mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-11-19 01:13:25 +00:00
4ee451de36
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@45418 91177308-0d34-0410-b5e6-96231b3b80d8
1007 lines
38 KiB
C++
1007 lines
38 KiB
C++
//===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file promotes memory references to be register references. It promotes
|
|
// alloca instructions which only have loads and stores as uses. An alloca is
|
|
// transformed by using dominator frontiers to place PHI nodes, then traversing
|
|
// the function in depth-first order to rewrite loads and stores as appropriate.
|
|
// This is just the standard SSA construction algorithm to construct "pruned"
|
|
// SSA form.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "mem2reg"
|
|
#include "llvm/Transforms/Utils/PromoteMemToReg.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Analysis/Dominators.h"
|
|
#include "llvm/Analysis/AliasSetTracker.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/Support/CFG.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include <algorithm>
|
|
using namespace llvm;
|
|
|
|
STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block");
|
|
STATISTIC(NumSingleStore, "Number of alloca's promoted with a single store");
|
|
STATISTIC(NumDeadAlloca, "Number of dead alloca's removed");
|
|
STATISTIC(NumPHIInsert, "Number of PHI nodes inserted");
|
|
|
|
// Provide DenseMapInfo for all pointers.
|
|
namespace llvm {
|
|
template<>
|
|
struct DenseMapInfo<std::pair<BasicBlock*, unsigned> > {
|
|
typedef std::pair<BasicBlock*, unsigned> EltTy;
|
|
static inline EltTy getEmptyKey() {
|
|
return EltTy(reinterpret_cast<BasicBlock*>(-1), ~0U);
|
|
}
|
|
static inline EltTy getTombstoneKey() {
|
|
return EltTy(reinterpret_cast<BasicBlock*>(-2), 0U);
|
|
}
|
|
static unsigned getHashValue(const std::pair<BasicBlock*, unsigned> &Val) {
|
|
return DenseMapInfo<void*>::getHashValue(Val.first) + Val.second*2;
|
|
}
|
|
static bool isEqual(const EltTy &LHS, const EltTy &RHS) {
|
|
return LHS == RHS;
|
|
}
|
|
static bool isPod() { return true; }
|
|
};
|
|
}
|
|
|
|
/// isAllocaPromotable - Return true if this alloca is legal for promotion.
|
|
/// This is true if there are only loads and stores to the alloca.
|
|
///
|
|
bool llvm::isAllocaPromotable(const AllocaInst *AI) {
|
|
// FIXME: If the memory unit is of pointer or integer type, we can permit
|
|
// assignments to subsections of the memory unit.
|
|
|
|
// Only allow direct and non-volatile loads and stores...
|
|
for (Value::use_const_iterator UI = AI->use_begin(), UE = AI->use_end();
|
|
UI != UE; ++UI) // Loop over all of the uses of the alloca
|
|
if (const LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
|
|
if (LI->isVolatile())
|
|
return false;
|
|
} else if (const StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
|
|
if (SI->getOperand(0) == AI)
|
|
return false; // Don't allow a store OF the AI, only INTO the AI.
|
|
if (SI->isVolatile())
|
|
return false;
|
|
} else {
|
|
return false; // Not a load or store.
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
namespace {
|
|
struct AllocaInfo;
|
|
|
|
// Data package used by RenamePass()
|
|
class VISIBILITY_HIDDEN RenamePassData {
|
|
public:
|
|
typedef std::vector<Value *> ValVector;
|
|
|
|
RenamePassData() {}
|
|
RenamePassData(BasicBlock *B, BasicBlock *P,
|
|
const ValVector &V) : BB(B), Pred(P), Values(V) {}
|
|
BasicBlock *BB;
|
|
BasicBlock *Pred;
|
|
ValVector Values;
|
|
|
|
void swap(RenamePassData &RHS) {
|
|
std::swap(BB, RHS.BB);
|
|
std::swap(Pred, RHS.Pred);
|
|
Values.swap(RHS.Values);
|
|
}
|
|
};
|
|
|
|
struct VISIBILITY_HIDDEN PromoteMem2Reg {
|
|
/// Allocas - The alloca instructions being promoted.
|
|
///
|
|
std::vector<AllocaInst*> Allocas;
|
|
SmallVector<AllocaInst*, 16> &RetryList;
|
|
DominatorTree &DT;
|
|
DominanceFrontier &DF;
|
|
|
|
/// AST - An AliasSetTracker object to update. If null, don't update it.
|
|
///
|
|
AliasSetTracker *AST;
|
|
|
|
/// AllocaLookup - Reverse mapping of Allocas.
|
|
///
|
|
std::map<AllocaInst*, unsigned> AllocaLookup;
|
|
|
|
/// NewPhiNodes - The PhiNodes we're adding.
|
|
///
|
|
DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*> NewPhiNodes;
|
|
|
|
/// PhiToAllocaMap - For each PHI node, keep track of which entry in Allocas
|
|
/// it corresponds to.
|
|
DenseMap<PHINode*, unsigned> PhiToAllocaMap;
|
|
|
|
/// PointerAllocaValues - If we are updating an AliasSetTracker, then for
|
|
/// each alloca that is of pointer type, we keep track of what to copyValue
|
|
/// to the inserted PHI nodes here.
|
|
///
|
|
std::vector<Value*> PointerAllocaValues;
|
|
|
|
/// Visited - The set of basic blocks the renamer has already visited.
|
|
///
|
|
SmallPtrSet<BasicBlock*, 16> Visited;
|
|
|
|
/// BBNumbers - Contains a stable numbering of basic blocks to avoid
|
|
/// non-determinstic behavior.
