llvm-6502/lib/Target/CellSPU/SPUISelDAGToDAG.cpp
Chris Lattner 84bc5427d6 Rename SSARegMap -> MachineRegisterInfo in keeping with the idea
that "machine" classes are used to represent the current state of
the code being compiled.  Given this expanded name, we can start 
moving other stuff into it.  For now, move the UsedPhysRegs and
LiveIn/LoveOuts vectors from MachineFunction into it.

Update all the clients to match.

This also reduces some needless #includes, such as MachineModuleInfo
from MachineFunction.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@45467 91177308-0d34-0410-b5e6-96231b3b80d8
2007-12-31 04:13:23 +00:00

642 lines
19 KiB
C++

//===-- SPUISelDAGToDAG.cpp - CellSPU pattern matching inst selector ------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a pattern matching instruction selector for the Cell SPU,
// converting from a legalized dag to a SPU-target dag.
//
//===----------------------------------------------------------------------===//
#include "SPU.h"
#include "SPUTargetMachine.h"
#include "SPUISelLowering.h"
#include "SPUHazardRecognizers.h"
#include "SPUFrameInfo.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Constants.h"
#include "llvm/GlobalValue.h"
#include "llvm/Intrinsics.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Compiler.h"
#include <iostream>
#include <queue>
#include <set>
using namespace llvm;
namespace {
//! ConstantSDNode predicate for i32 sign-extended, 10-bit immediates
bool
isI64IntS10Immediate(ConstantSDNode *CN)
{
return isS10Constant(CN->getValue());
}
//! ConstantSDNode predicate for i32 sign-extended, 10-bit immediates
bool
isI32IntS10Immediate(ConstantSDNode *CN)
{
return isS10Constant((int) CN->getValue());
}
#if 0
//! SDNode predicate for sign-extended, 10-bit immediate values
bool
isI32IntS10Immediate(SDNode *N)
{
return (N->getOpcode() == ISD::Constant
&& isI32IntS10Immediate(cast<ConstantSDNode>(N)));
}
#endif
//! ConstantSDNode predicate for i32 unsigned 10-bit immediate values
bool
isI32IntU10Immediate(ConstantSDNode *CN)
{
return isU10Constant((int) CN->getValue());
}
//! ConstantSDNode predicate for i16 sign-extended, 10-bit immediate values
bool
isI16IntS10Immediate(ConstantSDNode *CN)
{
return isS10Constant((short) CN->getValue());
}
//! SDNode predicate for i16 sign-extended, 10-bit immediate values
bool
isI16IntS10Immediate(SDNode *N)
{
return (N->getOpcode() == ISD::Constant
&& isI16IntS10Immediate(cast<ConstantSDNode>(N)));
}
//! ConstantSDNode predicate for i16 unsigned 10-bit immediate values
bool
isI16IntU10Immediate(ConstantSDNode *CN)
{
return isU10Constant((short) CN->getValue());
}
//! SDNode predicate for i16 sign-extended, 10-bit immediate values
bool
isI16IntU10Immediate(SDNode *N)
{
return (N->getOpcode() == ISD::Constant
&& isI16IntU10Immediate(cast<ConstantSDNode>(N)));
}
//! ConstantSDNode predicate for signed 16-bit values
/*!
\arg CN The constant SelectionDAG node holding the value
\arg Imm The returned 16-bit value, if returning true
This predicate tests the value in \a CN to see whether it can be
represented as a 16-bit, sign-extended quantity. Returns true if
this is the case.
*/
bool
isIntS16Immediate(ConstantSDNode *CN, short &Imm)
{
MVT::ValueType vt = CN->getValueType(0);
Imm = (short) CN->getValue();
if (vt >= MVT::i1 && vt <= MVT::i16) {
return true;
} else if (vt == MVT::i32) {
int32_t i_val = (int32_t) CN->getValue();
short s_val = (short) i_val;
return i_val == s_val;
} else {
int64_t i_val = (int64_t) CN->getValue();
short s_val = (short) i_val;
return i_val == s_val;
}
return false;
}
//! SDNode predicate for signed 16-bit values.
bool
isIntS16Immediate(SDNode *N, short &Imm)
{
return (N->getOpcode() == ISD::Constant
&& isIntS16Immediate(cast<ConstantSDNode>(N), Imm));
}
//! ConstantFPSDNode predicate for representing floats as 16-bit sign ext.
