llvm-6502/lib/Analysis/DataStructure/BottomUpClosure.cpp
Chris Lattner 5021b8c2d6 do not bother inlining nullary functions without return values. The only
effect these calls can have is due to global variables, and these passes
all use the globals graph to capture their effect anyway.  This speeds up
the BU pass very slightly on perlbmk, reducing the number of dsnodes
allocated from 98913 to 96423.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@20676 91177308-0d34-0410-b5e6-96231b3b80d8
2005-03-18 23:19:47 +00:00

514 lines
19 KiB
C++

//===- BottomUpClosure.cpp - Compute bottom-up interprocedural closure ----===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the BUDataStructures class, which represents the
// Bottom-Up Interprocedural closure of the data structure graph over the
// program. This is useful for applications like pool allocation, but **not**
// applications like alias analysis.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/DataStructure/DataStructure.h"
#include "llvm/Module.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Debug.h"
#include "DSCallSiteIterator.h"
using namespace llvm;
namespace {
Statistic<> MaxSCC("budatastructure", "Maximum SCC Size in Call Graph");
Statistic<> NumBUInlines("budatastructures", "Number of graphs inlined");
Statistic<> NumCallEdges("budatastructures", "Number of 'actual' call edges");
RegisterAnalysis<BUDataStructures>
X("budatastructure", "Bottom-up Data Structure Analysis");
}
using namespace DS;
// run - Calculate the bottom up data structure graphs for each function in the
// program.
//
bool BUDataStructures::runOnModule(Module &M) {
LocalDataStructures &LocalDSA = getAnalysis<LocalDataStructures>();
GlobalsGraph = new DSGraph(LocalDSA.getGlobalsGraph());
GlobalsGraph->setPrintAuxCalls();
IndCallGraphMap = new std::map<std::vector<Function*>,
std::pair<DSGraph*, std::vector<DSNodeHandle> > >();
std::vector<Function*> Stack;
hash_map<Function*, unsigned> ValMap;
unsigned NextID = 1;
Function *MainFunc = M.getMainFunction();
if (MainFunc)
calculateGraphs(MainFunc, Stack, NextID, ValMap);
// Calculate the graphs for any functions that are unreachable from main...
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
if (!I->isExternal() && !DSInfo.count(I)) {
#ifndef NDEBUG
if (MainFunc)
std::cerr << "*** Function unreachable from main: "
<< I->getName() << "\n";
#endif
calculateGraphs(I, Stack, NextID, ValMap); // Calculate all graphs.
}
NumCallEdges += ActualCallees.size();
// If we computed any temporary indcallgraphs, free them now.
for (std::map<std::vector<Function*>,
std::pair<DSGraph*, std::vector<DSNodeHandle> > >::iterator I =
IndCallGraphMap->begin(), E = IndCallGraphMap->end(); I != E; ++I) {
I->second.second.clear(); // Drop arg refs into the graph.
delete I->second.first;
}
delete IndCallGraphMap;
// At the end of the bottom-up pass, the globals graph becomes complete.
// FIXME: This is not the right way to do this, but it is sorta better than
// nothing! In particular, externally visible globals and unresolvable call
// nodes at the end of the BU phase should make things that they point to
// incomplete in the globals graph.
//
GlobalsGraph->removeTriviallyDeadNodes();
GlobalsGraph->maskIncompleteMarkers();
// Merge the globals variables (not the calls) from the globals graph back
// into the main function's graph so that the main function contains all of
// the information about global pools and GV usage in the program.
if (MainFunc && !MainFunc->isExternal()) {
DSGraph &MainGraph = getOrCreateGraph(MainFunc);
const DSGraph &GG = *MainGraph.getGlobalsGraph();
ReachabilityCloner RC(MainGraph, GG,
DSGraph::DontCloneCallNodes |
DSGraph::DontCloneAuxCallNodes);
// Clone the global nodes into this graph.
for (DSScalarMap::global_iterator I = GG.getScalarMap().global_begin(),
E = GG.getScalarMap().global_end(); I != E; ++I)
if (isa<GlobalVariable>(*I))
RC.getClonedNH(GG.getNodeForValue(*I));
MainGraph.maskIncompleteMarkers();
MainGraph.markIncompleteNodes(DSGraph::MarkFormalArgs |
DSGraph::IgnoreGlobals);
}
return false;
}
DSGraph &BUDataStructures::getOrCreateGraph(Function *F) {
// Has the graph already been created?