|
|
DenseMap<BasicBlock*, unsigned> BBNumbers;
|
|
|
|
/// BBNumPreds - Lazily compute the number of predecessors a block has.
|
|
DenseMap<const BasicBlock*, unsigned> BBNumPreds;
|
|
public:
|
|
PromoteMem2Reg(const std::vector<AllocaInst*> &A,
|
|
SmallVector<AllocaInst*, 16> &Retry, DominatorTree &dt,
|
|
DominanceFrontier &df, AliasSetTracker *ast)
|
|
: Allocas(A), RetryList(Retry), DT(dt), DF(df), AST(ast) {}
|
|
|
|
void run();
|
|
|
|
/// properlyDominates - Return true if I1 properly dominates I2.
|
|
///
|
|
bool properlyDominates(Instruction *I1, Instruction *I2) const {
|
|
if (InvokeInst *II = dyn_cast<InvokeInst>(I1))
|
|
I1 = II->getNormalDest()->begin();
|
|
return DT.properlyDominates(I1->getParent(), I2->getParent());
|
|
}
|
|
|
|
/// dominates - Return true if BB1 dominates BB2 using the DominatorTree.
|
|
///
|
|
bool dominates(BasicBlock *BB1, BasicBlock *BB2) const {
|
|
return DT.dominates(BB1, BB2);
|
|
}
|
|
|
|
private:
|
|
void RemoveFromAllocasList(unsigned &AllocaIdx) {
|
|
Allocas[AllocaIdx] = Allocas.back();
|
|
Allocas.pop_back();
|
|
--AllocaIdx;
|
|
}
|
|
|
|
unsigned getNumPreds(const BasicBlock *BB) {
|
|
unsigned &NP = BBNumPreds[BB];
|
|
if (NP == 0)
|
|
NP = std::distance(pred_begin(BB), pred_end(BB))+1;
|
|
return NP-1;
|
|
}
|
|
|
|
void DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum,
|
|
AllocaInfo &Info);
|
|
void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
|
|
const SmallPtrSet<BasicBlock*, 32> &DefBlocks,
|
|
SmallPtrSet<BasicBlock*, 32> &LiveInBlocks);
|
|
|
|
void RewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info);
|
|
|
|
bool PromoteLocallyUsedAlloca(BasicBlock *BB, AllocaInst *AI);
|
|
void PromoteLocallyUsedAllocas(BasicBlock *BB,
|
|
const std::vector<AllocaInst*> &AIs);
|
|
|
|
void RenamePass(BasicBlock *BB, BasicBlock *Pred,
|
|
RenamePassData::ValVector &IncVals,
|
|
std::vector<RenamePassData> &Worklist);
|
|
bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version,
|
|
SmallPtrSet<PHINode*, 16> &InsertedPHINodes);
|
|
};
|
|
|
|
struct AllocaInfo {
|
|
std::vector<BasicBlock*> DefiningBlocks;
|
|
std::vector<BasicBlock*> UsingBlocks;
|
|
|
|
StoreInst *OnlyStore;
|
|
BasicBlock *OnlyBlock;
|
|
bool OnlyUsedInOneBlock;
|
|
|
|
Value *AllocaPointerVal;
|
|
|
|
void clear() {
|
|
DefiningBlocks.clear();
|
|
UsingBlocks.clear();
|
|
OnlyStore = 0;
|
|
OnlyBlock = 0;
|
|
OnlyUsedInOneBlock = true;
|
|
AllocaPointerVal = 0;
|
|
}
|
|
|
|
/// AnalyzeAlloca - Scan the uses of the specified alloca, filling in our
|
|
/// ivars.
|
|
void AnalyzeAlloca(AllocaInst *AI) {
|
|
clear();
|
|
|
|
// As we scan the uses of the alloca instruction, keep track of stores,
|
|
// and decide whether all of the loads and stores to the alloca are within
|
|
// the same basic block.
|
|
for (Value::use_iterator U = AI->use_begin(), E = AI->use_end();
|
|
U != E; ++U) {
|
|
Instruction *User = cast<Instruction>(*U);
|
|
if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
|
|
// Remember the basic blocks which define new values for the alloca
|
|
DefiningBlocks.push_back(SI->getParent());
|
|
AllocaPointerVal = SI->getOperand(0);
|
|
OnlyStore = SI;
|
|
} else {
|
|
LoadInst *LI = cast<LoadInst>(User);
|
|
// Otherwise it must be a load instruction, keep track of variable
|
|
// reads.
|
|
UsingBlocks.push_back(LI->getParent());
|
|
AllocaPointerVal = LI;
|
|
}
|
|
|
|
if (OnlyUsedInOneBlock) {
|
|
if (OnlyBlock == 0)
|
|
OnlyBlock = User->getParent();
|
|
else if (OnlyBlock != User->getParent())
|
|
OnlyUsedInOneBlock = false;
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
} // end of anonymous namespace
|
|
|
|
|
|
void PromoteMem2Reg::run() {
|
|
Function &F = *DF.getRoot()->getParent();
|
|
|
|
// LocallyUsedAllocas - Keep track of all of the alloca instructions which are
|
|
// only used in a single basic block. These instructions can be efficiently
|
|
// promoted by performing a single linear scan over that one block. Since
|
|
// individual basic blocks are sometimes large, we group together all allocas
|
|
// that are live in a single basic block by the basic block they are live in.
