MachineOperand &Dst = MI->getOperand(0);
const MachineOperand &MO1 = MI->getOperand(1);
const MachineOperand &MO2 = MI->getOperand(2);
const MachineOperand &MO3 = MI->getOperand(3);
OS << '\t' << ARM_AM::getShiftOpcStr(ARM_AM::getSORegShOp(MO3.getImm()));
printSBitModifierOperand(MI, 6, OS);
printPredicateOperand(MI, 4, OS);
OS << '\t' << getRegisterName(Dst.getReg())
<< ", " << getRegisterName(MO1.getReg());
if (ARM_AM::getSORegShOp(MO3.getImm()) != ARM_AM::rrx) {
OS << ", ";
if (MO2.getReg()) {
OS << getRegisterName(MO2.getReg());
assert(ARM_AM::getSORegOffset(MO3.getImm()) == 0);
} else {
OS << "#" << ARM_AM::getSORegOffset(MO3.getImm());
}
}
} else
// A8.6.123 PUSH
if ((MI->getOpcode() == ARM::STM_UPD || MI->getOpcode() == ARM::t2STM_UPD) &&
MI->getOperand(0).getReg() == ARM::SP &&
ARM_AM::getAM4SubMode(MI->getOperand(2).getImm()) == ARM_AM::db) {
OS << '\t' << "push";
printPredicateOperand(MI, 3, OS);
OS << '\t';
printRegisterList(MI, 5, OS);
} else
// A8.6.122 POP
if ((MI->getOpcode() == ARM::LDM_UPD || MI->getOpcode() == ARM::t2LDM_UPD) &&
MI->getOperand(0).getReg() == ARM::SP &&
ARM_AM::getAM4SubMode(MI->getOperand(2).getImm()) == ARM_AM::ia) {
OS << '\t' << "pop";
printPredicateOperand(MI, 3, OS);
OS << '\t';
printRegisterList(MI, 5, OS);
} else
// A8.6.355 VPUSH
if ((MI->getOpcode() == ARM::VSTMS_UPD || MI->getOpcode() ==ARM::VSTMD_UPD) &&
MI->getOperand(0).getReg() == ARM::SP &&
ARM_AM::getAM4SubMode(MI->getOperand(2).getImm()) == ARM_AM::db) {
OS << '\t' << "vpush";
printPredicateOperand(MI, 3, OS);
OS << '\t';
printRegisterList(MI, 5, OS);
} else
// A8.6.354 VPOP
if ((MI->getOpcode() == ARM::VLDMS_UPD || MI->getOpcode() ==ARM::VLDMD_UPD) &&
MI->getOperand(0).getReg() == ARM::SP &&
ARM_AM::getAM4SubMode(MI->getOperand(2).getImm()) == ARM_AM::ia) {
OS << '\t' << "vpop";
printPredicateOperand(MI, 3, OS);
OS << '\t';
printRegisterList(MI, 5, OS);
} else
// TRAP and tTRAP need special handling for non-Darwin. The GNU binutils
// don't (yet) support the 'trap' mnemonic. (Use decimal, not hex, to
// be consistent with the MC instruction printer.)
// FIXME: This really should be in AsmPrinter/ARMInstPrinter.cpp, not here.
// Need a way to ask "isTargetDarwin()" there, first, though.
if (MI->getOpcode() == ARM::TRAP && !Subtarget->isTargetDarwin()) {
OS << "\t.long\t3892305662\t\t" << MAI->getCommentString() << "trap";
} else if (MI->getOpcode() == ARM::tTRAP && !Subtarget->isTargetDarwin()) {
OS << "\t.short\t57086\t\t\t" << MAI->getCommentString() << " trap";
} else
printInstruction(MI, OS);
// Output the instruction to the stream
OutStreamer.EmitRawText(OS.str());
// Make sure the instruction that follows TBB is 2-byte aligned.
