llvm-6502/lib/Target/X86/MCTargetDesc/X86BaseInfo.h
2013-12-31 03:19:03 +00:00

697 lines
27 KiB
C++

//===-- X86BaseInfo.h - Top level definitions for X86 -------- --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains small standalone helper functions and enum definitions for
// the X86 target useful for the compiler back-end and the MC libraries.
// As such, it deliberately does not include references to LLVM core
// code gen types, passes, etc..
//
//===----------------------------------------------------------------------===//
#ifndef X86BASEINFO_H
#define X86BASEINFO_H
#include "X86MCTargetDesc.h"
#include "llvm/Support/DataTypes.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/MC/MCInstrInfo.h"
namespace llvm {
namespace X86 {
// Enums for memory operand decoding. Each memory operand is represented with
// a 5 operand sequence in the form:
// [BaseReg, ScaleAmt, IndexReg, Disp, Segment]
// These enums help decode this.
enum {
AddrBaseReg = 0,
AddrScaleAmt = 1,
AddrIndexReg = 2,
AddrDisp = 3,
/// AddrSegmentReg - The operand # of the segment in the memory operand.
AddrSegmentReg = 4,
/// AddrNumOperands - Total number of operands in a memory reference.
AddrNumOperands = 5
};
} // end namespace X86;
/// X86II - This namespace holds all of the target specific flags that
/// instruction info tracks.
///
namespace X86II {
/// Target Operand Flag enum.
enum TOF {
//===------------------------------------------------------------------===//
// X86 Specific MachineOperand flags.
MO_NO_FLAG,
/// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
/// relocation of:
/// SYMBOL_LABEL + [. - PICBASELABEL]
MO_GOT_ABSOLUTE_ADDRESS,
/// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
/// immediate should get the value of the symbol minus the PIC base label:
/// SYMBOL_LABEL - PICBASELABEL
MO_PIC_BASE_OFFSET,
/// MO_GOT - On a symbol operand this indicates that the immediate is the
/// offset to the GOT entry for the symbol name from the base of the GOT.
///
/// See the X86-64 ELF ABI supplement for more details.
/// SYMBOL_LABEL @GOT
MO_GOT,
/// MO_GOTOFF - On a symbol operand this indicates that the immediate is
/// the offset to the location of the symbol name from the base of the GOT.
///
/// See the X86-64 ELF ABI supplement for more details.
/// SYMBOL_LABEL @GOTOFF
MO_GOTOFF,
/// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
/// offset to the GOT entry for the symbol name from the current code
/// location.
///
/// See the X86-64 ELF ABI supplement for more details.
/// SYMBOL_LABEL @GOTPCREL
MO_GOTPCREL,
/// MO_PLT - On a symbol operand this indicates that the immediate is
/// offset to the PLT entry of symbol name from the current code location.
///
/// See the X86-64 ELF ABI supplement for more details.
/// SYMBOL_LABEL @PLT
MO_PLT,
/// MO_TLSGD - On a symbol operand this indicates that the immediate is
/// the offset of the GOT entry with the TLS index structure that contains
/// the module number and variable offset for the symbol. Used in the
/// general dynamic TLS access model.
///
/// See 'ELF Handling for Thread-Local Storage' for more details.
/// SYMBOL_LABEL @TLSGD
MO_TLSGD,
/// MO_TLSLD - On a symbol operand this indicates that the immediate is
/// the offset of the GOT entry with the TLS index for the module that
/// contains the symbol. When this index is passed to a call to
/// __tls_get_addr, the function will return the base address of the TLS
/// block for the symbol. Used in the x86-64 local dynamic TLS access model.
///
/// See 'ELF Handling for Thread-Local Storage' for more details.
/// SYMBOL_LABEL @TLSLD
MO_TLSLD,
/// MO_TLSLDM - On a symbol operand this indicates that the immediate is
/// the offset of the GOT entry with the TLS index for the module that
/// contains the symbol. When this index is passed to a call to
/// ___tls_get_addr, the function will return the base address of the TLS
/// block for the symbol. Used in the IA32 local dynamic TLS access model.
