llvm-6502/lib/VMCore/Constants.cpp
2009-10-19 20:11:52 +00:00

2114 lines
77 KiB
C++

//===-- Constants.cpp - Implement Constant nodes --------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Constant* classes...
//
//===----------------------------------------------------------------------===//
#include "llvm/Constants.h"
#include "LLVMContextImpl.h"
#include "ConstantFold.h"
#include "llvm/DerivedTypes.h"
#include "llvm/GlobalValue.h"
#include "llvm/Instructions.h"
#include "llvm/Module.h"
#include "llvm/Operator.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/System/Mutex.h"
#include "llvm/System/RWMutex.h"
#include "llvm/System/Threading.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include <algorithm>
#include <map>
using namespace llvm;
//===----------------------------------------------------------------------===//
// Constant Class
//===----------------------------------------------------------------------===//
// Constructor to create a '0' constant of arbitrary type...
static const uint64_t zero[2] = {0, 0};
Constant* Constant::getNullValue(const Type* Ty) {
switch (Ty->getTypeID()) {
case Type::IntegerTyID:
return ConstantInt::get(Ty, 0);
case Type::FloatTyID:
return ConstantFP::get(Ty->getContext(), APFloat(APInt(32, 0)));
case Type::DoubleTyID:
return ConstantFP::get(Ty->getContext(), APFloat(APInt(64, 0)));
case Type::X86_FP80TyID:
return ConstantFP::get(Ty->getContext(), APFloat(APInt(80, 2, zero)));
case Type::FP128TyID:
return ConstantFP::get(Ty->getContext(),
APFloat(APInt(128, 2, zero), true));
case Type::PPC_FP128TyID:
return ConstantFP::get(Ty->getContext(), APFloat(APInt(128, 2, zero)));
case Type::PointerTyID:
return ConstantPointerNull::get(cast<PointerType>(Ty));
case Type::StructTyID:
case Type::ArrayTyID:
case Type::VectorTyID:
return ConstantAggregateZero::get(Ty);
default:
// Function, Label, or Opaque type?
assert(!"Cannot create a null constant of that type!");
return 0;
}
}
Constant* Constant::getIntegerValue(const Type* Ty, const APInt &V) {
const Type *ScalarTy = Ty->getScalarType();
// Create the base integer constant.
Constant *C = ConstantInt::get(Ty->getContext(), V);
// Convert an integer to a pointer, if necessary.
if (const PointerType *PTy = dyn_cast<PointerType>(ScalarTy))
C = ConstantExpr::getIntToPtr(C, PTy);
// Broadcast a scalar to a vector, if necessary.
if (const VectorType *VTy = dyn_cast<VectorType>(Ty))
C = ConstantVector::get(std::vector<Constant *>(VTy->getNumElements(), C));
return C;
}
Constant* Constant::getAllOnesValue(const Type* Ty) {
if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty))
return ConstantInt::get(Ty->getContext(),
APInt::getAllOnesValue(ITy->getBitWidth()));
std::vector<Constant*> Elts;
const VectorType* VTy = cast<VectorType>(Ty);
Elts.resize(VTy->getNumElements(), getAllOnesValue(VTy->getElementType()));
assert(Elts[0] && "Not a vector integer type!");
return cast<ConstantVector>(ConstantVector::get(Elts));
}
void Constant::destroyConstantImpl() {
// When a Constant is destroyed, there may be lingering
// references to the constant by other constants in the constant pool. These
// constants are implicitly dependent on the module that is being deleted,
// but they don't know that. Because we only find out when the CPV is
// deleted, we must now notify all of our users (that should only be
// Constants) that they are, in fact, invalid now and should be deleted.
//
while (!use_empty()) {
Value *V = use_back();
#ifndef NDEBUG // Only in -g mode...
if (!isa<Constant>(V)) {
errs() << "While deleting: " << *this
<< "\n\nUse still stuck around after Def is destroyed: "
<< *V << "\n\n";
}
#endif
assert(isa<Constant>(V) && "References remain to Constant being destroyed");
Constant *CV = cast<Constant>(V);
CV->destroyConstant();
// The constant should remove itself from our use list...
assert((use_empty() || use_back() != V) && "Constant not removed!");
}
// Value has no outstanding references it is safe to delete it now...
delete this;
}
/// canTrap - Return true if evaluation of this constant could trap. This is
/// true for things like constant expressions that could divide by zero.
bool Constant::canTrap() const {
assert(getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
// The only thing that could possibly trap are constant exprs.
const ConstantExpr *CE = dyn_cast<ConstantExpr>(this);
if (!CE) return false;
// ConstantExpr traps if any operands can trap.
for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
if (getOperand(i)->canTrap())
return true;
// Otherwise, only specific operations can trap.
switch (CE->getOpcode()) {
default:
return false;
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::FDiv:
case Instruction::URem:
case Instruction::SRem:
case Instruction::FRem:
// Div and rem can trap if the RHS is not known to be non-zero.
if (!isa<ConstantInt>(getOperand(1)) || getOperand(1)->isNullValue())
return true;
return false;
}
}
/// getRelocationInfo - This method classifies the entry according to
/// whether or not it may generate a relocation entry. This must be
/// conservative, so if it might codegen to a relocatable entry, it should say
/// so. The return values are:
///
/// NoRelocation: This constant pool entry is guaranteed to never have a
/// relocation applied to it (because it holds a simple constant like
/// '4').
/// LocalRelocation: This entry has relocations, but the entries are
/// guaranteed to be resolvable by the static linker, so the dynamic
/// linker will never see them.
/// GlobalRelocations: This entry may have arbitrary relocations.
///
/// FIXME: This really should not be in VMCore.
Constant::PossibleRelocationsTy Constant::getRelocationInfo() const {
if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
return LocalRelocation; // Local to this file/library.
return GlobalRelocations; // Global reference.
}
PossibleRelocationsTy Result = NoRelocation;
for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
Result = std::max(Result, getOperand(i)->getRelocationInfo());
return Result;
}
/// getVectorElements - This method, which is only valid on constant of vector
/// type, returns the elements of the vector in the specified smallvector.
/// This handles breaking down a vector undef into undef elements, etc. For
/// constant exprs and other cases we can't handle, we return an empty vector.
void Constant::getVectorElements(LLVMContext &Context,
SmallVectorImpl<Constant*> &Elts) const {
assert(isa<VectorType>(getType()) && "Not a vector constant!");
if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) {
for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i)
Elts.push_back(CV->getOperand(i));
return;
}
const VectorType *VT = cast<VectorType>(getType());
if (isa<ConstantAggregateZero>(this)) {
Elts.assign(VT->getNumElements(),
Constant::getNullValue(VT->getElementType()));
return;
}
if (isa<UndefValue>(this)) {
Elts.assign(VT->getNumElements(), UndefValue::get(VT->getElementType()));
return;
}
// Unknown type, must be constant expr etc.
}
//===----------------------------------------------------------------------===//
// ConstantInt
//===----------------------------------------------------------------------===//
ConstantInt::ConstantInt(const IntegerType *Ty, const APInt& V)
: Constant(Ty, ConstantIntVal, 0, 0), Val(V) {
assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
}
ConstantInt* ConstantInt::getTrue(LLVMContext &Context) {
LLVMContextImpl *pImpl = Context.pImpl;
if (pImpl->TheTrueVal)
return pImpl->TheTrueVal;
else
return (pImpl->TheTrueVal =
ConstantInt::get(IntegerType::get(Context, 1), 1));
}
ConstantInt* ConstantInt::getFalse(LLVMContext &Context) {
LLVMContextImpl *pImpl = Context.pImpl;
if (pImpl->TheFalseVal)
return pImpl->TheFalseVal;
else
return (pImpl->TheFalseVal =
ConstantInt::get(IntegerType::get(Context, 1), 0));
}
// Get a ConstantInt from an APInt. Note that the value stored in the DenseMap
// as the key, is a DenseMapAPIntKeyInfo::KeyTy which has provided the
// operator== and operator!= to ensure that the DenseMap doesn't attempt to
// compare APInt's of different widths, which would violate an APInt class
// invariant which generates an assertion.
ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt& V) {
// Get the corresponding integer type for the bit width of the value.
const IntegerType *ITy = IntegerType::get(Context, V.getBitWidth());
// get an existing value or the insertion position
DenseMapAPIntKeyInfo::KeyTy Key(V, ITy);
ConstantInt *&Slot = Context.pImpl->IntConstants[Key];
if (!Slot) Slot = new ConstantInt(ITy, V);
return Slot;
}
Constant* ConstantInt::get(const Type* Ty, uint64_t V, bool isSigned) {
Constant *C = get(cast<IntegerType>(Ty->getScalarType()),
V, isSigned);
// For vectors, broadcast the value.
if (const VectorType *VTy = dyn_cast<VectorType>(Ty))
return ConstantVector::get(
std::vector<Constant *>(VTy->getNumElements(), C));
return C;
}
ConstantInt* ConstantInt::get(const IntegerType* Ty, uint64_t V,
bool isSigned) {
return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned));
}
ConstantInt* ConstantInt::getSigned(const IntegerType* Ty, int64_t V) {
return get(Ty, V, true);
}
Constant *ConstantInt::getSigned(const Type *Ty, int64_t V) {
return get(Ty, V, true);
}
Constant* ConstantInt::get(const Type* Ty, const APInt& V) {
ConstantInt *C = get(Ty->getContext(), V);
assert(C->getType() == Ty->getScalarType() &&
"ConstantInt type doesn't match the type implied by its value!");
// For vectors, broadcast the value.
if (const VectorType *VTy = dyn_cast<VectorType>(Ty))
return ConstantVector::get(
std::vector<Constant *>(VTy->getNumElements(), C));
return C;
}
ConstantInt* ConstantInt::get(const IntegerType* Ty, const StringRef& Str,
uint8_t radix) {
return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix));
}
//===----------------------------------------------------------------------===//
// ConstantFP
//===----------------------------------------------------------------------===//
static const fltSemantics *TypeToFloatSemantics(const Type *Ty) {
if (Ty->isFloatTy())
return &APFloat::IEEEsingle;
if (Ty->isDoubleTy())
return &APFloat::IEEEdouble;
if (Ty->isX86_FP80Ty())
return &APFloat::x87DoubleExtended;
else if (Ty->isFP128Ty())
return &APFloat::IEEEquad;
assert(Ty->isPPC_FP128Ty() && "Unknown FP format");
return &APFloat::PPCDoubleDouble;
}
/// get() - This returns a constant fp for the specified value in the
/// specified type. This should only be used for simple constant values like
/// 2.0/1.0 etc, that are known-valid both as double and as the target format.
Constant* ConstantFP::get(const Type* Ty, double V) {
LLVMContext &Context = Ty->getContext();
APFloat FV(V);
bool ignored;
FV.convert(*TypeToFloatSemantics(Ty->getScalarType()),
APFloat::rmNearestTiesToEven, &ignored);
Constant *C = get(Context, FV);
// For vectors, broadcast the value.
if (const VectorType *VTy = dyn_cast<VectorType>(Ty))
return ConstantVector::get(
std::vector<Constant *>(VTy->getNumElements(), C));
return C;
}
Constant* ConstantFP::get(const Type* Ty, const StringRef& Str) {
LLVMContext &Context = Ty->getContext();
APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str);
Constant *C = get(Context, FV);
// For vectors, broadcast the value.
if (const VectorType *VTy = dyn_cast<VectorType>(Ty))
return ConstantVector::get(
std::vector<Constant *>(VTy->getNumElements(), C));
return C;
}
ConstantFP* ConstantFP::getNegativeZero(const Type* Ty) {
LLVMContext &Context = Ty->getContext();
APFloat apf = cast <ConstantFP>(Constant::getNullValue(Ty))->getValueAPF();
apf.changeSign();
return get(Context, apf);
}
Constant* ConstantFP::getZeroValueForNegation(const Type* Ty) {
if (const VectorType *PTy = dyn_cast<VectorType>(Ty))
if (PTy->getElementType()->isFloatingPoint()) {
std::vector<Constant*> zeros(PTy->getNumElements(),
getNegativeZero(PTy->getElementType()));
return ConstantVector::get(PTy, zeros);
}
if (Ty->isFloatingPoint())
return getNegativeZero(Ty);
return Constant::getNullValue(Ty);
}
// ConstantFP accessors.
ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) {
DenseMapAPFloatKeyInfo::KeyTy Key(V);
LLVMContextImpl* pImpl = Context.pImpl;
ConstantFP *&Slot = pImpl->FPConstants[Key];
if (!Slot) {
const Type *Ty;
if (&V.getSemantics() == &APFloat::IEEEsingle)
Ty = Type::getFloatTy(Context);
else if (&V.getSemantics() == &APFloat::IEEEdouble)
Ty = Type::getDoubleTy(Context);
else if (&V.getSemantics() == &APFloat::x87DoubleExtended)
Ty = Type::getX86_FP80Ty(Context);
else if (&V.getSemantics() == &APFloat::IEEEquad)
Ty = Type::getFP128Ty(Context);
else {
assert(&V.getSemantics() == &APFloat::PPCDoubleDouble &&
"Unknown FP format");
Ty = Type::getPPC_FP128Ty(Context);
}
Slot = new ConstantFP(Ty, V);
}
return Slot;
}
ConstantFP *ConstantFP::getInfinity(const Type *Ty, bool Negative) {
const fltSemantics &Semantics = *TypeToFloatSemantics(Ty);
return ConstantFP::get(Ty->getContext(),
APFloat::getInf(Semantics, Negative));
}
ConstantFP::ConstantFP(const Type *Ty, const APFloat& V)
: Constant(Ty, ConstantFPVal, 0, 0), Val(V) {
assert(&V.getSemantics() == TypeToFloatSemantics(Ty) &&
"FP type Mismatch");
}
bool ConstantFP::isNullValue() const {
return Val.isZero() && !Val.isNegative();
}
bool ConstantFP::isExactlyValue(const APFloat& V) const {
return Val.bitwiseIsEqual(V);
}
//===----------------------------------------------------------------------===//
// ConstantXXX Classes
//===----------------------------------------------------------------------===//
ConstantArray::ConstantArray(const ArrayType *T,
const std::vector<Constant*> &V)
: Constant(T, ConstantArrayVal,
OperandTraits<ConstantArray>::op_end(this) - V.size(),
V.size()) {
assert(V.size() == T->getNumElements() &&
"Invalid initializer vector for constant array");
Use *OL = OperandList;
for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end();
I != E; ++I, ++OL) {
Constant *C = *I;
assert(C->getType() == T->getElementType() &&
"Initializer for array element doesn't match array element type!");
*OL = C;
}
}
Constant *ConstantArray::get(const ArrayType *Ty,
const std::vector<Constant*> &V) {
for (unsigned i = 0, e = V.size(); i != e; ++i) {
assert(V[i]->getType() == Ty->getElementType() &&
"Wrong type in array element initializer");
}
LLVMContextImpl *pImpl = Ty->getContext().pImpl;
// If this is an all-zero array, return a ConstantAggregateZero object
if (!V.empty()) {
Constant *C = V[0];
if (!C->isNullValue()) {
// Implicitly locked.
return pImpl->ArrayConstants.getOrCreate(Ty, V);
}
for (unsigned i = 1, e = V.size(); i != e; ++i)
if (V[i] != C) {
// Implicitly locked.
return pImpl->ArrayConstants.getOrCreate(Ty, V);
}
}
return ConstantAggregateZero::get(Ty);
}
Constant* ConstantArray::get(const ArrayType* T, Constant* const* Vals,
unsigned NumVals) {
// FIXME: make this the primary ctor method.
return get(T, std::vector<Constant*>(Vals, Vals+NumVals));
}
/// ConstantArray::get(const string&) - Return an array that is initialized to
/// contain the specified string. If length is zero then a null terminator is
/// added to the specified string so that it may be used in a natural way.
/// Otherwise, the length parameter specifies how much of the string to use
/// and it won't be null terminated.