// FIXME: Constant island pass should insert an "ALIGN" instruction instead.
if (MI->getOpcode() == ARM::t2TBB)
EmitAlignment(1);
}
void ARMAsmPrinter::EmitStartOfAsmFile(Module &M) {
if (Subtarget->isTargetDarwin()) {
Reloc::Model RelocM = TM.getRelocationModel();
if (RelocM == Reloc::PIC_ || RelocM == Reloc::DynamicNoPIC) {
// Declare all the text sections up front (before the DWARF sections
// emitted by AsmPrinter::doInitialization) so the assembler will keep
// them together at the beginning of the object file. This helps
// avoid out-of-range branches that are due a fundamental limitation of
// the way symbol offsets are encoded with the current Darwin ARM
// relocations.
const TargetLoweringObjectFileMachO &TLOFMacho =
static_cast<const TargetLoweringObjectFileMachO &>(
getObjFileLowering());
OutStreamer.SwitchSection(TLOFMacho.getTextSection());
OutStreamer.SwitchSection(TLOFMacho.getTextCoalSection());
OutStreamer.SwitchSection(TLOFMacho.getConstTextCoalSection());
if (RelocM == Reloc::DynamicNoPIC) {
const MCSection *sect =
OutContext.getMachOSection("__TEXT", "__symbol_stub4",
MCSectionMachO::S_SYMBOL_STUBS,
12, SectionKind::getText());
OutStreamer.SwitchSection(sect);
} else {
const MCSection *sect =
OutContext.getMachOSection("__TEXT", "__picsymbolstub4",
MCSectionMachO::S_SYMBOL_STUBS,
16, SectionKind::getText());
OutStreamer.SwitchSection(sect);
}
const MCSection *StaticInitSect =
OutContext.getMachOSection("__TEXT", "__StaticInit",
MCSectionMachO::S_REGULAR |
MCSectionMachO::S_ATTR_PURE_INSTRUCTIONS,
SectionKind::getText());
OutStreamer.SwitchSection(StaticInitSect);
}
}
// Use unified assembler syntax.
OutStreamer.EmitRawText(StringRef("\t.syntax unified"));
// Emit ARM Build Attributes
if (Subtarget->isTargetELF()) {
// CPU Type
std::string CPUString = Subtarget->getCPUString();
if (CPUString != "generic")
OutStreamer.EmitRawText("\t.cpu " + Twine(CPUString));
// FIXME: Emit FPU type
if (Subtarget->hasVFP2())
OutStreamer.EmitRawText("\t.eabi_attribute " +
Twine(ARMBuildAttrs::VFP_arch) + ", 2");
// Signal various FP modes.
if (!UnsafeFPMath) {
OutStreamer.EmitRawText("\t.eabi_attribute " +
Twine(ARMBuildAttrs::ABI_FP_denormal) + ", 1");
OutStreamer.EmitRawText("\t.eabi_attribute " +
Twine(ARMBuildAttrs::ABI_FP_exceptions) + ", 1");
}
if (NoInfsFPMath && NoNaNsFPMath)
OutStreamer.EmitRawText("\t.eabi_attribute " +
Twine(ARMBuildAttrs::ABI_FP_number_model)+ ", 1");
else
OutStreamer.EmitRawText("\t.eabi_attribute " +
Twine(ARMBuildAttrs::ABI_FP_number_model)+ ", 3");
// 8-bytes alignment stuff.
OutStreamer.EmitRawText("\t.eabi_attribute " +
Twine(ARMBuildAttrs::ABI_align8_needed) + ", 1");
OutStreamer.EmitRawText("\t.eabi_attribute " +
Twine(ARMBuildAttrs::ABI_align8_preserved) + ", 1");
// Hard float. Use both S and D registers and conform to AAPCS-VFP.
if (Subtarget->isAAPCS_ABI() && FloatABIType == FloatABI::Hard) {
OutStreamer.EmitRawText("\t.eabi_attribute " +
Twine(ARMBuildAttrs::ABI_HardFP_use) + ", 3");
OutStreamer.EmitRawText("\t.eabi_attribute " +
Twine(ARMBuildAttrs::ABI_VFP_args) + ", 1");
}
// FIXME: Should we signal R9 usage?
}
}
void ARMAsmPrinter::EmitEndOfAsmFile(Module &M) {
if (Subtarget->isTargetDarwin()) {
// All darwin targets use mach-o.
const TargetLoweringObjectFileMachO &TLOFMacho =
static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering());
MachineModuleInfoMachO &MMIMacho =
MMI->getObjFileInfo<MachineModuleInfoMachO>();
// Output non-lazy-pointers for external and common global variables.