|
|
std::map<BasicBlock*, std::vector<AllocaInst*> > LocallyUsedAllocas;
|
|
|
|
if (AST) PointerAllocaValues.resize(Allocas.size());
|
|
|
|
AllocaInfo Info;
|
|
|
|
for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) {
|
|
AllocaInst *AI = Allocas[AllocaNum];
|
|
|
|
assert(isAllocaPromotable(AI) &&
|
|
"Cannot promote non-promotable alloca!");
|
|
assert(AI->getParent()->getParent() == &F &&
|
|
"All allocas should be in the same function, which is same as DF!");
|
|
|
|
if (AI->use_empty()) {
|
|
// If there are no uses of the alloca, just delete it now.
|
|
if (AST) AST->deleteValue(AI);
|
|
AI->eraseFromParent();
|
|
|
|
// Remove the alloca from the Allocas list, since it has been processed
|
|
RemoveFromAllocasList(AllocaNum);
|
|
++NumDeadAlloca;
|
|
continue;
|
|
}
|
|
|
|
// Calculate the set of read and write-locations for each alloca. This is
|
|
// analogous to finding the 'uses' and 'definitions' of each variable.
|
|
Info.AnalyzeAlloca(AI);
|
|
|
|
// If there is only a single store to this value, replace any loads of
|
|
// it that are directly dominated by the definition with the value stored.
|
|
if (Info.DefiningBlocks.size() == 1) {
|
|
RewriteSingleStoreAlloca(AI, Info);
|
|
|
|
// Finally, after the scan, check to see if the store is all that is left.
|
|
if (Info.UsingBlocks.empty()) {
|
|
// Remove the (now dead) store and alloca.
|
|
Info.OnlyStore->eraseFromParent();
|
|
if (AST) AST->deleteValue(AI);
|
|
AI->eraseFromParent();
|
|
|
|
// The alloca has been processed, move on.
|
|
RemoveFromAllocasList(AllocaNum);
|
|
|
|
++NumSingleStore;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// If the alloca is only read and written in one basic block, just perform a
|
|
// linear sweep over the block to eliminate it.
|
|
if (Info.OnlyUsedInOneBlock) {
|
|
LocallyUsedAllocas[Info.OnlyBlock].push_back(AI);
|
|
|
|
// Remove the alloca from the Allocas list, since it will be processed.
|
|
RemoveFromAllocasList(AllocaNum);
|
|
continue;
|
|
}
|
|
|
|
// If we haven't computed a numbering for the BB's in the function, do so
|
|
// now.
|
|
if (BBNumbers.empty()) {
|
|
unsigned ID = 0;
|
|
for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
|
|
BBNumbers[I] = ID++;
|
|
}
|
|
|
|
// If we have an AST to keep updated, remember some pointer value that is
|
|
// stored into the alloca.
|
|
if (AST)
|
|
PointerAllocaValues[AllocaNum] = Info.AllocaPointerVal;
|
|
|
|
// Keep the reverse mapping of the 'Allocas' array for the rename pass.
|
|
AllocaLookup[Allocas[AllocaNum]] = AllocaNum;
|
|
|
|
// At this point, we're committed to promoting the alloca using IDF's, and
|
|
// the standard SSA construction algorithm. Determine which blocks need phi
|
|
// nodes and see if we can optimize out some work by avoiding insertion of
|
|
// dead phi nodes.
|
|
DetermineInsertionPoint(AI, AllocaNum, Info);
|
|
}
|
|
|
|
// Process all allocas which are only used in a single basic block.
|
|
for (std::map<BasicBlock*, std::vector<AllocaInst*> >::iterator I =
|
|
LocallyUsedAllocas.begin(), E = LocallyUsedAllocas.end(); I != E; ++I){
|
|
const std::vector<AllocaInst*> &LocAllocas = I->second;
|
|
assert(!LocAllocas.empty() && "empty alloca list??");
|
|
|
|
// It's common for there to only be one alloca in the list. Handle it
|
|
// efficiently.
|
|
if (LocAllocas.size() == 1) {
|
|
// If we can do the quick promotion pass, do so now.
|
|
if (PromoteLocallyUsedAlloca(I->first, LocAllocas[0]))
|
|
RetryList.push_back(LocAllocas[0]); // Failed, retry later.
|
|
} else {
|
|
// Locally promote anything possible. Note that if this is unable to
|
|
// promote a particular alloca, it puts the alloca onto the Allocas vector
|
|
// for global processing.
|
|
PromoteLocallyUsedAllocas(I->first, LocAllocas);
|
|
}
|
|
}
|
|
|
|
if (Allocas.empty())
|
|
return; // All of the allocas must have been trivial!
|
|
|
|
// Set the incoming values for the basic block to be null values for all of
|
|
// the alloca's. We do this in case there is a load of a value that has not
|
|
// been stored yet. In this case, it will get this null value.
|
|
//
|
|
RenamePassData::ValVector Values(Allocas.size());
|
|
for (unsigned i = 0, e = Allocas.size(); i != e; ++i)
|
|
Values[i] = UndefValue::get(Allocas[i]->getAllocatedType());
|
|
|
|
// Walks all basic blocks in the function performing the SSA rename algorithm
|
|
// and inserting the phi nodes we marked as necessary
|
|
//
|
|
std::vector<RenamePassData> RenamePassWorkList;
|
|
RenamePassWorkList.push_back(RenamePassData(F.begin(), 0, Values));
|
|
while (!RenamePassWorkList.empty()) {
|
|
RenamePassData RPD;
|
|
RPD.swap(RenamePassWorkList.back());
|
|
RenamePassWorkList.pop_back();
|
|
// RenamePass may add new worklist entries.