///
Constant* ConstantArray::get(LLVMContext &Context, const StringRef &Str,
bool AddNull) {
std::vector<Constant*> ElementVals;
for (unsigned i = 0; i < Str.size(); ++i)
ElementVals.push_back(ConstantInt::get(Type::getInt8Ty(Context), Str[i]));
// Add a null terminator to the string...
if (AddNull) {
ElementVals.push_back(ConstantInt::get(Type::getInt8Ty(Context), 0));
}
ArrayType *ATy = ArrayType::get(Type::getInt8Ty(Context), ElementVals.size());
return get(ATy, ElementVals);
}
ConstantStruct::ConstantStruct(const StructType *T,
const std::vector<Constant*> &V)
: Constant(T, ConstantStructVal,
OperandTraits<ConstantStruct>::op_end(this) - V.size(),
V.size()) {
assert(V.size() == T->getNumElements() &&
"Invalid initializer vector for constant structure");
Use *OL = OperandList;
for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end();
I != E; ++I, ++OL) {
Constant *C = *I;
assert(C->getType() == T->getElementType(I-V.begin()) &&
"Initializer for struct element doesn't match struct element type!");
*OL = C;
}
}
// ConstantStruct accessors.
Constant* ConstantStruct::get(const StructType* T,
const std::vector<Constant*>& V) {
LLVMContextImpl* pImpl = T->getContext().pImpl;
// Create a ConstantAggregateZero value if all elements are zeros...
for (unsigned i = 0, e = V.size(); i != e; ++i)
if (!V[i]->isNullValue())
// Implicitly locked.
return pImpl->StructConstants.getOrCreate(T, V);
return ConstantAggregateZero::get(T);
}
Constant* ConstantStruct::get(LLVMContext &Context,
const std::vector<Constant*>& V, bool packed) {
std::vector<const Type*> StructEls;
StructEls.reserve(V.size());
for (unsigned i = 0, e = V.size(); i != e; ++i)
StructEls.push_back(V[i]->getType());
return get(StructType::get(Context, StructEls, packed), V);
}
Constant* ConstantStruct::get(LLVMContext &Context,
Constant* const *Vals, unsigned NumVals,
bool Packed) {
// FIXME: make this the primary ctor method.
return get(Context, std::vector<Constant*>(Vals, Vals+NumVals), Packed);
}
ConstantVector::ConstantVector(const VectorType *T,
const std::vector<Constant*> &V)
: Constant(T, ConstantVectorVal,
OperandTraits<ConstantVector>::op_end(this) - V.size(),
V.size()) {
Use *OL = OperandList;
for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end();
I != E; ++I, ++OL) {
Constant *C = *I;
assert(C->getType() == T->getElementType() &&
"Initializer for vector element doesn't match vector element type!");
*OL = C;
}
}
// ConstantVector accessors.
Constant* ConstantVector::get(const VectorType* T,
const std::vector<Constant*>& V) {
assert(!V.empty() && "Vectors can't be empty");
LLVMContext &Context = T->getContext();
LLVMContextImpl *pImpl = Context.pImpl;
// If this is an all-undef or alll-zero vector, return a
// ConstantAggregateZero or UndefValue.
Constant *C = V[0];
bool isZero = C->isNullValue();
bool isUndef = isa<UndefValue>(C);
if (isZero || isUndef) {
for (unsigned i = 1, e = V.size(); i != e; ++i)
if (V[i] != C) {
isZero = isUndef = false;
break;
}
}
if (isZero)
return ConstantAggregateZero::get(T);
if (isUndef)
return UndefValue::get(T);
// Implicitly locked.
return pImpl->VectorConstants.getOrCreate(T, V);
}
Constant* ConstantVector::get(const std::vector<Constant*>& V) {
assert(!V.empty() && "Cannot infer type if V is empty");
return get(VectorType::get(V.front()->getType(),V.size()), V);
}
Constant* ConstantVector::get(Constant* const* Vals, unsigned NumVals) {
// FIXME: make this the primary ctor method.
return get(std::vector<Constant*>(Vals, Vals+NumVals));
}
Constant* ConstantExpr::getNSWAdd(Constant* C1, Constant* C2) {
return getTy(C1->getType(), Instruction::Add, C1, C2,
OverflowingBinaryOperator::NoSignedWrap);
}
Constant* ConstantExpr::getNSWSub(Constant* C1, Constant* C2) {
return getTy(C1->getType(), Instruction::Sub, C1, C2,
OverflowingBinaryOperator::NoSignedWrap);
}
Constant* ConstantExpr::getExactSDiv(Constant* C1, Constant* C2) {
return getTy(C1->getType(), Instruction::SDiv, C1, C2,
SDivOperator::IsExact);
}
// Utility function for determining if a ConstantExpr is a CastOp or not. This
// can't be inline because we don't want to #include Instruction.h into
// Constant.h
bool ConstantExpr::isCast() const {
return Instruction::isCast(getOpcode());
}
bool ConstantExpr::isCompare() const {
return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp;
}
bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const {
if (getOpcode() != Instruction::GetElementPtr) return false;
gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this);
User::const_op_iterator OI = next(this->op_begin());
// Skip the first index, as it has no static limit.
++GEPI;
++OI;
// The remaining indices must be compile-time known integers within the
// bounds of the corresponding notional static array types.
for (; GEPI != E; ++GEPI, ++OI) {
ConstantInt *CI = dyn_cast<ConstantInt>(*OI);
if (!CI) return false;
if (const ArrayType *ATy = dyn_cast<ArrayType>(*GEPI))
if (CI->getValue().getActiveBits() > 64 ||
CI->getZExtValue() >= ATy->getNumElements())
return false;
}
// All the indices checked out.
return true;
}
bool ConstantExpr::hasIndices() const {
return getOpcode() == Instruction::ExtractValue ||
getOpcode() == Instruction::InsertValue;
}
const SmallVector<unsigned, 4> &ConstantExpr::getIndices() const {
if (const ExtractValueConstantExpr *EVCE =
dyn_cast<ExtractValueConstantExpr>(this))
return EVCE->Indices;
return cast<InsertValueConstantExpr>(this)->Indices;
}
unsigned ConstantExpr::getPredicate() const {
assert(getOpcode() == Instruction::FCmp ||
getOpcode() == Instruction::ICmp);
return ((const CompareConstantExpr*)this)->predicate;
}
/// getWithOperandReplaced - Return a constant expression identical to this
/// one, but with the specified operand set to the specified value.
Constant *
ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const {
assert(OpNo < getNumOperands() && "Operand num is out of range!");
assert(Op->getType() == getOperand(OpNo)->getType() &&
"Replacing operand with value of different type!");
if (getOperand(OpNo) == Op)
return const_cast<ConstantExpr*>(this);
Constant *Op0, *Op1, *Op2;
switch (getOpcode()) {
case Instruction::Trunc:
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPTrunc:
case Instruction::FPExt:
case Instruction::UIToFP:
case Instruction::SIToFP:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::PtrToInt:
case Instruction::IntToPtr:
case Instruction::BitCast:
return ConstantExpr::getCast(getOpcode(), Op, getType());
case Instruction::Select:
Op0 = (OpNo == 0) ? Op : getOperand(0);
Op1 = (OpNo == 1) ? Op : getOperand(1);
Op2 = (OpNo == 2) ? Op : getOperand(2);
return ConstantExpr::getSelect(Op0, Op1, Op2);
case Instruction::InsertElement:
Op0 = (OpNo == 0) ? Op : getOperand(0);
Op1 = (OpNo == 1) ? Op : getOperand(1);
Op2 = (OpNo == 2) ? Op : getOperand(2);
return ConstantExpr::getInsertElement(Op0, Op1, Op2);
case Instruction::ExtractElement:
Op0 = (OpNo == 0) ? Op : getOperand(0);
Op1 = (OpNo == 1) ? Op : getOperand(1);
return ConstantExpr::getExtractElement(Op0, Op1);
case Instruction::ShuffleVector:
Op0 = (OpNo == 0) ? Op : getOperand(0);
Op1 = (OpNo == 1) ? Op : getOperand(1);
Op2 = (OpNo == 2) ? Op : getOperand(2);
return ConstantExpr::getShuffleVector(Op0, Op1, Op2);
case Instruction::GetElementPtr: {
SmallVector<Constant*, 8> Ops;
Ops.resize(getNumOperands()-1);
for (unsigned i = 1, e = getNumOperands(); i != e; ++i)
Ops[i-1] = getOperand(i);
if (OpNo == 0)
return cast<GEPOperator>(this)->isInBounds() ?
