llvm-6502/include/llvm/ExecutionEngine/RTDyldMemoryManager.h
Alexander Kornienko c16fc54851 Use 'override/final' instead of 'virtual' for overridden methods
The patch is generated using clang-tidy misc-use-override check.

This command was used:

  tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py \
    -checks='-*,misc-use-override' -header-filter='llvm|clang' \
    -j=32 -fix -format

http://reviews.llvm.org/D8925



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234679 91177308-0d34-0410-b5e6-96231b3b80d8
2015-04-11 02:11:45 +00:00

137 lines
5.5 KiB
C++

//===-- RTDyldMemoryManager.cpp - Memory manager for MC-JIT -----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Interface of the runtime dynamic memory manager base class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_EXECUTIONENGINE_RTDYLDMEMORYMANAGER_H
#define LLVM_EXECUTIONENGINE_RTDYLDMEMORYMANAGER_H
#include "RuntimeDyld.h"
#include "llvm-c/ExecutionEngine.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/CBindingWrapping.h"
#include "llvm/Support/Memory.h"
namespace llvm {
class ExecutionEngine;
namespace object {
class ObjectFile;
}
class MCJITMemoryManager : public RuntimeDyld::MemoryManager {
public:
/// This method is called after an object has been loaded into memory but
/// before relocations are applied to the loaded sections. The object load
/// may have been initiated by MCJIT to resolve an external symbol for another
/// object that is being finalized. In that case, the object about which
/// the memory manager is being notified will be finalized immediately after
/// the memory manager returns from this call.
///
/// Memory managers which are preparing code for execution in an external
/// address space can use this call to remap the section addresses for the
/// newly loaded object.
virtual void notifyObjectLoaded(ExecutionEngine *EE,
const object::ObjectFile &) {}
};
// RuntimeDyld clients often want to handle the memory management of
// what gets placed where. For JIT clients, this is the subset of
// JITMemoryManager required for dynamic loading of binaries.
//
// FIXME: As the RuntimeDyld fills out, additional routines will be needed
// for the varying types of objects to be allocated.
class RTDyldMemoryManager : public MCJITMemoryManager,
public RuntimeDyld::SymbolResolver {
RTDyldMemoryManager(const RTDyldMemoryManager&) = delete;
void operator=(const RTDyldMemoryManager&) = delete;
public:
RTDyldMemoryManager() {}
~RTDyldMemoryManager() override;
void registerEHFrames(uint8_t *Addr, uint64_t LoadAddr, size_t Size) override;
void deregisterEHFrames(uint8_t *Addr, uint64_t LoadAddr, size_t Size) override;
/// This method returns the address of the specified function or variable in
/// the current process.
static uint64_t getSymbolAddressInProcess(const std::string &Name);
/// Legacy symbol lookup - DEPRECATED! Please override findSymbol instead.
///
/// This method returns the address of the specified function or variable.
/// It is used to resolve symbols during module linking.
virtual uint64_t getSymbolAddress(const std::string &Name) {
return getSymbolAddressInProcess(Name);
}
/// This method returns a RuntimeDyld::SymbolInfo for the specified function
/// or variable. It is used to resolve symbols during module linking.
///
/// By default this falls back on the legacy lookup method:
/// 'getSymbolAddress'. The address returned by getSymbolAddress is treated as
/// a strong, exported symbol, consistent with historical treatment by
/// RuntimeDyld.
///
/// Clients writing custom RTDyldMemoryManagers are encouraged to override
/// this method and return a SymbolInfo with the flags set correctly. This is
/// necessary for RuntimeDyld to correctly handle weak and non-exported symbols.
RuntimeDyld::SymbolInfo findSymbol(const std::string &Name) override {
return RuntimeDyld::SymbolInfo(getSymbolAddress(Name),
JITSymbolFlags::Exported);
}
/// Legacy symbol lookup -- DEPRECATED! Please override
/// findSymbolInLogicalDylib instead.
///
/// Default to treating all modules as separate.
virtual uint64_t getSymbolAddressInLogicalDylib(const std::string &Name) {
return 0;
}
/// Default to treating all modules as separate.
///
/// By default this falls back on the legacy lookup method:
/// 'getSymbolAddressInLogicalDylib'. The address returned by
/// getSymbolAddressInLogicalDylib is treated as a strong, exported symbol,
/// consistent with historical treatment by RuntimeDyld.
///
/// Clients writing custom RTDyldMemoryManagers are encouraged to override
/// this method and return a SymbolInfo with the flags set correctly. This is
/// necessary for RuntimeDyld to correctly handle weak and non-exported symbols.
RuntimeDyld::SymbolInfo
findSymbolInLogicalDylib(const std::string &Name) override {
return RuntimeDyld::SymbolInfo(getSymbolAddressInLogicalDylib(Name),
JITSymbolFlags::Exported);
}
/// This method returns the address of the specified function. As such it is
/// only useful for resolving library symbols, not code generated symbols.
///
/// If \p AbortOnFailure is false and no function with the given name is
/// found, this function returns a null pointer. Otherwise, it prints a
/// message to stderr and aborts.
///
/// This function is deprecated for memory managers to be used with
/// MCJIT or RuntimeDyld. Use getSymbolAddress instead.
virtual void *getPointerToNamedFunction(const std::string &Name,
bool AbortOnFailure = true);
};
// Create wrappers for C Binding types (see CBindingWrapping.h).
DEFINE_SIMPLE_CONVERSION_FUNCTIONS(
RTDyldMemoryManager, LLVMMCJITMemoryManagerRef)
} // namespace llvm
#endif