///
/// See 'ELF Handling for Thread-Local Storage' for more details.
/// SYMBOL_LABEL @TLSLDM
MO_TLSLDM,
/// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
/// the offset of the GOT entry with the thread-pointer offset for the
/// symbol. Used in the x86-64 initial exec TLS access model.
///
/// See 'ELF Handling for Thread-Local Storage' for more details.
/// SYMBOL_LABEL @GOTTPOFF
MO_GOTTPOFF,
/// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
/// the absolute address of the GOT entry with the negative thread-pointer
/// offset for the symbol. Used in the non-PIC IA32 initial exec TLS access
/// model.
///
/// See 'ELF Handling for Thread-Local Storage' for more details.
/// SYMBOL_LABEL @INDNTPOFF
MO_INDNTPOFF,
/// MO_TPOFF - On a symbol operand this indicates that the immediate is
/// the thread-pointer offset for the symbol. Used in the x86-64 local
/// exec TLS access model.
///
/// See 'ELF Handling for Thread-Local Storage' for more details.
/// SYMBOL_LABEL @TPOFF
MO_TPOFF,
/// MO_DTPOFF - On a symbol operand this indicates that the immediate is
/// the offset of the GOT entry with the TLS offset of the symbol. Used
/// in the local dynamic TLS access model.
///
/// See 'ELF Handling for Thread-Local Storage' for more details.
/// SYMBOL_LABEL @DTPOFF
MO_DTPOFF,
/// MO_NTPOFF - On a symbol operand this indicates that the immediate is
/// the negative thread-pointer offset for the symbol. Used in the IA32
/// local exec TLS access model.
///
/// See 'ELF Handling for Thread-Local Storage' for more details.
/// SYMBOL_LABEL @NTPOFF
MO_NTPOFF,
/// MO_GOTNTPOFF - On a symbol operand this indicates that the immediate is
/// the offset of the GOT entry with the negative thread-pointer offset for
/// the symbol. Used in the PIC IA32 initial exec TLS access model.
///
/// See 'ELF Handling for Thread-Local Storage' for more details.
/// SYMBOL_LABEL @GOTNTPOFF
MO_GOTNTPOFF,
/// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
/// reference is actually to the "__imp_FOO" symbol. This is used for
/// dllimport linkage on windows.
MO_DLLIMPORT,
/// MO_DARWIN_STUB - On a symbol operand "FOO", this indicates that the
/// reference is actually to the "FOO$stub" symbol. This is used for calls
/// and jumps to external functions on Tiger and earlier.
MO_DARWIN_STUB,
/// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
/// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
/// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
MO_DARWIN_NONLAZY,
/// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
/// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
/// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
MO_DARWIN_NONLAZY_PIC_BASE,
/// MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this
/// indicates that the reference is actually to "FOO$non_lazy_ptr -PICBASE",
/// which is a PIC-base-relative reference to a hidden dyld lazy pointer
/// stub.
MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE,
/// MO_TLVP - On a symbol operand this indicates that the immediate is
/// some TLS offset.
///
/// This is the TLS offset for the Darwin TLS mechanism.
MO_TLVP,
/// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate
/// is some TLS offset from the picbase.
///
/// This is the 32-bit TLS offset for Darwin TLS in PIC mode.
MO_TLVP_PIC_BASE,
/// MO_SECREL - On a symbol operand this indicates that the immediate is
/// the offset from beginning of section.
///
/// This is the TLS offset for the COFF/Windows TLS mechanism.
MO_SECREL
};
enum {
//===------------------------------------------------------------------===//
// Instruction encodings. These are the standard/most common forms for X86
// instructions.
//
// PseudoFrm - This represents an instruction that is a pseudo instruction
// or one that has not been implemented yet. It is illegal to code generate
// it, but tolerated for intermediate implementation stages.