ConstantExpr::getInBoundsGetElementPtr(Op, &Ops[0], Ops.size()) :
ConstantExpr::getGetElementPtr(Op, &Ops[0], Ops.size());
Ops[OpNo-1] = Op;
return cast<GEPOperator>(this)->isInBounds() ?
ConstantExpr::getInBoundsGetElementPtr(getOperand(0), &Ops[0], Ops.size()) :
ConstantExpr::getGetElementPtr(getOperand(0), &Ops[0], Ops.size());
}
default:
assert(getNumOperands() == 2 && "Must be binary operator?");
Op0 = (OpNo == 0) ? Op : getOperand(0);
Op1 = (OpNo == 1) ? Op : getOperand(1);
return ConstantExpr::get(getOpcode(), Op0, Op1, SubclassData);
}
}
/// getWithOperands - This returns the current constant expression with the
/// operands replaced with the specified values. The specified operands must
/// match count and type with the existing ones.
Constant *ConstantExpr::
getWithOperands(Constant* const *Ops, unsigned NumOps) const {
assert(NumOps == getNumOperands() && "Operand count mismatch!");
bool AnyChange = false;
for (unsigned i = 0; i != NumOps; ++i) {
assert(Ops[i]->getType() == getOperand(i)->getType() &&
"Operand type mismatch!");
AnyChange |= Ops[i] != getOperand(i);
}
if (!AnyChange) // No operands changed, return self.
return const_cast<ConstantExpr*>(this);
switch (getOpcode()) {
case Instruction::Trunc:
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPTrunc:
case Instruction::FPExt:
case Instruction::UIToFP:
case Instruction::SIToFP:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::PtrToInt:
case Instruction::IntToPtr:
case Instruction::BitCast:
return ConstantExpr::getCast(getOpcode(), Ops[0], getType());
case Instruction::Select:
return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
case Instruction::InsertElement:
return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
case Instruction::ExtractElement:
return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
case Instruction::ShuffleVector:
return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
case Instruction::GetElementPtr:
return cast<GEPOperator>(this)->isInBounds() ?
ConstantExpr::getInBoundsGetElementPtr(Ops[0], &Ops[1], NumOps-1) :
ConstantExpr::getGetElementPtr(Ops[0], &Ops[1], NumOps-1);
case Instruction::ICmp:
case Instruction::FCmp:
return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1]);
default:
assert(getNumOperands() == 2 && "Must be binary operator?");
return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassData);
}
}
//===----------------------------------------------------------------------===//
// isValueValidForType implementations
bool ConstantInt::isValueValidForType(const Type *Ty, uint64_t Val) {
unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth(); // assert okay
if (Ty == Type::getInt1Ty(Ty->getContext()))
return Val == 0 || Val == 1;
if (NumBits >= 64)
return true; // always true, has to fit in largest type
uint64_t Max = (1ll << NumBits) - 1;
return Val <= Max;
}
bool ConstantInt::isValueValidForType(const Type *Ty, int64_t Val) {
unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth(); // assert okay
if (Ty == Type::getInt1Ty(Ty->getContext()))
return Val == 0 || Val == 1 || Val == -1;
if (NumBits >= 64)
return true; // always true, has to fit in largest type
int64_t Min = -(1ll << (NumBits-1));
int64_t Max = (1ll << (NumBits-1)) - 1;
return (Val >= Min && Val <= Max);
}
bool ConstantFP::isValueValidForType(const Type *Ty, const APFloat& Val) {
// convert modifies in place, so make a copy.
APFloat Val2 = APFloat(Val);
bool losesInfo;
switch (Ty->getTypeID()) {
default:
return false; // These can't be represented as floating point!
// FIXME rounding mode needs to be more flexible
case Type::FloatTyID: {
if (&Val2.getSemantics() == &APFloat::IEEEsingle)
return true;
Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &losesInfo);
return !losesInfo;
}
case Type::DoubleTyID: {
if (&Val2.getSemantics() == &APFloat::IEEEsingle ||
&Val2.getSemantics() == &APFloat::IEEEdouble)
return true;
Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &losesInfo);
return !losesInfo;
}
case Type::X86_FP80TyID:
return &Val2.getSemantics() == &APFloat::IEEEsingle ||
&Val2.getSemantics() == &APFloat::IEEEdouble ||
&Val2.getSemantics() == &APFloat::x87DoubleExtended;
case Type::FP128TyID:
return &Val2.getSemantics() == &APFloat::IEEEsingle ||
&Val2.getSemantics() == &APFloat::IEEEdouble ||
&Val2.getSemantics() == &APFloat::IEEEquad;
case Type::PPC_FP128TyID:
return &Val2.getSemantics() == &APFloat::IEEEsingle ||
&Val2.getSemantics() == &APFloat::IEEEdouble ||
&Val2.getSemantics() == &APFloat::PPCDoubleDouble;
}
}
//===----------------------------------------------------------------------===//
// Factory Function Implementation
ConstantAggregateZero* ConstantAggregateZero::get(const Type* Ty) {
assert((isa<StructType>(Ty) || isa<ArrayType>(Ty) || isa<VectorType>(Ty)) &&
"Cannot create an aggregate zero of non-aggregate type!");
LLVMContextImpl *pImpl = Ty->getContext().pImpl;
// Implicitly locked.
return pImpl->AggZeroConstants.getOrCreate(Ty, 0);
}
/// destroyConstant - Remove the constant from the constant table...
///
void ConstantAggregateZero::destroyConstant() {
// Implicitly locked.
getType()->getContext().pImpl->AggZeroConstants.remove(this);
destroyConstantImpl();
}
/// destroyConstant - Remove the constant from the constant table...
///
void ConstantArray::destroyConstant() {
// Implicitly locked.
getType()->getContext().pImpl->ArrayConstants.remove(this);
destroyConstantImpl();
}
/// isString - This method returns true if the array is an array of i8, and
/// if the elements of the array are all ConstantInt's.
bool ConstantArray::isString() const {
// Check the element type for i8...
if (getType()->getElementType() != Type::getInt8Ty(getContext()))
return false;
// Check the elements to make sure they are all integers, not constant
// expressions.
for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
if (!isa<ConstantInt>(getOperand(i)))
return false;
return true;
}
/// isCString - This method returns true if the array is a string (see
/// isString) and it ends in a null byte \\0 and does not contains any other
/// null bytes except its terminator.
bool ConstantArray::isCString() const {
// Check the element type for i8...
if (getType()->getElementType() != Type::getInt8Ty(getContext()))
return false;
// Last element must be a null.
if (!getOperand(getNumOperands()-1)->isNullValue())
return false;
// Other elements must be non-null integers.
for (unsigned i = 0, e = getNumOperands()-1; i != e; ++i) {
if (!isa<ConstantInt>(getOperand(i)))
return false;
if (getOperand(i)->isNullValue())
return false;
}
return true;
}
/// getAsString - If the sub-element type of this array is i8
/// then this method converts the array to an std::string and returns it.
/// Otherwise, it asserts out.
///
std::string ConstantArray::getAsString() const {
assert(isString() && "Not a string!");
std::string Result;
Result.reserve(getNumOperands());
for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
Result.push_back((char)cast<ConstantInt>(getOperand(i))->getZExtValue());
return Result;
}
//---- ConstantStruct::get() implementation...
//
namespace llvm {
}
// destroyConstant - Remove the constant from the constant table...
//
void ConstantStruct::destroyConstant() {
// Implicitly locked.
getType()->getContext().pImpl->StructConstants.remove(this);
destroyConstantImpl();
}
// destroyConstant - Remove the constant from the constant table...
//
void ConstantVector::destroyConstant() {
// Implicitly locked.
getType()->getContext().pImpl->VectorConstants.remove(this);
destroyConstantImpl();
}
/// This function will return true iff every element in this vector constant
/// is set to all ones.
/// @returns true iff this constant's emements are all set to all ones.
/// @brief Determine if the value is all ones.
bool ConstantVector::isAllOnesValue() const {
// Check out first element.
const Constant *Elt = getOperand(0);
const ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
if (!CI || !CI->isAllOnesValue()) return false;
// Then make sure all remaining elements point to the same value.
for (unsigned I = 1, E = getNumOperands(); I < E; ++I) {
if (getOperand(I) != Elt) return false;
}
return true;
}
/// getSplatValue - If this is a splat constant, where all of the
/// elements have the same value, return that value. Otherwise return null.
