llvm-6502/tools/bugpoint/ExecutionDriver.cpp
Misha Brukman 5073336cd4 Major addition to bugpoint: ability to debug code generators (LLC and LLI).
The C backend is assumed correct and is used to generate shared objects to be
loaded by the other two code generators.

LLC debugging should be functional now, LLI needs a few more additions to work,
the major one is renaming of external functions to call the JIT lazy function
resolver.

Bugpoint now has a command-line switch -mode with options 'compile' and
'codegen' to debug appropriate portions of tools.

ExecutionDriver.cpp: Added implementations of AbstractInterpreter for LLC and
GCC, broke out common code within other tools, and added ability to generate C
code with CBE individually, without executing the program, and the GCC tool can
generate executables shared objects or executables.

If no reference output is specified to Bugpoint, it will be generated with CBE,
because it is already assumed to be correct for the purposes of debugging using
this method. As a result, many functions now accept as an optional parameter a
shared object to be loaded in, if specified.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@7293 91177308-0d34-0410-b5e6-96231b3b80d8
2003-07-24 18:17:43 +00:00

582 lines
19 KiB
C++

//===- ExecutionDriver.cpp - Allow execution of LLVM program --------------===//
//
// This file contains code used to execute the program utilizing one of the
// various ways of running LLVM bytecode.
//
//===----------------------------------------------------------------------===//
/*
BUGPOINT NOTES:
1. Bugpoint should not leave any files behind if the program works properly
2. There should be an option to specify the program name, which specifies a
unique string to put into output files. This allows operation in the
SingleSource directory, e.g. default to the first input filename.
*/
#include "BugDriver.h"
#include "SystemUtils.h"
#include "Support/CommandLine.h"
#include <fstream>
#include <iostream>
namespace {
// OutputType - Allow the user to specify the way code should be run, to test
// for miscompilation.
//
enum OutputType {
RunLLI, RunJIT, RunLLC, RunCBE
};
cl::opt<OutputType>
InterpreterSel(cl::desc("Specify how LLVM code should be executed:"),
cl::values(clEnumValN(RunLLI, "run-lli", "Execute with LLI"),
clEnumValN(RunJIT, "run-jit", "Execute with JIT"),
clEnumValN(RunLLC, "run-llc", "Compile with LLC"),
clEnumValN(RunCBE, "run-cbe", "Compile with CBE"),
0));
cl::opt<std::string>
InputFile("input", cl::init("/dev/null"),
cl::desc("Filename to pipe in as stdin (default: /dev/null)"));
}
/// AbstractInterpreter Class - Subclasses of this class are used to execute
/// LLVM bytecode in a variety of ways. This abstract interface hides this
/// complexity behind a simple interface.
///
struct AbstractInterpreter {
virtual ~AbstractInterpreter() {}
/// ExecuteProgram - Run the specified bytecode file, emitting output to the
/// specified filename. This returns the exit code of the program.