Pseudo = 0,
/// Raw - This form is for instructions that don't have any operands, so
/// they are just a fixed opcode value, like 'leave'.
RawFrm = 1,
/// AddRegFrm - This form is used for instructions like 'push r32' that have
/// their one register operand added to their opcode.
AddRegFrm = 2,
/// MRMDestReg - This form is used for instructions that use the Mod/RM byte
/// to specify a destination, which in this case is a register.
///
MRMDestReg = 3,
/// MRMDestMem - This form is used for instructions that use the Mod/RM byte
/// to specify a destination, which in this case is memory.
///
MRMDestMem = 4,
/// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
/// to specify a source, which in this case is a register.
///
MRMSrcReg = 5,
/// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
/// to specify a source, which in this case is memory.
///
MRMSrcMem = 6,
/// MRM[0-7][rm] - These forms are used to represent instructions that use
/// a Mod/RM byte, and use the middle field to hold extended opcode
/// information. In the intel manual these are represented as /0, /1, ...
///
// First, instructions that operate on a register r/m operand...
MRM0r = 16, MRM1r = 17, MRM2r = 18, MRM3r = 19, // Format /0 /1 /2 /3
MRM4r = 20, MRM5r = 21, MRM6r = 22, MRM7r = 23, // Format /4 /5 /6 /7
// Next, instructions that operate on a memory r/m operand...
MRM0m = 24, MRM1m = 25, MRM2m = 26, MRM3m = 27, // Format /0 /1 /2 /3
MRM4m = 28, MRM5m = 29, MRM6m = 30, MRM7m = 31, // Format /4 /5 /6 /7
//// MRM_XX - A mod/rm byte of exactly 0xXX.
MRM_C1 = 33, MRM_C2 = 34, MRM_C3 = 35, MRM_C4 = 36,
MRM_C8 = 37, MRM_C9 = 38, MRM_CA = 39, MRM_CB = 40,
MRM_E8 = 41, MRM_F0 = 42, MRM_F8 = 45, MRM_F9 = 46,
MRM_D0 = 47, MRM_D1 = 48, MRM_D4 = 49, MRM_D5 = 50,
MRM_D6 = 51, MRM_D8 = 52, MRM_D9 = 53, MRM_DA = 54,
MRM_DB = 55, MRM_DC = 56, MRM_DD = 57, MRM_DE = 58,
MRM_DF = 59,
/// RawFrmImm8 - This is used for the ENTER instruction, which has two
/// immediates, the first of which is a 16-bit immediate (specified by
/// the imm encoding) and the second is a 8-bit fixed value.
RawFrmImm8 = 43,
/// RawFrmImm16 - This is used for CALL FAR instructions, which have two
/// immediates, the first of which is a 16 or 32-bit immediate (specified by
/// the imm encoding) and the second is a 16-bit fixed value. In the AMD
/// manual, this operand is described as pntr16:32 and pntr16:16
RawFrmImm16 = 44,
FormMask = 63,
//===------------------------------------------------------------------===//
// Actual flags...
// OpSize - Set if this instruction requires an operand size prefix (0x66),
// which most often indicates that the instruction operates on 16 bit data
// instead of 32 bit data.
OpSize = 1 << 6,
// AsSize - Set if this instruction requires an operand size prefix (0x67),
// which most often indicates that the instruction address 16 bit address
// instead of 32 bit address (or 32 bit address in 64 bit mode).
AdSize = 1 << 7,
//===------------------------------------------------------------------===//
// Op0Mask - There are several prefix bytes that are used to form two byte
// opcodes. These are currently 0x0F, 0xF3, and 0xD8-0xDF. This mask is
// used to obtain the setting of this field. If no bits in this field is
// set, there is no prefix byte for obtaining a multibyte opcode.
//
Op0Shift = 8,
Op0Mask = 0x1F << Op0Shift,
// TB - TwoByte - Set if this instruction has a two byte opcode, which
// starts with a 0x0F byte before the real opcode.