Constant *ConstantVector::getSplatValue() {
// Check out first element.
Constant *Elt = getOperand(0);
// Then make sure all remaining elements point to the same value.
for (unsigned I = 1, E = getNumOperands(); I < E; ++I)
if (getOperand(I) != Elt) return 0;
return Elt;
}
//---- ConstantPointerNull::get() implementation...
//
ConstantPointerNull *ConstantPointerNull::get(const PointerType *Ty) {
// Implicitly locked.
return Ty->getContext().pImpl->NullPtrConstants.getOrCreate(Ty, 0);
}
// destroyConstant - Remove the constant from the constant table...
//
void ConstantPointerNull::destroyConstant() {
// Implicitly locked.
getType()->getContext().pImpl->NullPtrConstants.remove(this);
destroyConstantImpl();
}
//---- UndefValue::get() implementation...
//
UndefValue *UndefValue::get(const Type *Ty) {
// Implicitly locked.
return Ty->getContext().pImpl->UndefValueConstants.getOrCreate(Ty, 0);
}
// destroyConstant - Remove the constant from the constant table.
//
void UndefValue::destroyConstant() {
// Implicitly locked.
getType()->getContext().pImpl->UndefValueConstants.remove(this);
destroyConstantImpl();
}
//---- ConstantExpr::get() implementations...
//
/// This is a utility function to handle folding of casts and lookup of the
/// cast in the ExprConstants map. It is used by the various get* methods below.
static inline Constant *getFoldedCast(
Instruction::CastOps opc, Constant *C, const Type *Ty) {
assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
// Fold a few common cases
if (Constant *FC = ConstantFoldCastInstruction(Ty->getContext(), opc, C, Ty))
return FC;
LLVMContextImpl *pImpl = Ty->getContext().pImpl;
// Look up the constant in the table first to ensure uniqueness
std::vector<Constant*> argVec(1, C);
ExprMapKeyType Key(opc, argVec);
// Implicitly locked.
return pImpl->ExprConstants.getOrCreate(Ty, Key);
}
Constant *ConstantExpr::getCast(unsigned oc, Constant *C, const Type *Ty) {
Instruction::CastOps opc = Instruction::CastOps(oc);
assert(Instruction::isCast(opc) && "opcode out of range");
assert(C && Ty && "Null arguments to getCast");
assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
switch (opc) {
default:
llvm_unreachable("Invalid cast opcode");
break;
case Instruction::Trunc: return getTrunc(C, Ty);
case Instruction::ZExt: return getZExt(C, Ty);
case Instruction::SExt: return getSExt(C, Ty);
case Instruction::FPTrunc: return getFPTrunc(C, Ty);
case Instruction::FPExt: return getFPExtend(C, Ty);
case Instruction::UIToFP: return getUIToFP(C, Ty);
case Instruction::SIToFP: return getSIToFP(C, Ty);
case Instruction::FPToUI: return getFPToUI(C, Ty);
case Instruction::FPToSI: return getFPToSI(C, Ty);
case Instruction::PtrToInt: return getPtrToInt(C, Ty);
case Instruction::IntToPtr: return getIntToPtr(C, Ty);
case Instruction::BitCast: return getBitCast(C, Ty);
}
return 0;
}
Constant *ConstantExpr::getZExtOrBitCast(Constant *C, const Type *Ty) {
if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
return getCast(Instruction::BitCast, C, Ty);
return getCast(Instruction::ZExt, C, Ty);
}
Constant *ConstantExpr::getSExtOrBitCast(Constant *C, const Type *Ty) {
if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
return getCast(Instruction::BitCast, C, Ty);
return getCast(Instruction::SExt, C, Ty);
}
Constant *ConstantExpr::getTruncOrBitCast(Constant *C, const Type *Ty) {
if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
return getCast(Instruction::BitCast, C, Ty);
return getCast(Instruction::Trunc, C, Ty);
}
Constant *ConstantExpr::getPointerCast(Constant *S, const Type *Ty) {
assert(isa<PointerType>(S->getType()) && "Invalid cast");
assert((Ty->isInteger() || isa<PointerType>(Ty)) && "Invalid cast");
if (Ty->isInteger())
return getCast(Instruction::PtrToInt, S, Ty);
return getCast(Instruction::BitCast, S, Ty);
}
Constant *ConstantExpr::getIntegerCast(Constant *C, const Type *Ty,
bool isSigned) {
assert(C->getType()->isIntOrIntVector() &&
Ty->isIntOrIntVector() && "Invalid cast");
unsigned SrcBits = C->getType()->getScalarSizeInBits();
unsigned DstBits = Ty->getScalarSizeInBits();
Instruction::CastOps opcode =
(SrcBits == DstBits ? Instruction::BitCast :
(SrcBits > DstBits ? Instruction::Trunc :
(isSigned ? Instruction::SExt : Instruction::ZExt)));
return getCast(opcode, C, Ty);
}
Constant *ConstantExpr::getFPCast(Constant *C, const Type *Ty) {
assert(C->getType()->isFPOrFPVector() && Ty->isFPOrFPVector() &&
"Invalid cast");
unsigned SrcBits = C->getType()->getScalarSizeInBits();
unsigned DstBits = Ty->getScalarSizeInBits();
if (SrcBits == DstBits)
return C; // Avoid a useless cast
Instruction::CastOps opcode =
(SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt);
return getCast(opcode, C, Ty);
}
Constant *ConstantExpr::getTrunc(Constant *C, const Type *Ty) {
#ifndef NDEBUG
bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
bool toVec = Ty->getTypeID() == Type::VectorTyID;
#endif
assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
assert(C->getType()->isIntOrIntVector() && "Trunc operand must be integer");
assert(Ty->isIntOrIntVector() && "Trunc produces only integral");
assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
"SrcTy must be larger than DestTy for Trunc!");
return getFoldedCast(Instruction::Trunc, C, Ty);
}
Constant *ConstantExpr::getSExt(Constant *C, const Type *Ty) {
#ifndef NDEBUG
bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
bool toVec = Ty->getTypeID() == Type::VectorTyID;
#endif
assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
assert(C->getType()->isIntOrIntVector() && "SExt operand must be integral");
assert(Ty->isIntOrIntVector() && "SExt produces only integer");
assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
"SrcTy must be smaller than DestTy for SExt!");
return getFoldedCast(Instruction::SExt, C, Ty);
}
Constant *ConstantExpr::getZExt(Constant *C, const Type *Ty) {
#ifndef NDEBUG
bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
bool toVec = Ty->getTypeID() == Type::VectorTyID;
#endif
assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
assert(C->getType()->isIntOrIntVector() && "ZEXt operand must be integral");
assert(Ty->isIntOrIntVector() && "ZExt produces only integer");
assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
"SrcTy must be smaller than DestTy for ZExt!");
return getFoldedCast(Instruction::ZExt, C, Ty);
}
Constant *ConstantExpr::getFPTrunc(Constant *C, const Type *Ty) {
#ifndef NDEBUG
bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
bool toVec = Ty->getTypeID() == Type::VectorTyID;
#endif
assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
assert(C->getType()->isFPOrFPVector() && Ty->isFPOrFPVector() &&
C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
"This is an illegal floating point truncation!");
return getFoldedCast(Instruction::FPTrunc, C, Ty);
}
Constant *ConstantExpr::getFPExtend(Constant *C, const Type *Ty) {
#ifndef NDEBUG
bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
bool toVec = Ty->getTypeID() == Type::VectorTyID;
#endif
assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
assert(C->getType()->isFPOrFPVector() && Ty->isFPOrFPVector() &&
C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
"This is an illegal floating point extension!");
return getFoldedCast(Instruction::FPExt, C, Ty);
}
Constant *ConstantExpr::getUIToFP(Constant *C, const Type *Ty) {
#ifndef NDEBUG
bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
bool toVec = Ty->getTypeID() == Type::VectorTyID;
#endif
assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
assert(C->getType()->isIntOrIntVector() && Ty->isFPOrFPVector() &&
"This is an illegal uint to floating point cast!");
return getFoldedCast(Instruction::UIToFP, C, Ty);
}
Constant *ConstantExpr::getSIToFP(Constant *C, const Type *Ty) {
#ifndef NDEBUG
bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
bool toVec = Ty->getTypeID() == Type::VectorTyID;
#endif
assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
assert(C->getType()->isIntOrIntVector() && Ty->isFPOrFPVector() &&
"This is an illegal sint to floating point cast!");
return getFoldedCast(Instruction::SIToFP, C, Ty);
}
Constant *ConstantExpr::getFPToUI(Constant *C, const Type *Ty) {
#ifndef NDEBUG
bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
bool toVec = Ty->getTypeID() == Type::VectorTyID;
#endif
assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
assert(C->getType()->isFPOrFPVector() && Ty->isIntOrIntVector() &&
"This is an illegal floating point to uint cast!");
return getFoldedCast(Instruction::FPToUI, C, Ty);
}
Constant *ConstantExpr::getFPToSI(Constant *C, const Type *Ty) {
#ifndef NDEBUG
bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
bool toVec = Ty->getTypeID() == Type::VectorTyID;
#endif
assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
assert(C->getType()->isFPOrFPVector() && Ty->isIntOrIntVector() &&
"This is an illegal floating point to sint cast!");
return getFoldedCast(Instruction::FPToSI, C, Ty);
}
Constant *ConstantExpr::getPtrToInt(Constant *C, const Type *DstTy) {
assert(isa<PointerType>(C->getType()) && "PtrToInt source must be pointer");
assert(DstTy->isInteger() && "PtrToInt destination must be integral");
return getFoldedCast(Instruction::PtrToInt, C, DstTy);
}
Constant *ConstantExpr::getIntToPtr(Constant *C, const Type *DstTy) {
assert(C->getType()->isInteger() && "IntToPtr source must be integral");
assert(isa<PointerType>(DstTy) && "IntToPtr destination must be a pointer");
return getFoldedCast(Instruction::IntToPtr, C, DstTy);
}
Constant *ConstantExpr::getBitCast(Constant *C, const Type *DstTy) {
// BitCast implies a no-op cast of type only. No bits change. However, you
// can't cast pointers to anything but pointers.