|
|
RenamePass(RPD.BB, RPD.Pred, RPD.Values, RenamePassWorkList);
|
|
}
|
|
|
|
// The renamer uses the Visited set to avoid infinite loops. Clear it now.
|
|
Visited.clear();
|
|
|
|
// Remove the allocas themselves from the function.
|
|
for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
|
|
Instruction *A = Allocas[i];
|
|
|
|
// If there are any uses of the alloca instructions left, they must be in
|
|
// sections of dead code that were not processed on the dominance frontier.
|
|
// Just delete the users now.
|
|
//
|
|
if (!A->use_empty())
|
|
A->replaceAllUsesWith(UndefValue::get(A->getType()));
|
|
if (AST) AST->deleteValue(A);
|
|
A->eraseFromParent();
|
|
}
|
|
|
|
|
|
// Loop over all of the PHI nodes and see if there are any that we can get
|
|
// rid of because they merge all of the same incoming values. This can
|
|
// happen due to undef values coming into the PHI nodes. This process is
|
|
// iterative, because eliminating one PHI node can cause others to be removed.
|
|
bool EliminatedAPHI = true;
|
|
while (EliminatedAPHI) {
|
|
EliminatedAPHI = false;
|
|
|
|
for (DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*>::iterator I =
|
|
NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E;) {
|
|
PHINode *PN = I->second;
|
|
|
|
// If this PHI node merges one value and/or undefs, get the value.
|
|
if (Value *V = PN->hasConstantValue(true)) {
|
|
if (!isa<Instruction>(V) ||
|
|
properlyDominates(cast<Instruction>(V), PN)) {
|
|
if (AST && isa<PointerType>(PN->getType()))
|
|
AST->deleteValue(PN);
|
|
PN->replaceAllUsesWith(V);
|
|
PN->eraseFromParent();
|
|
NewPhiNodes.erase(I++);
|
|
EliminatedAPHI = true;
|
|
continue;
|
|
}
|
|
}
|
|
++I;
|
|
}
|
|
}
|
|
|
|
// At this point, the renamer has added entries to PHI nodes for all reachable
|
|
// code. Unfortunately, there may be unreachable blocks which the renamer
|
|
// hasn't traversed. If this is the case, the PHI nodes may not
|
|
// have incoming values for all predecessors. Loop over all PHI nodes we have
|
|
// created, inserting undef values if they are missing any incoming values.
|
|
//
|
|
for (DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*>::iterator I =
|
|
NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E; ++I) {
|
|
// We want to do this once per basic block. As such, only process a block
|
|
// when we find the PHI that is the first entry in the block.
|
|
PHINode *SomePHI = I->second;
|
|
BasicBlock *BB = SomePHI->getParent();
|
|
if (&BB->front() != SomePHI)
|
|
continue;
|
|
|
|
// Only do work here if there the PHI nodes are missing incoming values. We
|
|
// know that all PHI nodes that were inserted in a block will have the same
|
|
// number of incoming values, so we can just check any of them.
|
|
if (SomePHI->getNumIncomingValues() == getNumPreds(BB))
|
|
continue;
|
|
|
|
// Get the preds for BB.
|
|
SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
|
|
|
|
// Ok, now we know that all of the PHI nodes are missing entries for some
|
|
// basic blocks. Start by sorting the incoming predecessors for efficient
|
|
// access.
|
|
std::sort(Preds.begin(), Preds.end());
|
|
|
|
// Now we loop through all BB's which have entries in SomePHI and remove
|
|
// them from the Preds list.
|
|
for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) {
|
|
// Do a log(n) search of the Preds list for the entry we want.
|
|
SmallVector<BasicBlock*, 16>::iterator EntIt =
|
|
std::lower_bound(Preds.begin(), Preds.end(),
|
|
SomePHI->getIncomingBlock(i));
|
|
assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i)&&
|
|
"PHI node has entry for a block which is not a predecessor!");
|
|
|
|
// Remove the entry
|
|
Preds.erase(EntIt);
|
|
}
|
|
|
|
// At this point, the blocks left in the preds list must have dummy
|
|
// entries inserted into every PHI nodes for the block. Update all the phi
|
|
// nodes in this block that we are inserting (there could be phis before
|
|
// mem2reg runs).
|
|
unsigned NumBadPreds = SomePHI->getNumIncomingValues();
|
|
BasicBlock::iterator BBI = BB->begin();
|
|
while ((SomePHI = dyn_cast<PHINode>(BBI++)) &&
|
|
SomePHI->getNumIncomingValues() == NumBadPreds) {
|
|
Value *UndefVal = UndefValue::get(SomePHI->getType());
|
|
for (unsigned pred = 0, e = Preds.size(); pred != e; ++pred)
|
|
SomePHI->addIncoming(UndefVal, Preds[pred]);
|
|
}
|
|
}
|
|
|
|
NewPhiNodes.clear();
|
|
}
|
|
|
|
|
|
/// ComputeLiveInBlocks - Determine which blocks the value is live in. These
|
|
/// are blocks which lead to uses. Knowing this allows us to avoid inserting
|
|
/// PHI nodes into blocks which don't lead to uses (thus, the inserted phi nodes
|
|
/// would be dead).
|
|
void PromoteMem2Reg::
|
|
ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
|
|
const SmallPtrSet<BasicBlock*, 32> &DefBlocks,
|
|
SmallPtrSet<BasicBlock*, 32> &LiveInBlocks) {
|
|
|
|
// To determine liveness, we must iterate through the predecessors of blocks
|
|
// where the def is live. Blocks are added to the worklist if we need to
|
|
// check their predecessors. Start with all the using blocks.