MachineModuleInfoMachO::SymbolListTy Stubs = MMIMacho.GetGVStubList();
if (!Stubs.empty()) {
// Switch with ".non_lazy_symbol_pointer" directive.
OutStreamer.SwitchSection(TLOFMacho.getNonLazySymbolPointerSection());
EmitAlignment(2);
for (unsigned i = 0, e = Stubs.size(); i != e; ++i) {
// L_foo$stub:
OutStreamer.EmitLabel(Stubs[i].first);
// .indirect_symbol _foo
MachineModuleInfoImpl::StubValueTy &MCSym = Stubs[i].second;
OutStreamer.EmitSymbolAttribute(MCSym.getPointer(),MCSA_IndirectSymbol);
if (MCSym.getInt())
// External to current translation unit.
OutStreamer.EmitIntValue(0, 4/*size*/, 0/*addrspace*/);
else
// Internal to current translation unit.
//
// When we place the LSDA into the TEXT section, the type info
// pointers need to be indirect and pc-rel. We accomplish this by
// using NLPs; however, sometimes the types are local to the file.
// We need to fill in the value for the NLP in those cases.
OutStreamer.EmitValue(MCSymbolRefExpr::Create(MCSym.getPointer(),
OutContext),
4/*size*/, 0/*addrspace*/);
}
Stubs.clear();
OutStreamer.AddBlankLine();
}
Stubs = MMIMacho.GetHiddenGVStubList();
if (!Stubs.empty()) {
OutStreamer.SwitchSection(getObjFileLowering().getDataSection());
EmitAlignment(2);
for (unsigned i = 0, e = Stubs.size(); i != e; ++i) {
// L_foo$stub:
OutStreamer.EmitLabel(Stubs[i].first);
// .long _foo
OutStreamer.EmitValue(MCSymbolRefExpr::
Create(Stubs[i].second.getPointer(),
OutContext),
4/*size*/, 0/*addrspace*/);
}
Stubs.clear();
OutStreamer.AddBlankLine();
}
// Funny Darwin hack: This flag tells the linker that no global symbols
// contain code that falls through to other global symbols (e.g. the obvious
// implementation of multiple entry points). If this doesn't occur, the
// linker can safely perform dead code stripping. Since LLVM never
// generates code that does this, it is always safe to set.
OutStreamer.EmitAssemblerFlag(MCAF_SubsectionsViaSymbols);
}
}
//===----------------------------------------------------------------------===//
static MCSymbol *getPICLabel(const char *Prefix, unsigned FunctionNumber,
unsigned LabelId, MCContext &Ctx) {
MCSymbol *Label = Ctx.GetOrCreateSymbol(Twine(Prefix)
+ "PC" + Twine(FunctionNumber) + "_" + Twine(LabelId));
return Label;
}
void ARMAsmPrinter::EmitJumpTable(const MachineInstr *MI) {
unsigned Opcode = MI->getOpcode();
int OpNum = 1;
if (Opcode == ARM::BR_JTadd)
OpNum = 2;
else if (Opcode == ARM::BR_JTm)
OpNum = 3;
const MachineOperand &MO1 = MI->getOperand(OpNum);
const MachineOperand &MO2 = MI->getOperand(OpNum+1); // Unique Id
unsigned JTI = MO1.getIndex();
// Emit a label for the jump table.
MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel2(JTI, MO2.getImm());
OutStreamer.EmitLabel(JTISymbol);
// Emit each entry of the table.
const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) {
MachineBasicBlock *MBB = JTBBs[i];
// Construct an MCExpr for the entry. We want a value of the form:
// (BasicBlockAddr - TableBeginAddr)
//
// For example, a table with entries jumping to basic blocks BB0 and BB1
// would look like:
// LJTI_0_0:
// .word (LBB0 - LJTI_0_0)
// .word (LBB1 - LJTI_0_0)
const MCExpr *Expr = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
if (TM.getRelocationModel() == Reloc::PIC_)
Expr = MCBinaryExpr::CreateSub(Expr, MCSymbolRefExpr::Create(JTISymbol,
OutContext),
OutContext);
OutStreamer.EmitValue(Expr, 4);
}
}
void ARMAsmPrinter::EmitJump2Table(const MachineInstr *MI) {
unsigned Opcode = MI->getOpcode();
int OpNum = (Opcode == ARM::t2BR_JT) ? 2 : 1;
const MachineOperand &MO1 = MI->getOperand(OpNum);
const MachineOperand &MO2 = MI->getOperand(OpNum+1); // Unique Id
unsigned JTI = MO1.getIndex();
// Emit a label for the jump table.
MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel2(JTI, MO2.getImm());
OutStreamer.EmitLabel(JTISymbol);
// Emit each entry of the table.
const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
unsigned OffsetWidth = 4;
if (MI->getOpcode() == ARM::t2TBB)
OffsetWidth = 1;
else if (MI->getOpcode() == ARM::t2TBH)
OffsetWidth = 2;
for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) {
MachineBasicBlock *MBB = JTBBs[i];
const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::Create(MBB->getSymbol(),
OutContext);
// If this isn't a TBB or TBH, the entries are direct branch instructions.
if (OffsetWidth == 4) {
MCInst BrInst;
BrInst.setOpcode(ARM::t2B);
BrInst.addOperand(MCOperand::CreateExpr(MBBSymbolExpr));
OutStreamer.EmitInstruction(BrInst);
continue;
}
// Otherwise it's an offset from the dispatch instruction. Construct an
// MCExpr for the entry. We want a value of the form:
// (BasicBlockAddr - TableBeginAddr) / 2
//
// For example, a TBB table with entries jumping to basic blocks BB0 and BB1
// would look like:
// LJTI_0_0:
// .byte (LBB0 - LJTI_0_0) / 2
// .byte (LBB1 - LJTI_0_0) / 2
const MCExpr *Expr =
MCBinaryExpr::CreateSub(MBBSymbolExpr,
MCSymbolRefExpr::Create(JTISymbol, OutContext),
OutContext);
Expr = MCBinaryExpr::CreateDiv(Expr, MCConstantExpr::Create(2, OutContext),
OutContext);
OutStreamer.EmitValue(Expr, OffsetWidth);
}
// Make sure the instruction that follows TBB is 2-byte aligned.
// FIXME: Constant island pass should insert an "ALIGN" instruction instead.
if (MI->getOpcode() == ARM::t2TBB)
EmitAlignment(1);
}
void ARMAsmPrinter::printInstructionThroughMCStreamer(const MachineInstr *MI) {
ARMMCInstLower MCInstLowering(OutContext, *Mang, *this);
switch (MI->getOpcode()) {
case ARM::t2MOVi32imm:
assert(0 && "Should be lowered by thumb2it pass");
default: break;
case ARM::tPICADD: {
// This is a pseudo op for a label + instruction sequence, which looks like:
// LPC0:
// add r0, pc
// This adds the address of LPC0 to r0.
// Emit the label.
OutStreamer.EmitLabel(getPICLabel(MAI->getPrivateGlobalPrefix(),
getFunctionNumber(), MI->getOperand(2).getImm(),
OutContext));
// Form and emit the add.
MCInst AddInst;
AddInst.setOpcode(ARM::tADDhirr);
AddInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
AddInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
AddInst.addOperand(MCOperand::CreateReg(ARM::PC));
// Add predicate operands.
AddInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
AddInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(AddInst);
return;
}
case ARM::PICADD: { // FIXME: Remove asm string from td file.
// This is a pseudo op for a label + instruction sequence, which looks like:
// LPC0:
// add r0, pc, r0
// This adds the address of LPC0 to r0.
// Emit the label.
OutStreamer.EmitLabel(getPICLabel(MAI->getPrivateGlobalPrefix(),
getFunctionNumber(), MI->getOperand(2).getImm(),
OutContext));
// Form and emit the add.
MCInst AddInst;
AddInst.setOpcode(ARM::ADDrr);
AddInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
AddInst.addOperand(MCOperand::CreateReg(ARM::PC));
AddInst.addOperand(MCOperand::CreateReg(MI->getOperand(1).getReg()));
// Add predicate operands.