DSGraph *&Graph = DSInfo[F];
if (Graph) return *Graph;
// Copy the local version into DSInfo...
Graph = new DSGraph(getAnalysis<LocalDataStructures>().getDSGraph(*F));
Graph->setGlobalsGraph(GlobalsGraph);
Graph->setPrintAuxCalls();
// Start with a copy of the original call sites...
Graph->getAuxFunctionCalls() = Graph->getFunctionCalls();
return *Graph;
}
unsigned BUDataStructures::calculateGraphs(Function *F,
std::vector<Function*> &Stack,
unsigned &NextID,
hash_map<Function*, unsigned> &ValMap) {
assert(!ValMap.count(F) && "Shouldn't revisit functions!");
unsigned Min = NextID++, MyID = Min;
ValMap[F] = Min;
Stack.push_back(F);
// FIXME! This test should be generalized to be any function that we have
// already processed, in the case when there isn't a main or there are
// unreachable functions!
if (F->isExternal()) { // sprintf, fprintf, sscanf, etc...
// No callees!
Stack.pop_back();
ValMap[F] = ~0;
return Min;
}
DSGraph &Graph = getOrCreateGraph(F);
// The edges out of the current node are the call site targets...
for (DSCallSiteIterator I = DSCallSiteIterator::begin_aux(Graph),
E = DSCallSiteIterator::end_aux(Graph); I != E; ++I) {
Function *Callee = *I;
unsigned M;
// Have we visited the destination function yet?
hash_map<Function*, unsigned>::iterator It = ValMap.find(Callee);
if (It == ValMap.end()) // No, visit it now.
M = calculateGraphs(Callee, Stack, NextID, ValMap);
else // Yes, get it's number.
M = It->second;
if (M < Min) Min = M;
}
assert(ValMap[F] == MyID && "SCC construction assumption wrong!");
if (Min != MyID)
return Min; // This is part of a larger SCC!
// If this is a new SCC, process it now.
if (Stack.back() == F) { // Special case the single "SCC" case here.
DEBUG(std::cerr << "Visiting single node SCC #: " << MyID << " fn: "
<< F->getName() << "\n");
Stack.pop_back();
DSGraph &G = getDSGraph(*F);
DEBUG(std::cerr << " [BU] Calculating graph for: " << F->getName()<< "\n");
calculateGraph(G);
DEBUG(std::cerr << " [BU] Done inlining: " << F->getName() << " ["
<< G.getGraphSize() << "+" << G.getAuxFunctionCalls().size()
<< "]\n");
if (MaxSCC < 1) MaxSCC = 1;
// Should we revisit the graph?
if (DSCallSiteIterator::begin_aux(G) != DSCallSiteIterator::end_aux(G)) {
ValMap.erase(F);
return calculateGraphs(F, Stack, NextID, ValMap);
} else {
ValMap[F] = ~0U;
}
return MyID;
} else {
// SCCFunctions - Keep track of the functions in the current SCC
//
hash_set<DSGraph*> SCCGraphs;
Function *NF;
std::vector<Function*>::iterator FirstInSCC = Stack.end();
DSGraph *SCCGraph = 0;
do {
NF = *--FirstInSCC;
ValMap[NF] = ~0U;
// Figure out which graph is the largest one, in order to speed things up
// a bit in situations where functions in the SCC have widely different
// graph sizes.