|
|
SmallVector<BasicBlock*, 64> LiveInBlockWorklist;
|
|
LiveInBlockWorklist.insert(LiveInBlockWorklist.end(),
|
|
Info.UsingBlocks.begin(), Info.UsingBlocks.end());
|
|
|
|
// If any of the using blocks is also a definition block, check to see if the
|
|
// definition occurs before or after the use. If it happens before the use,
|
|
// the value isn't really live-in.
|
|
for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) {
|
|
BasicBlock *BB = LiveInBlockWorklist[i];
|
|
if (!DefBlocks.count(BB)) continue;
|
|
|
|
// Okay, this is a block that both uses and defines the value. If the first
|
|
// reference to the alloca is a def (store), then we know it isn't live-in.
|
|
for (BasicBlock::iterator I = BB->begin(); ; ++I) {
|
|
if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
|
|
if (SI->getOperand(1) != AI) continue;
|
|
|
|
// We found a store to the alloca before a load. The alloca is not
|
|
// actually live-in here.
|
|
LiveInBlockWorklist[i] = LiveInBlockWorklist.back();
|
|
LiveInBlockWorklist.pop_back();
|
|
--i, --e;
|
|
break;
|
|
} else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
|
|
if (LI->getOperand(0) != AI) continue;
|
|
|
|
// Okay, we found a load before a store to the alloca. It is actually
|
|
// live into this block.
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Now that we have a set of blocks where the phi is live-in, recursively add
|
|
// their predecessors until we find the full region the value is live.
|
|
while (!LiveInBlockWorklist.empty()) {
|
|
BasicBlock *BB = LiveInBlockWorklist.back();
|
|
LiveInBlockWorklist.pop_back();
|
|
|
|
// The block really is live in here, insert it into the set. If already in
|
|
// the set, then it has already been processed.
|
|
if (!LiveInBlocks.insert(BB))
|
|
continue;
|
|
|
|
// Since the value is live into BB, it is either defined in a predecessor or
|
|
// live into it to. Add the preds to the worklist unless they are a
|
|
// defining block.
|
|
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
|
|
BasicBlock *P = *PI;
|
|
|
|
// The value is not live into a predecessor if it defines the value.
|
|
if (DefBlocks.count(P))
|
|
continue;
|
|
|
|
// Otherwise it is, add to the worklist.
|
|
LiveInBlockWorklist.push_back(P);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// DetermineInsertionPoint - At this point, we're committed to promoting the
|
|
/// alloca using IDF's, and the standard SSA construction algorithm. Determine
|
|
/// which blocks need phi nodes and see if we can optimize out some work by
|
|
/// avoiding insertion of dead phi nodes.
|
|
void PromoteMem2Reg::DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum,
|
|
AllocaInfo &Info) {
|
|
|
|
// Unique the set of defining blocks for efficient lookup.
|
|
SmallPtrSet<BasicBlock*, 32> DefBlocks;
|
|
DefBlocks.insert(Info.DefiningBlocks.begin(), Info.DefiningBlocks.end());
|
|
|
|
// Determine which blocks the value is live in. These are blocks which lead
|
|
// to uses.
|
|
SmallPtrSet<BasicBlock*, 32> LiveInBlocks;
|
|
ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks);
|
|
|
|
// Compute the locations where PhiNodes need to be inserted. Look at the
|
|
// dominance frontier of EACH basic-block we have a write in.
|
|
unsigned CurrentVersion = 0;
|
|
SmallPtrSet<PHINode*, 16> InsertedPHINodes;
|
|
std::vector<std::pair<unsigned, BasicBlock*> > DFBlocks;
|
|
while (!Info.DefiningBlocks.empty()) {
|
|
BasicBlock *BB = Info.DefiningBlocks.back();
|
|
Info.DefiningBlocks.pop_back();
|
|
|
|
// Look up the DF for this write, add it to defining blocks.
|
|
DominanceFrontier::const_iterator it = DF.find(BB);
|
|
if (it == DF.end()) continue;
|
|
|
|
const DominanceFrontier::DomSetType &S = it->second;
|
|
|
|
// In theory we don't need the indirection through the DFBlocks vector.
|
|
// In practice, the order of calling QueuePhiNode would depend on the
|
|
// (unspecified) ordering of basic blocks in the dominance frontier,
|
|
// which would give PHI nodes non-determinstic subscripts. Fix this by
|
|
// processing blocks in order of the occurance in the function.
|
|
for (DominanceFrontier::DomSetType::const_iterator P = S.begin(),
|
|
PE = S.end(); P != PE; ++P) {
|
|
// If the frontier block is not in the live-in set for the alloca, don't
|
|
// bother processing it.
|
|
if (!LiveInBlocks.count(*P))
|
|
continue;
|
|
|
|
DFBlocks.push_back(std::make_pair(BBNumbers[*P], *P));
|
|
}
|
|
|
|
// Sort by which the block ordering in the function.
|
|
if (DFBlocks.size() > 1)
|
|
std::sort(DFBlocks.begin(), DFBlocks.end());
|
|
|
|
for (unsigned i = 0, e = DFBlocks.size(); i != e; ++i) {
|
|
BasicBlock *BB = DFBlocks[i].second;
|
|
if (QueuePhiNode(BB, AllocaNum, CurrentVersion, InsertedPHINodes))
|
|
Info.DefiningBlocks.push_back(BB);
|
|
}
|
|
DFBlocks.clear();
|
|
}
|
|
}
|
|
|
|
|
|
/// RewriteSingleStoreAlloca - If there is only a single store to this value,
|
|
/// replace any loads of it that are directly dominated by the definition with
|
|
/// the value stored.