AddInst.addOperand(MCOperand::CreateImm(MI->getOperand(3).getImm()));
AddInst.addOperand(MCOperand::CreateReg(MI->getOperand(4).getReg()));
// Add 's' bit operand (always reg0 for this)
AddInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(AddInst);
return;
}
case ARM::PICSTR:
case ARM::PICSTRB:
case ARM::PICSTRH:
case ARM::PICLDR:
case ARM::PICLDRB:
case ARM::PICLDRH:
case ARM::PICLDRSB:
case ARM::PICLDRSH: {
// This is a pseudo op for a label + instruction sequence, which looks like:
// LPC0:
// OP r0, [pc, r0]
// The LCP0 label is referenced by a constant pool entry in order to get
// a PC-relative address at the ldr instruction.
// Emit the label.
OutStreamer.EmitLabel(getPICLabel(MAI->getPrivateGlobalPrefix(),
getFunctionNumber(), MI->getOperand(2).getImm(),
OutContext));
// Form and emit the load
unsigned Opcode;
switch (MI->getOpcode()) {
default:
llvm_unreachable("Unexpected opcode!");
case ARM::PICSTR: Opcode = ARM::STR; break;
case ARM::PICSTRB: Opcode = ARM::STRB; break;
case ARM::PICSTRH: Opcode = ARM::STRH; break;
case ARM::PICLDR: Opcode = ARM::LDR; break;
case ARM::PICLDRB: Opcode = ARM::LDRB; break;
case ARM::PICLDRH: Opcode = ARM::LDRH; break;
case ARM::PICLDRSB: Opcode = ARM::LDRSB; break;
case ARM::PICLDRSH: Opcode = ARM::LDRSH; break;
}
MCInst LdStInst;
LdStInst.setOpcode(Opcode);
LdStInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
LdStInst.addOperand(MCOperand::CreateReg(ARM::PC));
LdStInst.addOperand(MCOperand::CreateReg(MI->getOperand(1).getReg()));
LdStInst.addOperand(MCOperand::CreateImm(0));
// Add predicate operands.
LdStInst.addOperand(MCOperand::CreateImm(MI->getOperand(3).getImm()));
LdStInst.addOperand(MCOperand::CreateReg(MI->getOperand(4).getReg()));
OutStreamer.EmitInstruction(LdStInst);
return;
}
case ARM::CONSTPOOL_ENTRY: { // FIXME: Remove asm string from td file.
/// CONSTPOOL_ENTRY - This instruction represents a floating constant pool
/// in the function. The first operand is the ID# for this instruction, the
/// second is the index into the MachineConstantPool that this is, the third
/// is the size in bytes of this constant pool entry.
unsigned LabelId = (unsigned)MI->getOperand(0).getImm();
unsigned CPIdx = (unsigned)MI->getOperand(1).getIndex();
EmitAlignment(2);
OutStreamer.EmitLabel(GetCPISymbol(LabelId));
const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx];
if (MCPE.isMachineConstantPoolEntry())
EmitMachineConstantPoolValue(MCPE.Val.MachineCPVal);
else
EmitGlobalConstant(MCPE.Val.ConstVal);
return;
}
case ARM::MOVi2pieces: { // FIXME: Remove asmstring from td file.
// This is a hack that lowers as a two instruction sequence.
unsigned DstReg = MI->getOperand(0).getReg();
unsigned ImmVal = (unsigned)MI->getOperand(1).getImm();
unsigned SOImmValV1 = ARM_AM::getSOImmTwoPartFirst(ImmVal);
unsigned SOImmValV2 = ARM_AM::getSOImmTwoPartSecond(ImmVal);
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::MOVi);
TmpInst.addOperand(MCOperand::CreateReg(DstReg));
TmpInst.addOperand(MCOperand::CreateImm(SOImmValV1));
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(MI->getOperand(2).getImm()));
TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(3).getReg()));
TmpInst.addOperand(MCOperand::CreateReg(0)); // cc_out
OutStreamer.EmitInstruction(TmpInst);
}
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::ORRri);
TmpInst.addOperand(MCOperand::CreateReg(DstReg)); // dstreg
TmpInst.addOperand(MCOperand::CreateReg(DstReg)); // inreg
TmpInst.addOperand(MCOperand::CreateImm(SOImmValV2)); // so_imm
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(MI->getOperand(2).getImm()));
TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(3).getReg()));
TmpInst.addOperand(MCOperand::CreateReg(0)); // cc_out
OutStreamer.EmitInstruction(TmpInst);
}
return;
}
case ARM::MOVi32imm: { // FIXME: Remove asmstring from td file.