///
virtual int ExecuteProgram(const std::string &Bytecode,
const std::string &OutputFile,
const std::string &SharedLib = "") = 0;
};
//===----------------------------------------------------------------------===//
// LLI Implementation of AbstractIntepreter interface
//
class LLI : public AbstractInterpreter {
std::string LLIPath; // The path to the LLI executable
public:
LLI(const std::string &Path) : LLIPath(Path) { }
// LLI create method - Try to find the LLI executable
static LLI *create(BugDriver *BD, std::string &Message) {
std::string LLIPath = FindExecutable("lli", BD->getToolName());
if (!LLIPath.empty()) {
Message = "Found lli: " + LLIPath + "\n";
return new LLI(LLIPath);
}
Message = "Cannot find `lli' in bugpoint executable directory or PATH!\n";
return 0;
}
virtual int ExecuteProgram(const std::string &Bytecode,
const std::string &OutputFile,
const std::string &SharedLib = "");
};
int LLI::ExecuteProgram(const std::string &Bytecode,
const std::string &OutputFile,
const std::string &SharedLib) {
if (SharedLib != "") {
std::cerr << "LLI currently does not support loading shared libraries.\n"
<< "Exiting.\n";
exit(1);
}
const char *Args[] = {
LLIPath.c_str(),
"-abort-on-exception",
"-quiet",
"-force-interpreter=true",
Bytecode.c_str(),
0
};
return RunProgramWithTimeout(LLIPath, Args,
InputFile, OutputFile, OutputFile);
}
//===----------------------------------------------------------------------===//
// GCC Implementation of AbstractIntepreter interface
//
// This is not a *real* AbstractInterpreter as it does not accept bytecode
// files, but only input acceptable to GCC, i.e. C, C++, and assembly files
//
class GCC : public AbstractInterpreter {
std::string GCCPath; // The path to the gcc executable
public:
GCC(const std::string &gccPath) : GCCPath(gccPath) { }
// GCC create method - Try to find the `gcc' executable
static GCC *create(BugDriver *BD, std::string &Message) {
std::string GCCPath = FindExecutable("gcc", BD->getToolName());
if (GCCPath.empty()) {
Message = "Cannot find `gcc' in bugpoint executable directory or PATH!\n";
return 0;
}
Message = "Found gcc: " + GCCPath + "\n";
return new GCC(GCCPath);
}
virtual int ExecuteProgram(const std::string &ProgramFile,
const std::string &OutputFile,
const std::string &SharedLib = "");
int MakeSharedObject(const std::string &InputFile,
std::string &OutputFile);
void ProcessFailure(const char **Args);
};
int GCC::ExecuteProgram(const std::string &ProgramFile,
const std::string &OutputFile,
const std::string &SharedLib) {
std::string OutputBinary = "bugpoint.gcc.exe";
const char **GCCArgs;
const char *ArgsWithoutSO[] = {
GCCPath.c_str(),
ProgramFile.c_str(), // Specify the input filename...
"-o", OutputBinary.c_str(), // Output to the right filename...
"-lm", // Hard-code the math library...
"-O2", // Optimize the program a bit...
0
};
const char *ArgsWithSO[] = {
GCCPath.c_str(),
ProgramFile.c_str(), // Specify the input filename...
SharedLib.c_str(), // Specify the shared library to link in...
"-o", OutputBinary.c_str(), // Output to the right filename...
"-lm", // Hard-code the math library...
"-O2", // Optimize the program a bit...
0
};
GCCArgs = (SharedLib == "") ? ArgsWithoutSO : ArgsWithSO;
std::cout << "<gcc>";
if (RunProgramWithTimeout(GCCPath, GCCArgs, "/dev/null",
"/dev/null", "/dev/null")) {
ProcessFailure(GCCArgs);
exit(1); // Leave stuff around for the user to inspect or debug the CBE
}
const char *ProgramArgs[] = {
OutputBinary.c_str(),
0
};
std::cout << "<program>";
// Now that we have a binary, run it!
int ProgramResult = RunProgramWithTimeout(OutputBinary, ProgramArgs,
InputFile, OutputFile, OutputFile);
std::cout << "\n";
removeFile(OutputBinary);
return ProgramResult;
}
int GCC::MakeSharedObject(const std::string &InputFile,
std::string &OutputFile) {
OutputFile = "./bugpoint.so";
// Compile the C/asm file into a shared object
const char* GCCArgs[] = {
GCCPath.c_str(),
InputFile.c_str(), // Specify the input filename...
#if defined(sparc) || defined(__sparc__) || defined(__sparcv9)
"-G", // Compile a shared library, `-G' for Sparc
#else
"-shared", // `-shared' for Linux/X86, maybe others
#endif
"-o", OutputFile.c_str(), // Output to the right filename...
"-O2", // Optimize the program a bit...