|
|
void PromoteMem2Reg::RewriteSingleStoreAlloca(AllocaInst *AI,
|
|
AllocaInfo &Info) {
|
|
StoreInst *OnlyStore = Info.OnlyStore;
|
|
bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0));
|
|
|
|
// Be aware of loads before the store.
|
|
SmallPtrSet<BasicBlock*, 32> ProcessedBlocks;
|
|
for (unsigned i = 0, e = Info.UsingBlocks.size(); i != e; ++i) {
|
|
BasicBlock *UseBlock = Info.UsingBlocks[i];
|
|
|
|
// If we already processed this block, don't reprocess it.
|
|
if (!ProcessedBlocks.insert(UseBlock)) {
|
|
Info.UsingBlocks[i] = Info.UsingBlocks.back();
|
|
Info.UsingBlocks.pop_back();
|
|
--i; --e;
|
|
continue;
|
|
}
|
|
|
|
// If the store dominates the block and if we haven't processed it yet,
|
|
// do so now. We can't handle the case where the store doesn't dominate a
|
|
// block because there may be a path between the store and the use, but we
|
|
// may need to insert phi nodes to handle dominance properly.
|
|
if (!StoringGlobalVal && !dominates(OnlyStore->getParent(), UseBlock))
|
|
continue;
|
|
|
|
// If the use and store are in the same block, do a quick scan to
|
|
// verify that there are no uses before the store.
|
|
if (UseBlock == OnlyStore->getParent()) {
|
|
BasicBlock::iterator I = UseBlock->begin();
|
|
for (; &*I != OnlyStore; ++I) { // scan block for store.
|
|
if (isa<LoadInst>(I) && I->getOperand(0) == AI)
|
|
break;
|
|
}
|
|
if (&*I != OnlyStore)
|
|
continue; // Do not promote the uses of this in this block.
|
|
}
|
|
|
|
// Otherwise, if this is a different block or if all uses happen
|
|
// after the store, do a simple linear scan to replace loads with
|
|
// the stored value.
|
|
for (BasicBlock::iterator I = UseBlock->begin(), E = UseBlock->end();
|
|
I != E; ) {
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(I++)) {
|
|
if (LI->getOperand(0) == AI) {
|
|
LI->replaceAllUsesWith(OnlyStore->getOperand(0));
|
|
if (AST && isa<PointerType>(LI->getType()))
|
|
AST->deleteValue(LI);
|
|
LI->eraseFromParent();
|
|
}
|
|
}
|
|
}
|
|
|
|
// Finally, remove this block from the UsingBlock set.
|
|
Info.UsingBlocks[i] = Info.UsingBlocks.back();
|
|
Info.UsingBlocks.pop_back();
|
|
--i; --e;
|
|
}
|
|
}
|
|
|
|
|
|
/// PromoteLocallyUsedAlloca - Many allocas are only used within a single basic
|
|
/// block. If this is the case, avoid traversing the CFG and inserting a lot of
|
|
/// potentially useless PHI nodes by just performing a single linear pass over
|
|
/// the basic block using the Alloca.
|
|
///
|
|
/// If we cannot promote this alloca (because it is read before it is written),
|
|
/// return true. This is necessary in cases where, due to control flow, the
|
|
/// alloca is potentially undefined on some control flow paths. e.g. code like
|
|
/// this is potentially correct:
|
|
///
|
|
/// for (...) { if (c) { A = undef; undef = B; } }
|
|
///
|
|
/// ... so long as A is not used before undef is set.
|
|
///
|
|
bool PromoteMem2Reg::PromoteLocallyUsedAlloca(BasicBlock *BB, AllocaInst *AI) {
|
|
assert(!AI->use_empty() && "There are no uses of the alloca!");
|
|
|
|
// Handle degenerate cases quickly.
|
|
if (AI->hasOneUse()) {
|
|
Instruction *U = cast<Instruction>(AI->use_back());
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
|
|
// Must be a load of uninitialized value.
|
|
LI->replaceAllUsesWith(UndefValue::get(AI->getAllocatedType()));
|
|
if (AST && isa<PointerType>(LI->getType()))
|
|
AST->deleteValue(LI);
|
|
} else {
|
|
// Otherwise it must be a store which is never read.
|
|
assert(isa<StoreInst>(U));
|
|
}
|
|
BB->getInstList().erase(U);
|
|
} else {
|
|
// Uses of the uninitialized memory location shall get undef.
|
|
Value *CurVal = 0;
|
|
|
|
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
|
|
Instruction *Inst = I++;
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
|
|
if (LI->getOperand(0) == AI) {
|
|
if (!CurVal) return true; // Could not locally promote!
|
|
|
|
// Loads just returns the "current value"...
|
|
LI->replaceAllUsesWith(CurVal);
|
|
if (AST && isa<PointerType>(LI->getType()))
|
|
AST->deleteValue(LI);
|
|
BB->getInstList().erase(LI);
|
|
}
|
|
} else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
|
|
if (SI->getOperand(1) == AI) {
|
|
// Store updates the "current value"...
|
|
CurVal = SI->getOperand(0);
|
|
BB->getInstList().erase(SI);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// After traversing the basic block, there should be no more uses of the
|
|
// alloca: remove it now.