// This is a hack that lowers as a two instruction sequence.
unsigned DstReg = MI->getOperand(0).getReg();
const MachineOperand &MO = MI->getOperand(1);
MCOperand V1, V2;
if (MO.isImm()) {
unsigned ImmVal = (unsigned)MI->getOperand(1).getImm();
V1 = MCOperand::CreateImm(ImmVal & 65535);
V2 = MCOperand::CreateImm(ImmVal >> 16);
} else if (MO.isGlobal()) {
MCSymbol *Symbol = MCInstLowering.GetGlobalAddressSymbol(MO.getGlobal());
const MCSymbolRefExpr *SymRef1 =
MCSymbolRefExpr::Create(Symbol,
MCSymbolRefExpr::VK_ARM_LO16, OutContext);
const MCSymbolRefExpr *SymRef2 =
MCSymbolRefExpr::Create(Symbol,
MCSymbolRefExpr::VK_ARM_HI16, OutContext);
V1 = MCOperand::CreateExpr(SymRef1);
V2 = MCOperand::CreateExpr(SymRef2);
} else {
// FIXME: External symbol?
MI->dump();
llvm_unreachable("cannot handle this operand");
}
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::MOVi16);
TmpInst.addOperand(MCOperand::CreateReg(DstReg)); // dstreg
TmpInst.addOperand(V1); // lower16(imm)
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(MI->getOperand(2).getImm()));
TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(3).getReg()));
OutStreamer.EmitInstruction(TmpInst);
}
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::MOVTi16);
TmpInst.addOperand(MCOperand::CreateReg(DstReg)); // dstreg
TmpInst.addOperand(MCOperand::CreateReg(DstReg)); // srcreg
TmpInst.addOperand(V2); // upper16(imm)
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(MI->getOperand(2).getImm()));
TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(3).getReg()));
OutStreamer.EmitInstruction(TmpInst);
}
return;
}
case ARM::t2TBB:
case ARM::t2TBH:
case ARM::t2BR_JT: {
// Lower and emit the instruction itself, then the jump table following it.
MCInst TmpInst;
MCInstLowering.Lower(MI, TmpInst);
OutStreamer.EmitInstruction(TmpInst);
EmitJump2Table(MI);
return;
}
case ARM::tBR_JTr:
case ARM::BR_JTr:
case ARM::BR_JTm:
case ARM::BR_JTadd: {
// Lower and emit the instruction itself, then the jump table following it.
MCInst TmpInst;
MCInstLowering.Lower(MI, TmpInst);
OutStreamer.EmitInstruction(TmpInst);
EmitJumpTable(MI);
return;
}
case ARM::TRAP: {
// Non-Darwin binutils don't yet support the "trap" mnemonic.
// FIXME: Remove this special case when they do.
if (!Subtarget->isTargetDarwin()) {
//.long 0xe7ffdefe ${:comment} trap
uint32_t Val = 0xe7ffdefeUL;
OutStreamer.AddComment("trap");
OutStreamer.EmitIntValue(Val, 4);
return;
}
break;
}
case ARM::tTRAP: {
// Non-Darwin binutils don't yet support the "trap" mnemonic.
// FIXME: Remove this special case when they do.
if (!Subtarget->isTargetDarwin()) {
//.short 57086 ${:comment} trap
uint16_t Val = 0xdefe;
OutStreamer.AddComment("trap");
OutStreamer.EmitIntValue(Val, 2);
return;
}
break;
}
case ARM::t2Int_eh_sjlj_setjmp:
case ARM::t2Int_eh_sjlj_setjmp_nofp:
case ARM::tInt_eh_sjlj_setjmp: { // FIXME: Remove asmstring from td file.