0
};
std::cout << "<gcc>";
if(RunProgramWithTimeout(GCCPath, GCCArgs, "/dev/null", "/dev/null",
"/dev/null")) {
ProcessFailure(GCCArgs);
exit(1);
}
return 0;
}
void GCC::ProcessFailure(const char** GCCArgs) {
std::cerr << "\n*** bugpoint error: invocation of the C compiler failed!\n";
for (const char **Arg = GCCArgs; *Arg; ++Arg)
std::cerr << " " << *Arg;
std::cerr << "\n";
// Rerun the compiler, capturing any error messages to print them.
std::string ErrorFilename = getUniqueFilename("bugpoint.gcc.errors");
RunProgramWithTimeout(GCCPath, GCCArgs, "/dev/null", ErrorFilename.c_str(),
ErrorFilename.c_str());
// Print out the error messages generated by GCC if possible...
std::ifstream ErrorFile(ErrorFilename.c_str());
if (ErrorFile) {
std::copy(std::istreambuf_iterator<char>(ErrorFile),
std::istreambuf_iterator<char>(),
std::ostreambuf_iterator<char>(std::cerr));
ErrorFile.close();
std::cerr << "\n";
}
removeFile(ErrorFilename);
}
//===----------------------------------------------------------------------===//
// LLC Implementation of AbstractIntepreter interface
//
class LLC : public AbstractInterpreter {
std::string LLCPath; // The path to the LLC executable
GCC *gcc;
public:
LLC(const std::string &llcPath, GCC *Gcc)
: LLCPath(llcPath), gcc(Gcc) { }
~LLC() { delete gcc; }
// LLC create method - Try to find the LLC executable
static LLC *create(BugDriver *BD, std::string &Message) {
std::string LLCPath = FindExecutable("llc", BD->getToolName());
if (LLCPath.empty()) {
Message = "Cannot find `llc' in bugpoint executable directory or PATH!\n";
return 0;
}
Message = "Found llc: " + LLCPath + "\n";
GCC *gcc = GCC::create(BD, Message);
return new LLC(LLCPath, gcc);
}
virtual int ExecuteProgram(const std::string &Bytecode,
const std::string &OutputFile,
const std::string &SharedLib = "");
int OutputAsm(const std::string &Bytecode,
std::string &OutputAsmFile);
};
int LLC::OutputAsm(const std::string &Bytecode,
std::string &OutputAsmFile) {
OutputAsmFile = "bugpoint.llc.s";
const char *LLCArgs[] = {
LLCPath.c_str(),
"-o", OutputAsmFile.c_str(), // Output to the Asm file
"-f", // Overwrite as necessary...
Bytecode.c_str(), // This is the input bytecode
0
};
std::cout << "<llc>";
if (RunProgramWithTimeout(LLCPath, LLCArgs, "/dev/null", "/dev/null",
"/dev/null")) {
// If LLC failed on the bytecode, print error...
std::cerr << "bugpoint error: `llc' failed!\n";
removeFile(OutputAsmFile);
return 1;
}
return 0;
}
int LLC::ExecuteProgram(const std::string &Bytecode,
const std::string &OutputFile,
const std::string &SharedLib) {
std::string OutputAsmFile;
if (OutputAsm(Bytecode, OutputAsmFile)) {
std::cerr << "Could not generate asm code with `llc', exiting.\n";
exit(1);
}
// Assuming LLC worked, compile the result with GCC and run it.