|
|
assert(AI->use_empty() && "Uses of alloca from more than one BB??");
|
|
if (AST) AST->deleteValue(AI);
|
|
AI->eraseFromParent();
|
|
|
|
++NumLocalPromoted;
|
|
return false;
|
|
}
|
|
|
|
/// PromoteLocallyUsedAllocas - This method is just like
|
|
/// PromoteLocallyUsedAlloca, except that it processes multiple alloca
|
|
/// instructions in parallel. This is important in cases where we have large
|
|
/// basic blocks, as we don't want to rescan the entire basic block for each
|
|
/// alloca which is locally used in it (which might be a lot).
|
|
void PromoteMem2Reg::
|
|
PromoteLocallyUsedAllocas(BasicBlock *BB, const std::vector<AllocaInst*> &AIs) {
|
|
DenseMap<AllocaInst*, Value*> CurValues;
|
|
for (unsigned i = 0, e = AIs.size(); i != e; ++i)
|
|
CurValues[AIs[i]] = 0; // Insert with null value
|
|
|
|
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
|
|
Instruction *Inst = I++;
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
|
|
// Is this a load of an alloca we are tracking?
|
|
if (AllocaInst *AI = dyn_cast<AllocaInst>(LI->getOperand(0))) {
|
|
DenseMap<AllocaInst*, Value*>::iterator AIt = CurValues.find(AI);
|
|
if (AIt != CurValues.end()) {
|
|
// If loading an uninitialized value, allow the inter-block case to
|
|
// handle it. Due to control flow, this might actually be ok.
|
|
if (AIt->second == 0) { // Use of locally uninitialized value??
|
|
RetryList.push_back(AI); // Retry elsewhere.
|
|
CurValues.erase(AIt); // Stop tracking this here.
|
|
if (CurValues.empty()) return;
|
|
} else {
|
|
// Loads just returns the "current value"...
|
|
LI->replaceAllUsesWith(AIt->second);
|
|
if (AST && isa<PointerType>(LI->getType()))
|
|
AST->deleteValue(LI);
|
|
BB->getInstList().erase(LI);
|
|
}
|
|
}
|
|
}
|
|
} else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
|
|
if (AllocaInst *AI = dyn_cast<AllocaInst>(SI->getOperand(1))) {
|
|
DenseMap<AllocaInst*, Value*>::iterator AIt = CurValues.find(AI);
|
|
if (AIt != CurValues.end()) {
|
|
// Store updates the "current value"...
|
|
AIt->second = SI->getOperand(0);
|
|
SI->eraseFromParent();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// At the end of the block scan, all allocas in CurValues are dead.
|
|
for (DenseMap<AllocaInst*, Value*>::iterator I = CurValues.begin(),
|
|
E = CurValues.end(); I != E; ++I) {
|
|
AllocaInst *AI = I->first;
|
|
assert(AI->use_empty() && "Uses of alloca from more than one BB??");
|
|
if (AST) AST->deleteValue(AI);
|
|
AI->eraseFromParent();
|
|
}
|
|
|
|
NumLocalPromoted += CurValues.size();
|
|
}
|
|
|
|
|
|
|
|
// QueuePhiNode - queues a phi-node to be added to a basic-block for a specific
|
|
// Alloca returns true if there wasn't already a phi-node for that variable
|
|
//
|
|
bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo,
|
|
unsigned &Version,
|
|
SmallPtrSet<PHINode*, 16> &InsertedPHINodes) {
|
|
// Look up the basic-block in question.
|
|
PHINode *&PN = NewPhiNodes[std::make_pair(BB, AllocaNo)];
|
|
|
|
// If the BB already has a phi node added for the i'th alloca then we're done!
|
|
if (PN) return false;
|
|
|
|
// Create a PhiNode using the dereferenced type... and add the phi-node to the
|
|
// BasicBlock.
|
|
PN = new PHINode(Allocas[AllocaNo]->getAllocatedType(),
|
|
Allocas[AllocaNo]->getName() + "." +
|
|
utostr(Version++), BB->begin());
|
|
++NumPHIInsert;
|
|
PhiToAllocaMap[PN] = AllocaNo;
|
|
PN->reserveOperandSpace(getNumPreds(BB));
|
|
|
|
InsertedPHINodes.insert(PN);
|
|
|
|
if (AST && isa<PointerType>(PN->getType()))
|
|
AST->copyValue(PointerAllocaValues[AllocaNo], PN);
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
// RenamePass - Recursively traverse the CFG of the function, renaming loads and
|
|
// stores to the allocas which we are promoting. IncomingVals indicates what
|
|
// value each Alloca contains on exit from the predecessor block Pred.
|
|
//
|
|
void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred,
|
|
RenamePassData::ValVector &IncomingVals,
|
|
std::vector<RenamePassData> &Worklist) {
|
|
NextIteration:
|
|
// If we are inserting any phi nodes into this BB, they will already be in the
|
|
// block.
|
|
if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) {
|
|
// Pred may have multiple edges to BB. If so, we want to add N incoming
|
|
// values to each PHI we are inserting on the first time we see the edge.
|
|
// Check to see if APN already has incoming values from Pred. This also
|
|
// prevents us from modifying PHI nodes that are not currently being
|
|
// inserted.
|
|
bool HasPredEntries = false;
|
|
for (unsigned i = 0, e = APN->getNumIncomingValues(); i != e; ++i) {
|
|
if (APN->getIncomingBlock(i) == Pred) {
|
|
HasPredEntries = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If we have PHI nodes to update, compute the number of edges from Pred to
|
|
// BB.