TB = 1 << Op0Shift,
// REP - The 0xF3 prefix byte indicating repetition of the following
// instruction.
REP = 2 << Op0Shift,
// D8-DF - These escape opcodes are used by the floating point unit. These
// values must remain sequential.
D8 = 3 << Op0Shift, D9 = 4 << Op0Shift,
DA = 5 << Op0Shift, DB = 6 << Op0Shift,
DC = 7 << Op0Shift, DD = 8 << Op0Shift,
DE = 9 << Op0Shift, DF = 10 << Op0Shift,
// XS, XD - These prefix codes are for single and double precision scalar
// floating point operations performed in the SSE registers.
XD = 11 << Op0Shift, XS = 12 << Op0Shift,
// T8, TA, A6, A7 - Prefix after the 0x0F prefix.
T8 = 13 << Op0Shift, TA = 14 << Op0Shift,
A6 = 15 << Op0Shift, A7 = 16 << Op0Shift,
// T8XD - Prefix before and after 0x0F. Combination of T8 and XD.
T8XD = 17 << Op0Shift,
// T8XS - Prefix before and after 0x0F. Combination of T8 and XS.
T8XS = 18 << Op0Shift,
// TAXD - Prefix before and after 0x0F. Combination of TA and XD.
TAXD = 19 << Op0Shift,
// XOP8 - Prefix to include use of imm byte.
XOP8 = 20 << Op0Shift,
// XOP9 - Prefix to exclude use of imm byte.
XOP9 = 21 << Op0Shift,
// XOPA - Prefix to encode 0xA in VEX.MMMM of XOP instructions.
XOPA = 22 << Op0Shift,
//===------------------------------------------------------------------===//
// REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
// They are used to specify GPRs and SSE registers, 64-bit operand size,
// etc. We only cares about REX.W and REX.R bits and only the former is
// statically determined.
//
REXShift = Op0Shift + 5,
REX_W = 1 << REXShift,
//===------------------------------------------------------------------===//
// This three-bit field describes the size of an immediate operand. Zero is
// unused so that we can tell if we forgot to set a value.
ImmShift = REXShift + 1,
ImmMask = 7 << ImmShift,
Imm8 = 1 << ImmShift,
Imm8PCRel = 2 << ImmShift,
Imm16 = 3 << ImmShift,
Imm16PCRel = 4 << ImmShift,
Imm32 = 5 << ImmShift,
Imm32PCRel = 6 << ImmShift,
Imm64 = 7 << ImmShift,
//===------------------------------------------------------------------===//
// FP Instruction Classification... Zero is non-fp instruction.
// FPTypeMask - Mask for all of the FP types...
FPTypeShift = ImmShift + 3,
FPTypeMask = 7 << FPTypeShift,
// NotFP - The default, set for instructions that do not use FP registers.
NotFP = 0 << FPTypeShift,
// ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
ZeroArgFP = 1 << FPTypeShift,
// OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
OneArgFP = 2 << FPTypeShift,
// OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
// result back to ST(0). For example, fcos, fsqrt, etc.
//
OneArgFPRW = 3 << FPTypeShift,
// TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
// explicit argument, storing the result to either ST(0) or the implicit
// argument. For example: fadd, fsub, fmul, etc...
TwoArgFP = 4 << FPTypeShift,
// CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
// explicit argument, but have no destination. Example: fucom, fucomi, ...
CompareFP = 5 << FPTypeShift,
// CondMovFP - "2 operand" floating point conditional move instructions.
CondMovFP = 6 << FPTypeShift,
// SpecialFP - Special instruction forms. Dispatch by opcode explicitly.
SpecialFP = 7 << FPTypeShift,
// Lock prefix
LOCKShift = FPTypeShift + 3,
LOCK = 1 << LOCKShift,
// Segment override prefixes. Currently we just need ability to address
// stuff in gs and fs segments.