#ifndef NDEBUG
const Type *SrcTy = C->getType();
assert((isa<PointerType>(SrcTy) == isa<PointerType>(DstTy)) &&
"BitCast cannot cast pointer to non-pointer and vice versa");
// Now we know we're not dealing with mismatched pointer casts (ptr->nonptr
// or nonptr->ptr). For all the other types, the cast is okay if source and
// destination bit widths are identical.
unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
unsigned DstBitSize = DstTy->getPrimitiveSizeInBits();
#endif
assert(SrcBitSize == DstBitSize && "BitCast requires types of same width");
// It is common to ask for a bitcast of a value to its own type, handle this
// speedily.
if (C->getType() == DstTy) return C;
return getFoldedCast(Instruction::BitCast, C, DstTy);
}
Constant *ConstantExpr::getTy(const Type *ReqTy, unsigned Opcode,
Constant *C1, Constant *C2,
unsigned Flags) {
// Check the operands for consistency first
assert(Opcode >= Instruction::BinaryOpsBegin &&
Opcode < Instruction::BinaryOpsEnd &&
"Invalid opcode in binary constant expression");
assert(C1->getType() == C2->getType() &&
"Operand types in binary constant expression should match");
if (ReqTy == C1->getType() || ReqTy == Type::getInt1Ty(ReqTy->getContext()))
if (Constant *FC = ConstantFoldBinaryInstruction(ReqTy->getContext(),
Opcode, C1, C2))
return FC; // Fold a few common cases...
std::vector<Constant*> argVec(1, C1); argVec.push_back(C2);
ExprMapKeyType Key(Opcode, argVec, 0, Flags);
LLVMContextImpl *pImpl = ReqTy->getContext().pImpl;
// Implicitly locked.
return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
}
Constant *ConstantExpr::getCompareTy(unsigned short predicate,
Constant *C1, Constant *C2) {
switch (predicate) {
default: llvm_unreachable("Invalid CmpInst predicate");
case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT:
case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE:
case CmpInst::FCMP_ONE: case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO:
case CmpInst::FCMP_UEQ: case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE:
case CmpInst::FCMP_ULT: case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE:
case CmpInst::FCMP_TRUE:
return getFCmp(predicate, C1, C2);
case CmpInst::ICMP_EQ: case CmpInst::ICMP_NE: case CmpInst::ICMP_UGT:
case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE:
case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT:
case CmpInst::ICMP_SLE:
return getICmp(predicate, C1, C2);
}
}
Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2,
unsigned Flags) {
// API compatibility: Adjust integer opcodes to floating-point opcodes.
if (C1->getType()->isFPOrFPVector()) {
if (Opcode == Instruction::Add) Opcode = Instruction::FAdd;
else if (Opcode == Instruction::Sub) Opcode = Instruction::FSub;
else if (Opcode == Instruction::Mul) Opcode = Instruction::FMul;
}
#ifndef NDEBUG
switch (Opcode) {
case Instruction::Add:
case Instruction::Sub:
case Instruction::Mul:
assert(C1->getType() == C2->getType() && "Op types should be identical!");
assert(C1->getType()->isIntOrIntVector() &&
"Tried to create an integer operation on a non-integer type!");
break;
case Instruction::FAdd:
case Instruction::FSub:
case Instruction::FMul:
assert(C1->getType() == C2->getType() && "Op types should be identical!");
assert(C1->getType()->isFPOrFPVector() &&
"Tried to create a floating-point operation on a "
"non-floating-point type!");
break;
case Instruction::UDiv:
case Instruction::SDiv:
assert(C1->getType() == C2->getType() && "Op types should be identical!");
assert(C1->getType()->isIntOrIntVector() &&
"Tried to create an arithmetic operation on a non-arithmetic type!");
break;
case Instruction::FDiv:
assert(C1->getType() == C2->getType() && "Op types should be identical!");
assert(C1->getType()->isFPOrFPVector() &&
"Tried to create an arithmetic operation on a non-arithmetic type!");
break;
case Instruction::URem:
case Instruction::SRem:
assert(C1->getType() == C2->getType() && "Op types should be identical!");
assert(C1->getType()->isIntOrIntVector() &&
"Tried to create an arithmetic operation on a non-arithmetic type!");
break;
case Instruction::FRem:
assert(C1->getType() == C2->getType() && "Op types should be identical!");
assert(C1->getType()->isFPOrFPVector() &&
"Tried to create an arithmetic operation on a non-arithmetic type!");
break;
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
assert(C1->getType() == C2->getType() && "Op types should be identical!");
assert(C1->getType()->isIntOrIntVector() &&
"Tried to create a logical operation on a non-integral type!");
break;
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
assert(C1->getType() == C2->getType() && "Op types should be identical!");
assert(C1->getType()->isIntOrIntVector() &&
"Tried to create a shift operation on a non-integer type!");
break;
default:
break;
}
#endif
return getTy(C1->getType(), Opcode, C1, C2, Flags);
}
Constant* ConstantExpr::getSizeOf(const Type* Ty) {
// sizeof is implemented as: (i64) gep (Ty*)null, 1
// Note that a non-inbounds gep is used, as null isn't within any object.
Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
Constant *GEP = getGetElementPtr(
Constant::getNullValue(PointerType::getUnqual(Ty)), &GEPIdx, 1);
return getCast(Instruction::PtrToInt, GEP,
Type::getInt64Ty(Ty->getContext()));
}
Constant* ConstantExpr::getAlignOf(const Type* Ty) {
// alignof is implemented as: (i64) gep ({i8,Ty}*)null, 0, 1
// Note that a non-inbounds gep is used, as null isn't within any object.
const Type *AligningTy = StructType::get(Ty->getContext(),
Type::getInt8Ty(Ty->getContext()), Ty, NULL);
Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo());
Constant *Zero = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 0);
Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
Constant *Indices[2] = { Zero, One };
Constant *GEP = getGetElementPtr(NullPtr, Indices, 2);
return getCast(Instruction::PtrToInt, GEP,
Type::getInt32Ty(Ty->getContext()));
}
Constant* ConstantExpr::getOffsetOf(const StructType* STy, unsigned FieldNo) {
// offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo
// Note that a non-inbounds gep is used, as null isn't within any object.