DSGraph &NFGraph = getDSGraph(*NF);
SCCGraphs.insert(&NFGraph);
// FIXME: If we used a better way of cloning graphs (ie, just splice all
// of the nodes into the new graph), this would be completely unneeded!
if (!SCCGraph || SCCGraph->getGraphSize() < NFGraph.getGraphSize())
SCCGraph = &NFGraph;
} while (NF != F);
std::cerr << "Calculating graph for SCC #: " << MyID << " of size: "
<< SCCGraphs.size() << "\n";
// Compute the Max SCC Size...
if (MaxSCC < SCCGraphs.size())
MaxSCC = SCCGraphs.size();
// First thing first, collapse all of the DSGraphs into a single graph for
// the entire SCC. We computed the largest graph, so clone all of the other
// (smaller) graphs into it. Discard all of the old graphs.
//
for (hash_set<DSGraph*>::iterator I = SCCGraphs.begin(),
E = SCCGraphs.end(); I != E; ++I) {
DSGraph &G = **I;
if (&G != SCCGraph) {
{
DSGraph::NodeMapTy NodeMap;
SCCGraph->cloneInto(G, SCCGraph->getScalarMap(),
SCCGraph->getReturnNodes(), NodeMap);
}
// Update the DSInfo map and delete the old graph...
for (DSGraph::retnodes_iterator I = G.retnodes_begin(),
E = G.retnodes_end(); I != E; ++I)
DSInfo[I->first] = SCCGraph;
delete &G;
}
}
// Clean up the graph before we start inlining a bunch again...
SCCGraph->removeDeadNodes(DSGraph::KeepUnreachableGlobals);
// Now that we have one big happy family, resolve all of the call sites in
// the graph...
calculateGraph(*SCCGraph);
DEBUG(std::cerr << " [BU] Done inlining SCC [" << SCCGraph->getGraphSize()
<< "+" << SCCGraph->getAuxFunctionCalls().size() << "]\n");
std::cerr << "DONE with SCC #: " << MyID << "\n";
// We never have to revisit "SCC" processed functions...
// Drop the stuff we don't need from the end of the stack
Stack.erase(FirstInSCC, Stack.end());
return MyID;
}
return MyID; // == Min
}
// releaseMemory - If the pass pipeline is done with this pass, we can release
// our memory... here...
//
void BUDataStructures::releaseMemory() {
for (hash_map<Function*, DSGraph*>::iterator I = DSInfo.begin(),
E = DSInfo.end(); I != E; ++I) {
I->second->getReturnNodes().erase(I->first);
if (I->second->getReturnNodes().empty())
delete I->second;
}
// Empty map so next time memory is released, data structures are not
// re-deleted.
DSInfo.clear();
delete GlobalsGraph;
GlobalsGraph = 0;
}
static bool isVAHackFn(const Function *F) {
return F->getName() == "printf" || F->getName() == "sscanf" ||
F->getName() == "fprintf" || F->getName() == "open" ||
F->getName() == "sprintf" || F->getName() == "fputs" ||
F->getName() == "fscanf";
}
// isUnresolvableFunction - Return true if this is an unresolvable
// external function. A direct or indirect call to this cannot be resolved.
//
static bool isResolvableFunc(const Function* callee) {
return !callee->isExternal() || isVAHackFn(callee);
}
void BUDataStructures::calculateGraph(DSGraph &Graph) {
// Move our call site list into TempFCs so that inline call sites go into the
// new call site list and doesn't invalidate our iterators!
std::list<DSCallSite> TempFCs;
std::list<DSCallSite> &AuxCallsList = Graph.getAuxFunctionCalls();
TempFCs.swap(AuxCallsList);
DSGraph::ReturnNodesTy &ReturnNodes = Graph.getReturnNodes();
bool Printed = false;
std::vector<Function*> CalledFuncs;
while (!TempFCs.empty()) {
DSCallSite &CS = *TempFCs.begin();
CalledFuncs.clear();
// Fast path for noop calls. Note that we don't care about merging globals
// in the callee with nodes in the caller here.
if (CS.getRetVal().isNull() && CS.getNumPtrArgs() == 0) {
TempFCs.erase(TempFCs.begin());
continue;
}
if (CS.isDirectCall()) {
Function *F = CS.getCalleeFunc();
if (isResolvableFunc(F))
if (F->isExternal()) { // Call to fprintf, etc.