SegOvrShift = LOCKShift + 1,
SegOvrMask = 3 << SegOvrShift,
FS = 1 << SegOvrShift,
GS = 2 << SegOvrShift,
// Execution domain for SSE instructions in bits 23, 24.
// 0 in bits 23-24 means normal, non-SSE instruction.
SSEDomainShift = SegOvrShift + 2,
OpcodeShift = SSEDomainShift + 2,
//===------------------------------------------------------------------===//
/// VEX - The opcode prefix used by AVX instructions
VEXShift = OpcodeShift + 8,
VEX = 1U << 0,
/// VEX_W - Has a opcode specific functionality, but is used in the same
/// way as REX_W is for regular SSE instructions.
VEX_W = 1U << 1,
/// VEX_4V - Used to specify an additional AVX/SSE register. Several 2
/// address instructions in SSE are represented as 3 address ones in AVX
/// and the additional register is encoded in VEX_VVVV prefix.
VEX_4V = 1U << 2,
/// VEX_4VOp3 - Similar to VEX_4V, but used on instructions that encode
/// operand 3 with VEX.vvvv.
VEX_4VOp3 = 1U << 3,
/// VEX_I8IMM - Specifies that the last register used in a AVX instruction,
/// must be encoded in the i8 immediate field. This usually happens in
/// instructions with 4 operands.
VEX_I8IMM = 1U << 4,
/// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current
/// instruction uses 256-bit wide registers. This is usually auto detected
/// if a VR256 register is used, but some AVX instructions also have this
/// field marked when using a f256 memory references.
VEX_L = 1U << 5,
// VEX_LIG - Specifies that this instruction ignores the L-bit in the VEX
// prefix. Usually used for scalar instructions. Needed by disassembler.
VEX_LIG = 1U << 6,
// TODO: we should combine VEX_L and VEX_LIG together to form a 2-bit field
// with following encoding:
// - 00 V128
// - 01 V256
// - 10 V512
// - 11 LIG (but, in insn encoding, leave VEX.L and EVEX.L in zeros.
// this will save 1 tsflag bit
// VEX_EVEX - Specifies that this instruction use EVEX form which provides
// syntax support up to 32 512-bit register operands and up to 7 16-bit
// mask operands as well as source operand data swizzling/memory operand
// conversion, eviction hint, and rounding mode.
EVEX = 1U << 7,
// EVEX_K - Set if this instruction requires masking
EVEX_K = 1U << 8,
// EVEX_Z - Set if this instruction has EVEX.Z field set.
EVEX_Z = 1U << 9,
// EVEX_L2 - Set if this instruction has EVEX.L' field set.
EVEX_L2 = 1U << 10,
// EVEX_B - Set if this instruction has EVEX.B field set.
EVEX_B = 1U << 11,
// EVEX_CD8E - compressed disp8 form, element-size
EVEX_CD8EShift = VEXShift + 12,
EVEX_CD8EMask = 3,
// EVEX_CD8V - compressed disp8 form, vector-width
EVEX_CD8VShift = EVEX_CD8EShift + 2,
EVEX_CD8VMask = 7,
/// Has3DNow0F0FOpcode - This flag indicates that the instruction uses the
/// wacky 0x0F 0x0F prefix for 3DNow! instructions. The manual documents
/// this as having a 0x0F prefix with a 0x0F opcode, and each instruction
/// storing a classifier in the imm8 field. To simplify our implementation,
/// we handle this by storeing the classifier in the opcode field and using
/// this flag to indicate that the encoder should do the wacky 3DNow! thing.
Has3DNow0F0FOpcode = 1U << 17,
/// MemOp4 - Used to indicate swapping of operand 3 and 4 to be encoded in
/// ModRM or I8IMM. This is used for FMA4 and XOP instructions.
MemOp4 = 1U << 18,
/// XOP - Opcode prefix used by XOP instructions.
XOP = 1U << 19
};
// getBaseOpcodeFor - This function returns the "base" X86 opcode for the
// specified machine instruction.