static bool
isFPS16Immediate(ConstantFPSDNode *FPN, short &Imm)
{
MVT::ValueType vt = FPN->getValueType(0);
if (vt == MVT::f32) {
int val = FloatToBits(FPN->getValueAPF().convertToFloat());
int sval = (int) ((val << 16) >> 16);
Imm = (short) val;
return val == sval;
}
return false;
}
//===------------------------------------------------------------------===//
//! MVT::ValueType to "useful stuff" mapping structure:
struct valtype_map_s {
MVT::ValueType VT;
unsigned ldresult_ins; /// LDRESULT instruction (0 = undefined)
int prefslot_byte; /// Byte offset of the "preferred" slot
unsigned brcc_eq_ins; /// br_cc equal instruction
unsigned brcc_neq_ins; /// br_cc not equal instruction
};
const valtype_map_s valtype_map[] = {
{ MVT::i1, 0, 3, 0, 0 },
{ MVT::i8, 0, 3, 0, 0 },
{ MVT::i16, SPU::ORHIr16, 2, SPU::BRHZ, SPU::BRHNZ },
{ MVT::i32, SPU::ORIr32, 0, SPU::BRZ, SPU::BRNZ },
{ MVT::i64, SPU::ORIr64, 0, 0, 0 },
{ MVT::f32, 0, 0, 0, 0 },
{ MVT::f64, 0, 0, 0, 0 }
};
const size_t n_valtype_map = sizeof(valtype_map) / sizeof(valtype_map[0]);
const valtype_map_s *getValueTypeMapEntry(MVT::ValueType VT)
{
const valtype_map_s *retval = 0;
for (size_t i = 0; i < n_valtype_map; ++i) {
if (valtype_map[i].VT == VT) {
retval = valtype_map + i;
break;
}
}
#ifndef NDEBUG
if (retval == 0) {
cerr << "SPUISelDAGToDAG.cpp: getValueTypeMapEntry returns NULL for "
<< MVT::getValueTypeString(VT)
<< "\n";
abort();
}
#endif
return retval;
}
}
//===--------------------------------------------------------------------===//
/// SPUDAGToDAGISel - Cell SPU-specific code to select SPU machine
/// instructions for SelectionDAG operations.
///
class SPUDAGToDAGISel :
public SelectionDAGISel
{
SPUTargetMachine &TM;
SPUTargetLowering &SPUtli;
unsigned GlobalBaseReg;
public:
SPUDAGToDAGISel(SPUTargetMachine &tm) :
SelectionDAGISel(*tm.getTargetLowering()),
TM(tm),
SPUtli(*tm.getTargetLowering())
{}
virtual bool runOnFunction(Function &Fn) {
// Make sure we re-emit a set of the global base reg if necessary
GlobalBaseReg = 0;
SelectionDAGISel::runOnFunction(Fn);
return true;
}
/// getI32Imm - Return a target constant with the specified value, of type
/// i32.
inline SDOperand getI32Imm(uint32_t Imm) {
return CurDAG->getTargetConstant(Imm, MVT::i32);
}
/// getI64Imm - Return a target constant with the specified value, of type
/// i64.
inline SDOperand getI64Imm(uint64_t Imm) {
return CurDAG->getTargetConstant(Imm, MVT::i64);
}
/// getSmallIPtrImm - Return a target constant of pointer type.
inline SDOperand getSmallIPtrImm(unsigned Imm) {
return CurDAG->getTargetConstant(Imm, SPUtli.getPointerTy());
}
/// Select - Convert the specified operand from a target-independent to a
/// target-specific node if it hasn't already been changed.
SDNode *Select(SDOperand Op);
/// Return true if the address N is a RI7 format address [r+imm]
bool SelectDForm2Addr(SDOperand Op, SDOperand N, SDOperand &Disp,
SDOperand &Base);
//! Returns true if the address N is an A-form (local store) address
bool SelectAFormAddr(SDOperand Op, SDOperand N, SDOperand &Base,
SDOperand &Index);
//! D-form address predicate
bool SelectDFormAddr(SDOperand Op, SDOperand N, SDOperand &Base,
SDOperand &Index);
//! Address predicate if N can be expressed as an indexed [r+r] operation.
bool SelectXFormAddr(SDOperand Op, SDOperand N, SDOperand &Base,
SDOperand &Index);
/// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
/// inline asm expressions.