int Result = gcc->ExecuteProgram(OutputAsmFile, OutputFile, SharedLib);
removeFile(OutputAsmFile);
return Result;
}
//===----------------------------------------------------------------------===//
// JIT Implementation of AbstractIntepreter interface
//
class JIT : public AbstractInterpreter {
std::string LLIPath; // The path to the LLI executable
public:
JIT(const std::string &Path) : LLIPath(Path) { }
// JIT create method - Try to find the LLI executable
static JIT *create(BugDriver *BD, std::string &Message) {
std::string LLIPath = FindExecutable("lli", BD->getToolName());
if (!LLIPath.empty()) {
Message = "Found lli: " + LLIPath + "\n";
return new JIT(LLIPath);
}
Message = "Cannot find `lli' in bugpoint executable directory or PATH!\n";
return 0;
}
virtual int ExecuteProgram(const std::string &Bytecode,
const std::string &OutputFile,
const std::string &SharedLib = "");
};
int JIT::ExecuteProgram(const std::string &Bytecode,
const std::string &OutputFile,
const std::string &SharedLib) {
if (SharedLib == "") {
const char* Args[] = {
LLIPath.c_str(), "-quiet", "-force-interpreter=false", Bytecode.c_str(),
0
};
return RunProgramWithTimeout(LLIPath, Args,
InputFile, OutputFile, OutputFile);
} else {
std::string SharedLibOpt = "-load=" + SharedLib;
const char* Args[] = {
LLIPath.c_str(), "-quiet", "-force-interpreter=false",
SharedLibOpt.c_str(),
Bytecode.c_str(),
0
};
return RunProgramWithTimeout(LLIPath, Args,
InputFile, OutputFile, OutputFile);
}
}
//===----------------------------------------------------------------------===//
// CBE Implementation of AbstractIntepreter interface
//
class CBE : public AbstractInterpreter {
std::string DISPath; // The path to the LLVM 'dis' executable
GCC *gcc;
public:
CBE(const std::string &disPath, GCC *Gcc) : DISPath(disPath), gcc(Gcc) { }
~CBE() { delete gcc; }
// CBE create method - Try to find the 'dis' executable
static CBE *create(BugDriver *BD, std::string &Message) {
std::string DISPath = FindExecutable("dis", BD->getToolName());
if (DISPath.empty()) {
Message = "Cannot find `dis' in bugpoint executable directory or PATH!\n";
return 0;
}
Message = "Found dis: " + DISPath + "\n";
GCC *gcc = GCC::create(BD, Message);
return new CBE(DISPath, gcc);
}
virtual int ExecuteProgram(const std::string &Bytecode,
const std::string &OutputFile,
const std::string &SharedLib = "");
// Sometimes we just want to go half-way and only generate the C file,
// not necessarily compile it with GCC and run the program
virtual int OutputC(const std::string &Bytecode,
std::string &OutputCFile);
};
int CBE::OutputC(const std::string &Bytecode,
std::string &OutputCFile) {
OutputCFile = "bugpoint.cbe.c";
const char *DisArgs[] = {
DISPath.c_str(),
"-o", OutputCFile.c_str(), // Output to the C file
"-c", // Output to C
"-f", // Overwrite as necessary...
Bytecode.c_str(), // This is the input bytecode
0
};
std::cout << "<cbe>";
if (RunProgramWithTimeout(DISPath, DisArgs, "/dev/null", "/dev/null",
"/dev/null")) {
// If dis failed on the bytecode, print error...
std::cerr << "bugpoint error: `dis -c' failed!\n";
return 1;
}
return 0;
}
int CBE::ExecuteProgram(const std::string &Bytecode,
const std::string &OutputFile,
const std::string &SharedLib) {
std::string OutputCFile;
if (OutputC(Bytecode, OutputCFile)) {
std::cerr << "Could not generate C code with `dis', exiting.\n";
exit(1);
}
int Result = gcc->ExecuteProgram(OutputCFile, OutputFile, SharedLib);
removeFile(OutputCFile);
return Result;
}
//===----------------------------------------------------------------------===//
// BugDriver method implementation
//
/// initializeExecutionEnvironment - This method is used to set up the
/// environment for executing LLVM programs.
///
bool BugDriver::initializeExecutionEnvironment() {
std::cout << "Initializing execution environment: ";
// FIXME: This should default to searching for the best interpreter to use on
// this platform, which would be JIT, then LLC, then CBE, then LLI.