//
inline unsigned char getBaseOpcodeFor(uint64_t TSFlags) {
return TSFlags >> X86II::OpcodeShift;
}
inline bool hasImm(uint64_t TSFlags) {
return (TSFlags & X86II::ImmMask) != 0;
}
/// getSizeOfImm - Decode the "size of immediate" field from the TSFlags field
/// of the specified instruction.
inline unsigned getSizeOfImm(uint64_t TSFlags) {
switch (TSFlags & X86II::ImmMask) {
default: llvm_unreachable("Unknown immediate size");
case X86II::Imm8:
case X86II::Imm8PCRel: return 1;
case X86II::Imm16:
case X86II::Imm16PCRel: return 2;
case X86II::Imm32:
case X86II::Imm32PCRel: return 4;
case X86II::Imm64: return 8;
}
}
/// isImmPCRel - Return true if the immediate of the specified instruction's
/// TSFlags indicates that it is pc relative.
inline unsigned isImmPCRel(uint64_t TSFlags) {
switch (TSFlags & X86II::ImmMask) {
default: llvm_unreachable("Unknown immediate size");
case X86II::Imm8PCRel:
case X86II::Imm16PCRel:
case X86II::Imm32PCRel:
return true;
case X86II::Imm8:
case X86II::Imm16:
case X86II::Imm32:
case X86II::Imm64:
return false;
}
}
/// getOperandBias - compute any additional adjustment needed to
/// the offset to the start of the memory operand
/// in this instruction.
/// If this is a two-address instruction,skip one of the register operands.
/// FIXME: This should be handled during MCInst lowering.
inline int getOperandBias(const MCInstrDesc& Desc)
{
unsigned NumOps = Desc.getNumOperands();
unsigned CurOp = 0;
if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) == 0)
++CurOp;
else if (NumOps > 3 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1)
// Special case for AVX-512 GATHER with 2 TIED_TO operands
// Skip the first 2 operands: dst, mask_wb
CurOp += 2;
else if (NumOps > 3 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
Desc.getOperandConstraint(NumOps - 1, MCOI::TIED_TO) == 1)
// Special case for GATHER with 2 TIED_TO operands
// Skip the first 2 operands: dst, mask_wb
CurOp += 2;
else if (NumOps > 2 && Desc.getOperandConstraint(NumOps - 2, MCOI::TIED_TO) == 0)
// SCATTER
++CurOp;
return CurOp;
}
/// getMemoryOperandNo - The function returns the MCInst operand # for the
/// first field of the memory operand. If the instruction doesn't have a
/// memory operand, this returns -1.
///
/// Note that this ignores tied operands. If there is a tied register which
/// is duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only
/// counted as one operand.
///
inline int getMemoryOperandNo(uint64_t TSFlags, unsigned Opcode) {
switch (TSFlags & X86II::FormMask) {
default: llvm_unreachable("Unknown FormMask value in getMemoryOperandNo!");
case X86II::Pseudo:
case X86II::RawFrm:
case X86II::AddRegFrm:
case X86II::MRMDestReg:
case X86II::MRMSrcReg:
case X86II::RawFrmImm8:
case X86II::RawFrmImm16:
return -1;
case X86II::MRMDestMem:
return 0;
case X86II::MRMSrcMem: {
bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
bool HasMemOp4 = (TSFlags >> X86II::VEXShift) & X86II::MemOp4;
bool HasEVEX = (TSFlags >> X86II::VEXShift) & X86II::EVEX;
bool HasEVEX_K = HasEVEX && ((TSFlags >> X86II::VEXShift) & X86II::EVEX_K);
unsigned FirstMemOp = 1;
if (HasVEX_4V)
++FirstMemOp;// Skip the register source (which is encoded in VEX_VVVV).
if (HasMemOp4)
++FirstMemOp;// Skip the register source (which is encoded in I8IMM).
if (HasEVEX_K)
++FirstMemOp;// Skip the mask register
// FIXME: Maybe lea should have its own form? This is a horrible hack.