Constant *GEPIdx[] = {
ConstantInt::get(Type::getInt64Ty(STy->getContext()), 0),
ConstantInt::get(Type::getInt32Ty(STy->getContext()), FieldNo)
};
Constant *GEP = getGetElementPtr(
Constant::getNullValue(PointerType::getUnqual(STy)), GEPIdx, 2);
return getCast(Instruction::PtrToInt, GEP,
Type::getInt64Ty(STy->getContext()));
}
Constant *ConstantExpr::getCompare(unsigned short pred,
Constant *C1, Constant *C2) {
assert(C1->getType() == C2->getType() && "Op types should be identical!");
return getCompareTy(pred, C1, C2);
}
Constant *ConstantExpr::getSelectTy(const Type *ReqTy, Constant *C,
Constant *V1, Constant *V2) {
assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands");
if (ReqTy == V1->getType())
if (Constant *SC = ConstantFoldSelectInstruction(
ReqTy->getContext(), C, V1, V2))
return SC; // Fold common cases
std::vector<Constant*> argVec(3, C);
argVec[1] = V1;
argVec[2] = V2;
ExprMapKeyType Key(Instruction::Select, argVec);
LLVMContextImpl *pImpl = ReqTy->getContext().pImpl;
// Implicitly locked.
return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
}
Constant *ConstantExpr::getGetElementPtrTy(const Type *ReqTy, Constant *C,
Value* const *Idxs,
unsigned NumIdx) {
assert(GetElementPtrInst::getIndexedType(C->getType(), Idxs,
Idxs+NumIdx) ==
cast<PointerType>(ReqTy)->getElementType() &&
"GEP indices invalid!");
if (Constant *FC = ConstantFoldGetElementPtr(
ReqTy->getContext(), C, /*inBounds=*/false,
(Constant**)Idxs, NumIdx))
return FC; // Fold a few common cases...
assert(isa<PointerType>(C->getType()) &&
"Non-pointer type for constant GetElementPtr expression");
// Look up the constant in the table first to ensure uniqueness
std::vector<Constant*> ArgVec;
ArgVec.reserve(NumIdx+1);
ArgVec.push_back(C);
for (unsigned i = 0; i != NumIdx; ++i)
ArgVec.push_back(cast<Constant>(Idxs[i]));
const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec);
LLVMContextImpl *pImpl = ReqTy->getContext().pImpl;
// Implicitly locked.
return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
}
Constant *ConstantExpr::getInBoundsGetElementPtrTy(const Type *ReqTy,
Constant *C,
Value* const *Idxs,
unsigned NumIdx) {
assert(GetElementPtrInst::getIndexedType(C->getType(), Idxs,
Idxs+NumIdx) ==
cast<PointerType>(ReqTy)->getElementType() &&
"GEP indices invalid!");
if (Constant *FC = ConstantFoldGetElementPtr(
ReqTy->getContext(), C, /*inBounds=*/true,
(Constant**)Idxs, NumIdx))
return FC; // Fold a few common cases...
assert(isa<PointerType>(C->getType()) &&
"Non-pointer type for constant GetElementPtr expression");
// Look up the constant in the table first to ensure uniqueness
std::vector<Constant*> ArgVec;
ArgVec.reserve(NumIdx+1);
ArgVec.push_back(C);
for (unsigned i = 0; i != NumIdx; ++i)
ArgVec.push_back(cast<Constant>(Idxs[i]));
const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
GEPOperator::IsInBounds);
LLVMContextImpl *pImpl = ReqTy->getContext().pImpl;
// Implicitly locked.
return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
}
Constant *ConstantExpr::getGetElementPtr(Constant *C, Value* const *Idxs,
unsigned NumIdx) {
// Get the result type of the getelementptr!
const Type *Ty =
GetElementPtrInst::getIndexedType(C->getType(), Idxs, Idxs+NumIdx);
assert(Ty && "GEP indices invalid!");
unsigned As = cast<PointerType>(C->getType())->getAddressSpace();
return getGetElementPtrTy(PointerType::get(Ty, As), C, Idxs, NumIdx);
}
Constant *ConstantExpr::getInBoundsGetElementPtr(Constant *C,
Value* const *Idxs,
unsigned NumIdx) {
// Get the result type of the getelementptr!
const Type *Ty =
GetElementPtrInst::getIndexedType(C->getType(), Idxs, Idxs+NumIdx);
assert(Ty && "GEP indices invalid!");
unsigned As = cast<PointerType>(C->getType())->getAddressSpace();
return getInBoundsGetElementPtrTy(PointerType::get(Ty, As), C, Idxs, NumIdx);
}
Constant *ConstantExpr::getGetElementPtr(Constant *C, Constant* const *Idxs,
unsigned NumIdx) {
return getGetElementPtr(C, (Value* const *)Idxs, NumIdx);
}
Constant *ConstantExpr::getInBoundsGetElementPtr(Constant *C,
Constant* const *Idxs,
unsigned NumIdx) {
return getInBoundsGetElementPtr(C, (Value* const *)Idxs, NumIdx);
}
Constant *
ConstantExpr::getICmp(unsigned short pred, Constant* LHS, Constant* RHS) {
assert(LHS->getType() == RHS->getType());
assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE &&
pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate");
if (Constant *FC = ConstantFoldCompareInstruction(
LHS->getContext(), pred, LHS, RHS))
return FC; // Fold a few common cases...
// Look up the constant in the table first to ensure uniqueness
std::vector<Constant*> ArgVec;
ArgVec.push_back(LHS);
ArgVec.push_back(RHS);
// Get the key type with both the opcode and predicate
const ExprMapKeyType Key(Instruction::ICmp, ArgVec, pred);
LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
// Implicitly locked.
return
pImpl->ExprConstants.getOrCreate(Type::getInt1Ty(LHS->getContext()), Key);
}
Constant *
ConstantExpr::getFCmp(unsigned short pred, Constant* LHS, Constant* RHS) {
assert(LHS->getType() == RHS->getType());
assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate");
if (Constant *FC = ConstantFoldCompareInstruction(
LHS->getContext(), pred, LHS, RHS))
return FC; // Fold a few common cases...
// Look up the constant in the table first to ensure uniqueness
std::vector<Constant*> ArgVec;
ArgVec.push_back(LHS);
ArgVec.push_back(RHS);
// Get the key type with both the opcode and predicate
const ExprMapKeyType Key(Instruction::FCmp, ArgVec, pred);
LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
// Implicitly locked.
return
pImpl->ExprConstants.getOrCreate(Type::getInt1Ty(LHS->getContext()), Key);
}
Constant *ConstantExpr::getExtractElementTy(const Type *ReqTy, Constant *Val,
Constant *Idx) {
if (Constant *FC = ConstantFoldExtractElementInstruction(
ReqTy->getContext(), Val, Idx))
return FC; // Fold a few common cases...
// Look up the constant in the table first to ensure uniqueness
std::vector<Constant*> ArgVec(1, Val);
ArgVec.push_back(Idx);
const ExprMapKeyType Key(Instruction::ExtractElement,ArgVec);
LLVMContextImpl *pImpl = ReqTy->getContext().pImpl;
// Implicitly locked.
return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
}
Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) {
assert(isa<VectorType>(Val->getType()) &&
"Tried to create extractelement operation on non-vector type!");
assert(Idx->getType() == Type::getInt32Ty(Val->getContext()) &&
"Extractelement index must be i32 type!");
return getExtractElementTy(cast<VectorType>(Val->getType())->getElementType(),
Val, Idx);
}
Constant *ConstantExpr::getInsertElementTy(const Type *ReqTy, Constant *Val,
Constant *Elt, Constant *Idx) {
if (Constant *FC = ConstantFoldInsertElementInstruction(
ReqTy->getContext(), Val, Elt, Idx))
return FC; // Fold a few common cases...