// Two incoming args: GPR:$src, GPR:$val
// mov $val, pc
// adds $val, #7
// str $val, [$src, #4]
// movs r0, #0
// b 1f
// movs r0, #1
// 1:
unsigned SrcReg = MI->getOperand(0).getReg();
unsigned ValReg = MI->getOperand(1).getReg();
MCSymbol *Label = GetARMSJLJEHLabel();
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::tMOVgpr2tgpr);
TmpInst.addOperand(MCOperand::CreateReg(ValReg));
TmpInst.addOperand(MCOperand::CreateReg(ARM::PC));
// 's' bit operand
TmpInst.addOperand(MCOperand::CreateReg(ARM::CPSR));
OutStreamer.AddComment("eh_setjmp begin");
OutStreamer.EmitInstruction(TmpInst);
}
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::tADDi3);
TmpInst.addOperand(MCOperand::CreateReg(ValReg));
// 's' bit operand
TmpInst.addOperand(MCOperand::CreateReg(ARM::CPSR));
TmpInst.addOperand(MCOperand::CreateReg(ValReg));
TmpInst.addOperand(MCOperand::CreateImm(7));
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
}
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::tSTR);
TmpInst.addOperand(MCOperand::CreateReg(ValReg));
TmpInst.addOperand(MCOperand::CreateReg(SrcReg));
// The offset immediate is #4. The operand value is scaled by 4 for the
// tSTR instruction.
TmpInst.addOperand(MCOperand::CreateImm(1));
TmpInst.addOperand(MCOperand::CreateReg(0));
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
}
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::tMOVi8);
TmpInst.addOperand(MCOperand::CreateReg(ARM::R0));
TmpInst.addOperand(MCOperand::CreateReg(ARM::CPSR));
TmpInst.addOperand(MCOperand::CreateImm(0));
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
}
{
const MCExpr *SymbolExpr = MCSymbolRefExpr::Create(Label, OutContext);
MCInst TmpInst;
TmpInst.setOpcode(ARM::tB);
TmpInst.addOperand(MCOperand::CreateExpr(SymbolExpr));
OutStreamer.EmitInstruction(TmpInst);
}
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::tMOVi8);
TmpInst.addOperand(MCOperand::CreateReg(ARM::R0));
TmpInst.addOperand(MCOperand::CreateReg(ARM::CPSR));
TmpInst.addOperand(MCOperand::CreateImm(1));
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.AddComment("eh_setjmp end");
OutStreamer.EmitInstruction(TmpInst);
}
OutStreamer.EmitLabel(Label);
return;
}
case ARM::Int_eh_sjlj_setjmp_nofp:
case ARM::Int_eh_sjlj_setjmp: { // FIXME: Remove asmstring from td file.
// Two incoming args: GPR:$src, GPR:$val
// add $val, pc, #8
// str $val, [$src, #+4]
// mov r0, #0
// add pc, pc, #0
// mov r0, #1
unsigned SrcReg = MI->getOperand(0).getReg();
unsigned ValReg = MI->getOperand(1).getReg();
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::ADDri);
TmpInst.addOperand(MCOperand::CreateReg(ValReg));
TmpInst.addOperand(MCOperand::CreateReg(ARM::PC));
TmpInst.addOperand(MCOperand::CreateImm(8));
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
// 's' bit operand (always reg0 for this).
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.AddComment("eh_setjmp begin");
OutStreamer.EmitInstruction(TmpInst);
}
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::STR);
TmpInst.addOperand(MCOperand::CreateReg(ValReg));
TmpInst.addOperand(MCOperand::CreateReg(SrcReg));
TmpInst.addOperand(MCOperand::CreateReg(0));
TmpInst.addOperand(MCOperand::CreateImm(4));
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
}
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::MOVi);
TmpInst.addOperand(MCOperand::CreateReg(ARM::R0));
TmpInst.addOperand(MCOperand::CreateImm(0));
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
// 's' bit operand (always reg0 for this).
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
}
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::ADDri);
TmpInst.addOperand(MCOperand::CreateReg(ARM::PC));
TmpInst.addOperand(MCOperand::CreateReg(ARM::PC));
TmpInst.addOperand(MCOperand::CreateImm(0));
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
// 's' bit operand (always reg0 for this).
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
}
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::MOVi);
TmpInst.addOperand(MCOperand::CreateReg(ARM::R0));
TmpInst.addOperand(MCOperand::CreateImm(1));
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
// 's' bit operand (always reg0 for this).