//if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
// Opcode == X86::LEA16r || Opcode == X86::LEA32r)
return FirstMemOp;
}
case X86II::MRM0r: case X86II::MRM1r:
case X86II::MRM2r: case X86II::MRM3r:
case X86II::MRM4r: case X86II::MRM5r:
case X86II::MRM6r: case X86II::MRM7r:
return -1;
case X86II::MRM0m: case X86II::MRM1m:
case X86II::MRM2m: case X86II::MRM3m:
case X86II::MRM4m: case X86II::MRM5m:
case X86II::MRM6m: case X86II::MRM7m: {
bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
unsigned FirstMemOp = 0;
if (HasVEX_4V)
++FirstMemOp;// Skip the register dest (which is encoded in VEX_VVVV).
return FirstMemOp;
}
case X86II::MRM_C1: case X86II::MRM_C2: case X86II::MRM_C3:
case X86II::MRM_C4: case X86II::MRM_C8: case X86II::MRM_C9:
case X86II::MRM_CA: case X86II::MRM_CB: case X86II::MRM_E8:
case X86II::MRM_F0: case X86II::MRM_F8: case X86II::MRM_F9:
case X86II::MRM_D0: case X86II::MRM_D1: case X86II::MRM_D4:
case X86II::MRM_D5: case X86II::MRM_D6: case X86II::MRM_D8:
case X86II::MRM_D9: case X86II::MRM_DA: case X86II::MRM_DB:
case X86II::MRM_DC: case X86II::MRM_DD: case X86II::MRM_DE:
case X86II::MRM_DF:
return -1;
}
}
/// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended (r8 or
/// higher) register? e.g. r8, xmm8, xmm13, etc.
inline bool isX86_64ExtendedReg(unsigned RegNo) {
if ((RegNo > X86::XMM7 && RegNo <= X86::XMM15) ||
(RegNo > X86::XMM23 && RegNo <= X86::XMM31) ||
(RegNo > X86::YMM7 && RegNo <= X86::YMM15) ||
(RegNo > X86::YMM23 && RegNo <= X86::YMM31) ||
(RegNo > X86::ZMM7 && RegNo <= X86::ZMM15) ||
(RegNo > X86::ZMM23 && RegNo <= X86::ZMM31))
return true;
switch (RegNo) {
default: break;
case X86::R8: case X86::R9: case X86::R10: case X86::R11:
case X86::R12: case X86::R13: case X86::R14: case X86::R15:
case X86::R8D: case X86::R9D: case X86::R10D: case X86::R11D:
case X86::R12D: case X86::R13D: case X86::R14D: case X86::R15D:
case X86::R8W: case X86::R9W: case X86::R10W: case X86::R11W:
case X86::R12W: case X86::R13W: case X86::R14W: case X86::R15W:
case X86::R8B: case X86::R9B: case X86::R10B: case X86::R11B:
case X86::R12B: case X86::R13B: case X86::R14B: case X86::R15B:
case X86::CR8: case X86::CR9: case X86::CR10: case X86::CR11:
case X86::CR12: case X86::CR13: case X86::CR14: case X86::CR15:
return true;
}
return false;
}
/// is32ExtendedReg - Is the MemoryOperand a 32 extended (zmm16 or higher)
/// registers? e.g. zmm21, etc.
static inline bool is32ExtendedReg(unsigned RegNo) {
return ((RegNo > X86::XMM15 && RegNo <= X86::XMM31) ||
(RegNo > X86::YMM15 && RegNo <= X86::YMM31) ||
(RegNo > X86::ZMM15 && RegNo <= X86::ZMM31));
}
inline bool isX86_64NonExtLowByteReg(unsigned reg) {
return (reg == X86::SPL || reg == X86::BPL ||
reg == X86::SIL || reg == X86::DIL);
}
}
} // end namespace llvm;
#endif