TempFCs.erase(TempFCs.begin());
continue;
} else {
CalledFuncs.push_back(F);
}
} else {
DSNode *Node = CS.getCalleeNode();
if (!Node->isIncomplete())
for (unsigned i = 0, e = Node->getGlobals().size(); i != e; ++i)
if (Function *CF = dyn_cast<Function>(Node->getGlobals()[i]))
if (isResolvableFunc(CF) && !CF->isExternal())
CalledFuncs.push_back(CF);
}
if (CalledFuncs.empty()) {
// Remember that we could not resolve this yet!
AuxCallsList.splice(AuxCallsList.end(), TempFCs, TempFCs.begin());
continue;
} else {
DSGraph *GI;
if (CalledFuncs.size() == 1) {
Function *Callee = CalledFuncs[0];
ActualCallees.insert(std::make_pair(CS.getCallSite().getInstruction(),
Callee));
// Get the data structure graph for the called function.
GI = &getDSGraph(*Callee); // Graph to inline
DEBUG(std::cerr << " Inlining graph for " << Callee->getName());
DEBUG(std::cerr << "[" << GI->getGraphSize() << "+"
<< GI->getAuxFunctionCalls().size() << "] into '"
<< Graph.getFunctionNames() << "' [" << Graph.getGraphSize() <<"+"
<< Graph.getAuxFunctionCalls().size() << "]\n");
Graph.mergeInGraph(CS, *Callee, *GI,
DSGraph::KeepModRefBits |
DSGraph::StripAllocaBit|DSGraph::DontCloneCallNodes);
++NumBUInlines;
} else {
if (!Printed)
std::cerr << "In Fns: " << Graph.getFunctionNames() << "\n";
std::cerr << " calls " << CalledFuncs.size()
<< " fns from site: " << CS.getCallSite().getInstruction()
<< " " << *CS.getCallSite().getInstruction();
unsigned NumToPrint = CalledFuncs.size();
if (NumToPrint > 8) NumToPrint = 8;
std::cerr << " Fns =";
for (std::vector<Function*>::iterator I = CalledFuncs.begin(),
E = CalledFuncs.end(); I != E && NumToPrint; ++I, --NumToPrint)
std::cerr << " " << (*I)->getName();
std::cerr << "\n";
// See if we already computed a graph for this set of callees.
std::sort(CalledFuncs.begin(), CalledFuncs.end());
std::pair<DSGraph*, std::vector<DSNodeHandle> > &IndCallGraph =
(*IndCallGraphMap)[CalledFuncs];
if (IndCallGraph.first == 0) {
std::vector<Function*>::iterator I = CalledFuncs.begin(),
E = CalledFuncs.end();
// Start with a copy of the first graph.
GI = IndCallGraph.first = new DSGraph(getDSGraph(**I));
GI->setGlobalsGraph(Graph.getGlobalsGraph());
std::vector<DSNodeHandle> &Args = IndCallGraph.second;
// Get the argument nodes for the first callee. The return value is
// the 0th index in the vector.
GI->getFunctionArgumentsForCall(*I, Args);
// Merge all of the other callees into this graph.
for (++I; I != E; ++I) {
// If the graph already contains the nodes for the function, don't
// bother merging it in again.
if (!GI->containsFunction(*I)) {
DSGraph::NodeMapTy NodeMap;
GI->cloneInto(getDSGraph(**I), GI->getScalarMap(),
GI->getReturnNodes(), NodeMap);
++NumBUInlines;
}
std::vector<DSNodeHandle> NextArgs;
GI->getFunctionArgumentsForCall(*I, NextArgs);
unsigned i = 0, e = Args.size();
for (; i != e; ++i) {
if (i == NextArgs.size()) break;
Args[i].mergeWith(NextArgs[i]);
}
for (e = NextArgs.size(); i != e; ++i)
Args.push_back(NextArgs[i]);
}
// Clean up the final graph!