virtual bool SelectInlineAsmMemoryOperand(const SDOperand &Op,
char ConstraintCode,
std::vector<SDOperand> &OutOps,
SelectionDAG &DAG) {
SDOperand Op0, Op1;
switch (ConstraintCode) {
default: return true;
case 'm': // memory
if (!SelectDFormAddr(Op, Op, Op0, Op1)
&& !SelectAFormAddr(Op, Op, Op0, Op1))
SelectXFormAddr(Op, Op, Op0, Op1);
break;
case 'o': // offsetable
if (!SelectDFormAddr(Op, Op, Op0, Op1)
&& !SelectAFormAddr(Op, Op, Op0, Op1)) {
Op0 = Op;
AddToISelQueue(Op0); // r+0.
Op1 = getSmallIPtrImm(0);
}
break;
case 'v': // not offsetable
#if 1
assert(0 && "InlineAsmMemoryOperand 'v' constraint not handled.");
#else
SelectAddrIdxOnly(Op, Op, Op0, Op1);
#endif
break;
}
OutOps.push_back(Op0);
OutOps.push_back(Op1);
return false;
}
/// InstructionSelectBasicBlock - This callback is invoked by
/// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
virtual void InstructionSelectBasicBlock(SelectionDAG &DAG);
virtual const char *getPassName() const {
return "Cell SPU DAG->DAG Pattern Instruction Selection";
}
/// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
/// this target when scheduling the DAG.
virtual HazardRecognizer *CreateTargetHazardRecognizer() {
const TargetInstrInfo *II = SPUtli.getTargetMachine().getInstrInfo();
assert(II && "No InstrInfo?");
return new SPUHazardRecognizer(*II);
}
// Include the pieces autogenerated from the target description.
#include "SPUGenDAGISel.inc"
};
/// InstructionSelectBasicBlock - This callback is invoked by
/// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
void
SPUDAGToDAGISel::InstructionSelectBasicBlock(SelectionDAG &DAG)
{
DEBUG(BB->dump());
// Select target instructions for the DAG.
DAG.setRoot(SelectRoot(DAG.getRoot()));
DAG.RemoveDeadNodes();
// Emit machine code to BB.
ScheduleAndEmitDAG(DAG);
}
bool
SPUDAGToDAGISel::SelectDForm2Addr(SDOperand Op, SDOperand N, SDOperand &Disp,
SDOperand &Base) {
unsigned Opc = N.getOpcode();
unsigned VT = N.getValueType();
MVT::ValueType PtrVT = SPUtli.getPointerTy();
ConstantSDNode *CN = 0;
int Imm;
if (Opc == ISD::ADD) {
SDOperand Op0 = N.getOperand(0);
SDOperand Op1 = N.getOperand(1);
if (Op1.getOpcode() == ISD::Constant ||
Op1.getOpcode() == ISD::TargetConstant) {
CN = cast<ConstantSDNode>(Op1);
Imm = int(CN->getValue());
if (Imm <= 0xff) {
Disp = CurDAG->getTargetConstant(Imm, SPUtli.getPointerTy());
Base = Op0;
return true;
}
}
} else if (Opc == ISD::GlobalAddress
|| Opc == ISD::TargetGlobalAddress
|| Opc == ISD::Register) {
// Plain old local store address:
Disp = CurDAG->getTargetConstant(0, VT);
Base = N;
return true;
} else if (Opc == SPUISD::DFormAddr) {
// D-Form address: This is pretty straightforward, naturally...
CN = cast<ConstantSDNode>(N.getOperand(1));
assert(CN != 0 && "SelectDFormAddr/SPUISD::DForm2Addr expecting constant");
Imm = unsigned(CN->getValue());
if (Imm < 0xff) {
Disp = CurDAG->getTargetConstant(CN->getValue(), PtrVT);
Base = N.getOperand(0);
return true;
}
}
return false;
}
/*!
\arg Op The ISD instructio operand
\arg N The address to be tested
\arg Base The base address
\arg Index The base address index
*/
bool
SPUDAGToDAGISel::SelectAFormAddr(SDOperand Op, SDOperand N, SDOperand &Base,
SDOperand &Index) {
// These match the addr256k operand type:
MVT::ValueType PtrVT = SPUtli.getPointerTy();
MVT::ValueType OffsVT = MVT::i16;
switch (N.getOpcode()) {
case ISD::Constant:
case ISD::TargetConstant: {
// Loading from a constant address.
ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
int Imm = (int)CN->getValue();
if (Imm < 0x3ffff && (Imm & 0x3) == 0) {
Base = CurDAG->getTargetConstant(Imm, PtrVT);
// Note that this operand will be ignored by the assembly printer...
Index = CurDAG->getTargetConstant(0, OffsVT);
return true;
}
}
case ISD::ConstantPool:
case ISD::TargetConstantPool: {
// The constant pool address is N. Base is a dummy that will be ignored by
// the assembly printer.
Base = N;
Index = CurDAG->getTargetConstant(0, OffsVT);
return true;
}
case ISD::GlobalAddress:
case ISD::TargetGlobalAddress: {
// The global address is N. Base is a dummy that is ignored by the
// assembly printer.
Base = N;
Index = CurDAG->getTargetConstant(0, OffsVT);
return true;
}
}
return false;
}
/*!
\arg Op The ISD instruction (ignored)
\arg N The address to be tested
\arg Base Base address register/pointer
\arg Index Base address index
Examine the input address by a base register plus a signed 10-bit
displacement, [r+I10] (D-form address).
\return true if \a N is a D-form address with \a Base and \a Index set
to non-empty SDOperand instances.
*/
bool
SPUDAGToDAGISel::SelectDFormAddr(SDOperand Op, SDOperand N, SDOperand &Base,
SDOperand &Index) {
unsigned Opc = N.getOpcode();
unsigned PtrTy = SPUtli.getPointerTy();
if (Opc == ISD::Register) {
Base = N;
Index = CurDAG->getTargetConstant(0, PtrTy);
return true;
} else if (Opc == ISD::FrameIndex) {
// Stack frame index must be less than 512 (divided by 16):
FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N);
DEBUG(cerr << "SelectDFormAddr: ISD::FrameIndex = "
<< FI->getIndex() << "\n");
if (FI->getIndex() < SPUFrameInfo::maxFrameOffset()) {
Base = CurDAG->getTargetConstant(0, PtrTy);
Index = CurDAG->getTargetFrameIndex(FI->getIndex(), PtrTy);
return true;
}
} else if (Opc == ISD::ADD) {
// Generated by getelementptr
const SDOperand Op0 = N.getOperand(0); // Frame index/base
const SDOperand Op1 = N.getOperand(1); // Offset within base
ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op1);
// Not a constant?
if (CN == 0)
return false;
int32_t offset = (int32_t) CN->getSignExtended();
unsigned Opc0 = Op0.getOpcode();
if ((offset & 0xf) != 0) {
cerr << "SelectDFormAddr: unaligned offset = " << offset << "\n";
abort();
/*NOTREACHED*/
}
if (Opc0 == ISD::FrameIndex) {
FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op0);
DEBUG(cerr << "SelectDFormAddr: ISD::ADD offset = " << offset
<< " frame index = " << FI->getIndex() << "\n");
if (FI->getIndex() < SPUFrameInfo::maxFrameOffset()) {
Base = CurDAG->getTargetConstant(offset, PtrTy);
Index = CurDAG->getTargetFrameIndex(FI->getIndex(), PtrTy);
return true;
}
} else if (offset > SPUFrameInfo::minFrameOffset()
&& offset < SPUFrameInfo::maxFrameOffset()) {
Base = CurDAG->getTargetConstant(offset, PtrTy);
if (Opc0 == ISD::GlobalAddress) {
// Convert global address to target global address
GlobalAddressSDNode *GV = dyn_cast<GlobalAddressSDNode>(Op0);
Index = CurDAG->getTargetGlobalAddress(GV->getGlobal(), PtrTy);
return true;
} else {
// Otherwise, just take operand 0
Index = Op0;
return true;
}
}
} else if (Opc == SPUISD::DFormAddr) {
// D-Form address: This is pretty straightforward, naturally...
ConstantSDNode *CN = cast<ConstantSDNode>(N.getOperand(1));
assert(CN != 0 && "SelectDFormAddr/SPUISD::DFormAddr expecting constant");
Base = CurDAG->getTargetConstant(CN->getValue(), PtrTy);
Index = N.getOperand(0);
return true;
}
return false;
}
/*!
\arg Op The ISD instruction operand
\arg N The address operand
\arg Base The base pointer operand
\arg Index The offset/index operand
If the address \a N can be expressed as a [r + s10imm] address, returns false.
Otherwise, creates two operands, Base and Index that will become the [r+r]
address.