|
|
if (!HasPredEntries) {
|
|
TerminatorInst *PredTerm = Pred->getTerminator();
|
|
unsigned NumEdges = 0;
|
|
for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
|
|
if (PredTerm->getSuccessor(i) == BB)
|
|
++NumEdges;
|
|
}
|
|
assert(NumEdges && "Must be at least one edge from Pred to BB!");
|
|
|
|
// Add entries for all the phis.
|
|
BasicBlock::iterator PNI = BB->begin();
|
|
do {
|
|
unsigned AllocaNo = PhiToAllocaMap[APN];
|
|
|
|
// Add N incoming values to the PHI node.
|
|
for (unsigned i = 0; i != NumEdges; ++i)
|
|
APN->addIncoming(IncomingVals[AllocaNo], Pred);
|
|
|
|
// The currently active variable for this block is now the PHI.
|
|
IncomingVals[AllocaNo] = APN;
|
|
|
|
// Get the next phi node.
|
|
++PNI;
|
|
APN = dyn_cast<PHINode>(PNI);
|
|
if (APN == 0) break;
|
|
|
|
// Verify it doesn't already have entries for Pred. If it does, it is
|
|
// not being inserted by this mem2reg invocation.
|
|
HasPredEntries = false;
|
|
for (unsigned i = 0, e = APN->getNumIncomingValues(); i != e; ++i) {
|
|
if (APN->getIncomingBlock(i) == Pred) {
|
|
HasPredEntries = true;
|
|
break;
|
|
}
|
|
}
|
|
} while (!HasPredEntries);
|
|
}
|
|
}
|
|
|
|
// Don't revisit blocks.
|
|
if (!Visited.insert(BB)) return;
|
|
|
|
for (BasicBlock::iterator II = BB->begin(); !isa<TerminatorInst>(II); ) {
|
|
Instruction *I = II++; // get the instruction, increment iterator
|
|
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
|
|
AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand());
|
|
if (!Src) continue;
|
|
|
|
std::map<AllocaInst*, unsigned>::iterator AI = AllocaLookup.find(Src);
|
|
if (AI == AllocaLookup.end()) continue;
|
|
|
|
Value *V = IncomingVals[AI->second];
|
|
|
|
// Anything using the load now uses the current value.
|
|
LI->replaceAllUsesWith(V);
|
|
if (AST && isa<PointerType>(LI->getType()))
|
|
AST->deleteValue(LI);
|
|
BB->getInstList().erase(LI);
|
|
} else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
|
|
// Delete this instruction and mark the name as the current holder of the
|
|
// value
|
|
AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand());
|
|
if (!Dest) continue;
|
|
|
|
std::map<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest);
|
|
if (ai == AllocaLookup.end())
|
|
continue;
|
|
|
|
// what value were we writing?
|
|
IncomingVals[ai->second] = SI->getOperand(0);
|
|
BB->getInstList().erase(SI);
|
|
}
|
|
}
|
|
|
|
// 'Recurse' to our successors.
|
|
TerminatorInst *TI = BB->getTerminator();
|
|
unsigned NumSuccs = TI->getNumSuccessors();
|
|
if (NumSuccs == 0) return;
|
|
|
|
// Add all-but-one successor to the worklist.
|
|
for (unsigned i = 0; i != NumSuccs-1; i++)
|
|
Worklist.push_back(RenamePassData(TI->getSuccessor(i), BB, IncomingVals));
|
|
|
|
// Handle the last successor without using the worklist. This allows us to
|
|
// handle unconditional branches directly, for example.
|
|
Pred = BB;
|
|
BB = TI->getSuccessor(NumSuccs-1);
|
|
goto NextIteration;
|
|
}
|
|
|
|
/// PromoteMemToReg - Promote the specified list of alloca instructions into
|
|
/// scalar registers, inserting PHI nodes as appropriate. This function makes
|
|
/// use of DominanceFrontier information. This function does not modify the CFG
|
|
/// of the function at all. All allocas must be from the same function.
|
|
///
|
|
/// If AST is specified, the specified tracker is updated to reflect changes
|
|
/// made to the IR.
|
|
///
|
|
void llvm::PromoteMemToReg(const std::vector<AllocaInst*> &Allocas,
|
|
DominatorTree &DT, DominanceFrontier &DF,
|
|
AliasSetTracker *AST) {
|
|
// If there is nothing to do, bail out...
|
|
if (Allocas.empty()) return;
|
|
|
|
SmallVector<AllocaInst*, 16> RetryList;
|
|
PromoteMem2Reg(Allocas, RetryList, DT, DF, AST).run();
|
|
|
|
// PromoteMem2Reg may not have been able to promote all of the allocas in one
|
|
// pass, run it again if needed.
|
|
std::vector<AllocaInst*> NewAllocas;
|
|
while (!RetryList.empty()) {
|
|
// If we need to retry some allocas, this is due to there being no store
|
|
// before a read in a local block. To counteract this, insert a store of
|
|
// undef into the alloca right after the alloca itself.
|
|
for (unsigned i = 0, e = RetryList.size(); i != e; ++i) {
|
|
BasicBlock::iterator BBI = RetryList[i];
|
|
|
|
new StoreInst(UndefValue::get(RetryList[i]->getAllocatedType()),
|
|
RetryList[i], ++BBI);
|
|
}
|
|
|
|
NewAllocas.assign(RetryList.begin(), RetryList.end());
|
|
RetryList.clear();
|
|
PromoteMem2Reg(NewAllocas, RetryList, DT, DF, AST).run();
|
|
NewAllocas.clear();
|
|
}
|
|
}
|