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.AddComment("eh_setjmp end");
OutStreamer.EmitInstruction(TmpInst);
}
return;
}
case ARM::Int_eh_sjlj_longjmp: {
// ldr sp, [$src, #8]
// ldr $scratch, [$src, #4]
// ldr r7, [$src]
// bx $scratch
unsigned SrcReg = MI->getOperand(0).getReg();
unsigned ScratchReg = MI->getOperand(1).getReg();
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::LDR);
TmpInst.addOperand(MCOperand::CreateReg(ARM::SP));
TmpInst.addOperand(MCOperand::CreateReg(SrcReg));
TmpInst.addOperand(MCOperand::CreateReg(0));
TmpInst.addOperand(MCOperand::CreateImm(8));
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
}
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::LDR);
TmpInst.addOperand(MCOperand::CreateReg(ScratchReg));
TmpInst.addOperand(MCOperand::CreateReg(SrcReg));
TmpInst.addOperand(MCOperand::CreateReg(0));
TmpInst.addOperand(MCOperand::CreateImm(4));
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
}
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::LDR);
TmpInst.addOperand(MCOperand::CreateReg(ARM::R7));
TmpInst.addOperand(MCOperand::CreateReg(SrcReg));
TmpInst.addOperand(MCOperand::CreateReg(0));
TmpInst.addOperand(MCOperand::CreateImm(0));
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
}
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::BRIND);
TmpInst.addOperand(MCOperand::CreateReg(ScratchReg));
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
}
return;
}
case ARM::tInt_eh_sjlj_longjmp: {
// ldr $scratch, [$src, #8]
// mov sp, $scratch
// ldr $scratch, [$src, #4]
// ldr r7, [$src]
// bx $scratch
unsigned SrcReg = MI->getOperand(0).getReg();
unsigned ScratchReg = MI->getOperand(1).getReg();
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::tLDR);
TmpInst.addOperand(MCOperand::CreateReg(ScratchReg));
TmpInst.addOperand(MCOperand::CreateReg(SrcReg));
// The offset immediate is #8. The operand value is scaled by 4 for the
// tSTR instruction.
TmpInst.addOperand(MCOperand::CreateImm(2));
TmpInst.addOperand(MCOperand::CreateReg(0));
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
}
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::tMOVtgpr2gpr);
TmpInst.addOperand(MCOperand::CreateReg(ARM::SP));
TmpInst.addOperand(MCOperand::CreateReg(ScratchReg));
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
}
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::tLDR);
TmpInst.addOperand(MCOperand::CreateReg(ScratchReg));
TmpInst.addOperand(MCOperand::CreateReg(SrcReg));
TmpInst.addOperand(MCOperand::CreateImm(1));
TmpInst.addOperand(MCOperand::CreateReg(0));
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
}
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::tLDR);
TmpInst.addOperand(MCOperand::CreateReg(ARM::R7));
TmpInst.addOperand(MCOperand::CreateReg(SrcReg));
TmpInst.addOperand(MCOperand::CreateImm(0));
TmpInst.addOperand(MCOperand::CreateReg(0));
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
}
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::tBX_RET_vararg);
TmpInst.addOperand(MCOperand::CreateReg(ScratchReg));
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL));
TmpInst.addOperand(MCOperand::CreateReg(0));
OutStreamer.EmitInstruction(TmpInst);
}
return;
}
}
MCInst TmpInst;
MCInstLowering.Lower(MI, TmpInst);
OutStreamer.EmitInstruction(TmpInst);
}
//===----------------------------------------------------------------------===//
// Target Registry Stuff
//===----------------------------------------------------------------------===//
static MCInstPrinter *createARMMCInstPrinter(const Target &T,
unsigned SyntaxVariant,
const MCAsmInfo &MAI) {
if (SyntaxVariant == 0)
return new ARMInstPrinter(MAI);
return 0;
}
// Force static initialization.
extern "C" void LLVMInitializeARMAsmPrinter() {
RegisterAsmPrinter<ARMAsmPrinter> X(TheARMTarget);
RegisterAsmPrinter<ARMAsmPrinter> Y(TheThumbTarget);
TargetRegistry::RegisterMCInstPrinter(TheARMTarget, createARMMCInstPrinter);
TargetRegistry::RegisterMCInstPrinter(TheThumbTarget, createARMMCInstPrinter);
}