*/
bool
SPUDAGToDAGISel::SelectXFormAddr(SDOperand Op, SDOperand N, SDOperand &Base,
SDOperand &Index) {
if (SelectAFormAddr(Op, N, Base, Index)
|| SelectDFormAddr(Op, N, Base, Index))
return false;
unsigned Opc = N.getOpcode();
if (Opc == ISD::ADD) {
SDOperand N1 = N.getOperand(0);
SDOperand N2 = N.getOperand(1);
unsigned N1Opc = N1.getOpcode();
unsigned N2Opc = N2.getOpcode();
if ((N1Opc == SPUISD::Hi && N2Opc == SPUISD::Lo)
|| (N1Opc == SPUISD::Lo && N2Opc == SPUISD::Hi)) {
Base = N.getOperand(0);
Index = N.getOperand(1);
return true;
} else {
cerr << "SelectXFormAddr: Unhandled ADD operands:\n";
N1.Val->dump();
cerr << "\n";
N2.Val->dump();
cerr << "\n";
abort();
/*UNREACHED*/
}
} else if (N.getNumOperands() == 2) {
SDOperand N1 = N.getOperand(0);
SDOperand N2 = N.getOperand(1);
unsigned N1Opc = N1.getOpcode();
unsigned N2Opc = N2.getOpcode();
if ((N1Opc == ISD::CopyToReg || N1Opc == ISD::Register)
&& (N2Opc == ISD::CopyToReg || N2Opc == ISD::Register)) {
Base = N.getOperand(0);
Index = N.getOperand(1);
return true;
/*UNREACHED*/
} else {
cerr << "SelectXFormAddr: 2-operand unhandled operand:\n";
N.Val->dump();
cerr << "\n";
abort();
/*UNREACHED*/
}
} else {
cerr << "SelectXFormAddr: Unhandled operand type:\n";
N.Val->dump();
cerr << "\n";
abort();
/*UNREACHED*/
}
return false;
}
//! Convert the operand from a target-independent to a target-specific node
/*!
*/
SDNode *
SPUDAGToDAGISel::Select(SDOperand Op) {
SDNode *N = Op.Val;
unsigned Opc = N->getOpcode();
if (Opc >= ISD::BUILTIN_OP_END && Opc < SPUISD::FIRST_NUMBER) {
return NULL; // Already selected.
} else if (Opc == ISD::FrameIndex) {
// Selects to AIr32 FI, 0 which in turn will become AIr32 SP, imm.
int FI = cast<FrameIndexSDNode>(N)->getIndex();
SDOperand TFI = CurDAG->getTargetFrameIndex(FI, SPUtli.getPointerTy());
DEBUG(cerr << "SPUDAGToDAGISel: Replacing FrameIndex with AI32 <FI>, 0\n");
return CurDAG->SelectNodeTo(N, SPU::AIr32, Op.getValueType(), TFI,
CurDAG->getTargetConstant(0, MVT::i32));
} else if (Opc == SPUISD::LDRESULT) {
// Custom select instructions for LDRESULT
unsigned VT = N->getValueType(0);
SDOperand Arg = N->getOperand(0);
SDOperand Chain = N->getOperand(1);
SDNode *Result;
AddToISelQueue(Arg);
if (!MVT::isFloatingPoint(VT)) {
SDOperand Zero = CurDAG->getTargetConstant(0, VT);
const valtype_map_s *vtm = getValueTypeMapEntry(VT);
if (vtm->ldresult_ins == 0) {
cerr << "LDRESULT for unsupported type: "
<< MVT::getValueTypeString(VT)
<< "\n";
abort();
} else
Opc = vtm->ldresult_ins;
AddToISelQueue(Zero);
Result = CurDAG->SelectNodeTo(N, Opc, VT, MVT::Other, Arg, Zero, Chain);
} else {
Result =
CurDAG->SelectNodeTo(N, (VT == MVT::f32 ? SPU::ORf32 : SPU::ORf64),
MVT::Other, Arg, Arg, Chain);
}
Chain = SDOperand(Result, 1);
AddToISelQueue(Chain);
return Result;
}
return SelectCode(Op);
}
/// createPPCISelDag - This pass converts a legalized DAG into a
/// SPU-specific DAG, ready for instruction scheduling.
///
FunctionPass *llvm::createSPUISelDag(SPUTargetMachine &TM) {
return new SPUDAGToDAGISel(TM);
}