// Create an instance of the AbstractInterpreter interface as specified on the
// command line
std::string Message;
switch (InterpreterSel) {
case RunLLI: Interpreter = LLI::create(this, Message); break;
case RunLLC: Interpreter = LLC::create(this, Message); break;
case RunJIT: Interpreter = JIT::create(this, Message); break;
case RunCBE: Interpreter = CBE::create(this, Message); break;
default:
Message = " Sorry, this back-end is not supported by bugpoint right now!\n";
break;
}
std::cout << Message;
// If there was an error creating the selected interpreter, quit with error.
return Interpreter == 0;
}
/// executeProgram - This method runs "Program", capturing the output of the
/// program to a file, returning the filename of the file. A recommended
/// filename may be optionally specified.
///
std::string BugDriver::executeProgram(std::string OutputFile,
std::string BytecodeFile,
std::string SharedObject,
AbstractInterpreter *AI) {
assert((Interpreter || AI) &&"Interpreter should have been created already!");
bool CreatedBytecode = false;
if (BytecodeFile.empty()) {
// Emit the program to a bytecode file...
BytecodeFile = getUniqueFilename("bugpoint-test-program.bc");
if (writeProgramToFile(BytecodeFile, Program)) {
std::cerr << ToolName << ": Error emitting bytecode to file '"
<< BytecodeFile << "'!\n";
exit(1);
}
CreatedBytecode = true;
}
if (OutputFile.empty()) OutputFile = "bugpoint-execution-output";
// Check to see if this is a valid output filename...
OutputFile = getUniqueFilename(OutputFile);
// Actually execute the program!
int RetVal = (AI != 0) ?
AI->ExecuteProgram(BytecodeFile, OutputFile, SharedObject) :
Interpreter->ExecuteProgram(BytecodeFile, OutputFile, SharedObject);
// Remove the temporary bytecode file.
if (CreatedBytecode) removeFile(BytecodeFile);
// Return the filename we captured the output to.
return OutputFile;
}
std::string BugDriver::executeProgramWithCBE(std::string OutputFile,
std::string BytecodeFile,
std::string SharedObject) {
std::string Output;
CBE *cbe = CBE::create(this, Output);
Output = executeProgram(OutputFile, BytecodeFile, SharedObject, cbe);
delete cbe;
return Output;
}
int BugDriver::compileSharedObject(const std::string &BytecodeFile,
std::string &SharedObject) {
assert(Interpreter && "Interpreter should have been created already!");
std::string Message, OutputCFile;
// Using CBE
CBE *cbe = CBE::create(this, Message);
cbe->OutputC(BytecodeFile, OutputCFile);
#if 0 /* This is an alternative, as yet unimplemented */
// Using LLC
LLC *llc = LLC::create(this, Message);
if (llc->OutputAsm(BytecodeFile, OutputFile)) {
std::cerr << "Could not generate asm code with `llc', exiting.\n";
exit(1);
}
#endif
GCC *gcc = GCC::create(this, Message);
gcc->MakeSharedObject(OutputCFile, SharedObject);
// Remove the intermediate C file
removeFile(OutputCFile);
// We are done with the CBE & GCC
delete cbe;
delete gcc;
return 0;
}
/// diffProgram - This method executes the specified module and diffs the output
/// against the file specified by ReferenceOutputFile. If the output is
/// different, true is returned.
///
bool BugDriver::diffProgram(const std::string &BytecodeFile,
const std::string &SharedObject,
bool RemoveBytecode) {
// Execute the program, generating an output file...
std::string Output = executeProgram("", BytecodeFile, SharedObject);
std::ifstream ReferenceFile(ReferenceOutputFile.c_str());
if (!ReferenceFile) {
std::cerr << "Couldn't open reference output file '"
<< ReferenceOutputFile << "'\n";
exit(1);
}
std::ifstream OutputFile(Output.c_str());
if (!OutputFile) {
std::cerr << "Couldn't open output file: " << Output << "'!\n";
exit(1);
}
bool FilesDifferent = false;
// Compare the two files...
int C1, C2;
do {
C1 = ReferenceFile.get();
C2 = OutputFile.get();
if (C1 != C2) { FilesDifferent = true; break; }
} while (C1 != EOF);
removeFile(Output);
if (RemoveBytecode) removeFile(BytecodeFile);
return FilesDifferent;
}