GI->removeDeadNodes(DSGraph::KeepUnreachableGlobals);
} else {
std::cerr << "***\n*** RECYCLED GRAPH ***\n***\n";
}
GI = IndCallGraph.first;
// Merge the unified graph into this graph now.
DEBUG(std::cerr << " Inlining multi callee graph "
<< "[" << GI->getGraphSize() << "+"
<< GI->getAuxFunctionCalls().size() << "] into '"
<< Graph.getFunctionNames() << "' [" << Graph.getGraphSize() <<"+"
<< Graph.getAuxFunctionCalls().size() << "]\n");
Graph.mergeInGraph(CS, IndCallGraph.second, *GI,
DSGraph::KeepModRefBits |
DSGraph::StripAllocaBit |
DSGraph::DontCloneCallNodes);
++NumBUInlines;
}
}
TempFCs.erase(TempFCs.begin());
}
// Recompute the Incomplete markers
assert(Graph.getInlinedGlobals().empty());
Graph.maskIncompleteMarkers();
Graph.markIncompleteNodes(DSGraph::MarkFormalArgs);
// Delete dead nodes. Treat globals that are unreachable but that can
// reach live nodes as live.
Graph.removeDeadNodes(DSGraph::KeepUnreachableGlobals);
// When this graph is finalized, clone the globals in the graph into the
// globals graph to make sure it has everything, from all graphs.
DSScalarMap &MainSM = Graph.getScalarMap();
ReachabilityCloner RC(*GlobalsGraph, Graph, DSGraph::StripAllocaBit);
// Clone everything reachable from globals in the function graph into the
// globals graph.
for (DSScalarMap::global_iterator I = MainSM.global_begin(),
E = MainSM.global_end(); I != E; ++I)
RC.getClonedNH(MainSM[*I]);
//Graph.writeGraphToFile(std::cerr, "bu_" + F.getName());
}
static const Function *getFnForValue(const Value *V) {
if (const Instruction *I = dyn_cast<Instruction>(V))
return I->getParent()->getParent();
else if (const Argument *A = dyn_cast<Argument>(V))
return A->getParent();
else if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
return BB->getParent();
return 0;
}
/// deleteValue/copyValue - Interfaces to update the DSGraphs in the program.
/// These correspond to the interfaces defined in the AliasAnalysis class.
void BUDataStructures::deleteValue(Value *V) {
if (const Function *F = getFnForValue(V)) { // Function local value?
// If this is a function local value, just delete it from the scalar map!
getDSGraph(*F).getScalarMap().eraseIfExists(V);
return;
}
if (Function *F = dyn_cast<Function>(V)) {
assert(getDSGraph(*F).getReturnNodes().size() == 1 &&
"cannot handle scc's");
delete DSInfo[F];
DSInfo.erase(F);
return;
}
assert(!isa<GlobalVariable>(V) && "Do not know how to delete GV's yet!");
}
void BUDataStructures::copyValue(Value *From, Value *To) {
if (From == To) return;
if (const Function *F = getFnForValue(From)) { // Function local value?
// If this is a function local value, just delete it from the scalar map!
getDSGraph(*F).getScalarMap().copyScalarIfExists(From, To);
return;
}
if (Function *FromF = dyn_cast<Function>(From)) {
Function *ToF = cast<Function>(To);
assert(!DSInfo.count(ToF) && "New Function already exists!");
DSGraph *NG = new DSGraph(getDSGraph(*FromF));
DSInfo[ToF] = NG;
assert(NG->getReturnNodes().size() == 1 && "Cannot copy SCC's yet!");
// Change the Function* is the returnnodes map to the ToF.
DSNodeHandle Ret = NG->retnodes_begin()->second;
NG->getReturnNodes().clear();
NG->getReturnNodes()[ToF] = Ret;
return;
}
assert(!isa<GlobalVariable>(From) && "Do not know how to copy GV's yet!");
}