// Look up the constant in the table first to ensure uniqueness
std::vector<Constant*> ArgVec(1, Val);
ArgVec.push_back(Elt);
ArgVec.push_back(Idx);
const ExprMapKeyType Key(Instruction::InsertElement,ArgVec);
LLVMContextImpl *pImpl = ReqTy->getContext().pImpl;
// Implicitly locked.
return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
}
Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt,
Constant *Idx) {
assert(isa<VectorType>(Val->getType()) &&
"Tried to create insertelement operation on non-vector type!");
assert(Elt->getType() == cast<VectorType>(Val->getType())->getElementType()
&& "Insertelement types must match!");
assert(Idx->getType() == Type::getInt32Ty(Val->getContext()) &&
"Insertelement index must be i32 type!");
return getInsertElementTy(Val->getType(), Val, Elt, Idx);
}
Constant *ConstantExpr::getShuffleVectorTy(const Type *ReqTy, Constant *V1,
Constant *V2, Constant *Mask) {
if (Constant *FC = ConstantFoldShuffleVectorInstruction(
ReqTy->getContext(), V1, V2, Mask))
return FC; // Fold a few common cases...
// Look up the constant in the table first to ensure uniqueness
std::vector<Constant*> ArgVec(1, V1);
ArgVec.push_back(V2);
ArgVec.push_back(Mask);
const ExprMapKeyType Key(Instruction::ShuffleVector,ArgVec);
LLVMContextImpl *pImpl = ReqTy->getContext().pImpl;
// Implicitly locked.
return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
}
Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2,
Constant *Mask) {
assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
"Invalid shuffle vector constant expr operands!");
unsigned NElts = cast<VectorType>(Mask->getType())->getNumElements();
const Type *EltTy = cast<VectorType>(V1->getType())->getElementType();
const Type *ShufTy = VectorType::get(EltTy, NElts);
return getShuffleVectorTy(ShufTy, V1, V2, Mask);
}
Constant *ConstantExpr::getInsertValueTy(const Type *ReqTy, Constant *Agg,
Constant *Val,
const unsigned *Idxs, unsigned NumIdx) {
assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs,
Idxs+NumIdx) == Val->getType() &&
"insertvalue indices invalid!");
assert(Agg->getType() == ReqTy &&
"insertvalue type invalid!");
assert(Agg->getType()->isFirstClassType() &&
"Non-first-class type for constant InsertValue expression");
Constant *FC = ConstantFoldInsertValueInstruction(
ReqTy->getContext(), Agg, Val, Idxs, NumIdx);
assert(FC && "InsertValue constant expr couldn't be folded!");
return FC;
}
Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val,
const unsigned *IdxList, unsigned NumIdx) {
assert(Agg->getType()->isFirstClassType() &&
"Tried to create insertelement operation on non-first-class type!");
const Type *ReqTy = Agg->getType();
#ifndef NDEBUG
const Type *ValTy =
ExtractValueInst::getIndexedType(Agg->getType(), IdxList, IdxList+NumIdx);
#endif
assert(ValTy == Val->getType() && "insertvalue indices invalid!");
return getInsertValueTy(ReqTy, Agg, Val, IdxList, NumIdx);
}
Constant *ConstantExpr::getExtractValueTy(const Type *ReqTy, Constant *Agg,
const unsigned *Idxs, unsigned NumIdx) {
assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs,
Idxs+NumIdx) == ReqTy &&
"extractvalue indices invalid!");
assert(Agg->getType()->isFirstClassType() &&
"Non-first-class type for constant extractvalue expression");
Constant *FC = ConstantFoldExtractValueInstruction(
ReqTy->getContext(), Agg, Idxs, NumIdx);
assert(FC && "ExtractValue constant expr couldn't be folded!");
return FC;
}
Constant *ConstantExpr::getExtractValue(Constant *Agg,
const unsigned *IdxList, unsigned NumIdx) {
assert(Agg->getType()->isFirstClassType() &&
"Tried to create extractelement operation on non-first-class type!");
const Type *ReqTy =
ExtractValueInst::getIndexedType(Agg->getType(), IdxList, IdxList+NumIdx);
assert(ReqTy && "extractvalue indices invalid!");
return getExtractValueTy(ReqTy, Agg, IdxList, NumIdx);
}
Constant* ConstantExpr::getNeg(Constant* C) {
// API compatibility: Adjust integer opcodes to floating-point opcodes.
if (C->getType()->isFPOrFPVector())
return getFNeg(C);
assert(C->getType()->isIntOrIntVector() &&
"Cannot NEG a nonintegral value!");
return get(Instruction::Sub,
ConstantFP::getZeroValueForNegation(C->getType()),
C);
}
Constant* ConstantExpr::getFNeg(Constant* C) {
assert(C->getType()->isFPOrFPVector() &&
"Cannot FNEG a non-floating-point value!");
return get(Instruction::FSub,
ConstantFP::getZeroValueForNegation(C->getType()),
C);
}
Constant* ConstantExpr::getNot(Constant* C) {
assert(C->getType()->isIntOrIntVector() &&
"Cannot NOT a nonintegral value!");
return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType()));
}
Constant* ConstantExpr::getAdd(Constant* C1, Constant* C2) {
return get(Instruction::Add, C1, C2);
}
Constant* ConstantExpr::getFAdd(Constant* C1, Constant* C2) {
return get(Instruction::FAdd, C1, C2);
}
Constant* ConstantExpr::getSub(Constant* C1, Constant* C2) {
return get(Instruction::Sub, C1, C2);
}
Constant* ConstantExpr::getFSub(Constant* C1, Constant* C2) {
return get(Instruction::FSub, C1, C2);
}
Constant* ConstantExpr::getMul(Constant* C1, Constant* C2) {
return get(Instruction::Mul, C1, C2);
}
Constant* ConstantExpr::getFMul(Constant* C1, Constant* C2) {
return get(Instruction::FMul, C1, C2);
}
Constant* ConstantExpr::getUDiv(Constant* C1, Constant* C2) {
return get(Instruction::UDiv, C1, C2);
}
Constant* ConstantExpr::getSDiv(Constant* C1, Constant* C2) {
return get(Instruction::SDiv, C1, C2);
}
Constant* ConstantExpr::getFDiv(Constant* C1, Constant* C2) {
return get(Instruction::FDiv, C1, C2);
}
Constant* ConstantExpr::getURem(Constant* C1, Constant* C2) {
return get(Instruction::URem, C1, C2);
}
Constant* ConstantExpr::getSRem(Constant* C1, Constant* C2) {
return get(Instruction::SRem, C1, C2);
}
Constant* ConstantExpr::getFRem(Constant* C1, Constant* C2) {
return get(Instruction::FRem, C1, C2);
}
Constant* ConstantExpr::getAnd(Constant* C1, Constant* C2) {
return get(Instruction::And, C1, C2);
}
Constant* ConstantExpr::getOr(Constant* C1, Constant* C2) {
return get(Instruction::Or, C1, C2);
}
Constant* ConstantExpr::getXor(Constant* C1, Constant* C2) {
return get(Instruction::Xor, C1, C2);
}
Constant* ConstantExpr::getShl(Constant* C1, Constant* C2) {
return get(Instruction::Shl, C1, C2);
}
Constant* ConstantExpr::getLShr(Constant* C1, Constant* C2) {
return get(Instruction::LShr, C1, C2);
}
Constant* ConstantExpr::getAShr(Constant* C1, Constant* C2) {
return get(Instruction::AShr, C1, C2);
}
// destroyConstant - Remove the constant from the constant table...
//
void ConstantExpr::destroyConstant() {
// Implicitly locked.
LLVMContextImpl *pImpl = getType()->getContext().pImpl;
pImpl->ExprConstants.remove(this);
destroyConstantImpl();
}
const char *ConstantExpr::getOpcodeName() const {
return Instruction::getOpcodeName(getOpcode());
}
//===----------------------------------------------------------------------===//
// replaceUsesOfWithOnConstant implementations
/// replaceUsesOfWithOnConstant - Update this constant array to change uses of
/// 'From' to be uses of 'To'. This must update the uniquing data structures
/// etc.
///
/// Note that we intentionally replace all uses of From with To here. Consider
/// a large array that uses 'From' 1000 times. By handling this case all here,
/// ConstantArray::replaceUsesOfWithOnConstant is only invoked once, and that
/// single invocation handles all 1000 uses. Handling them one at a time would
/// work, but would be really slow because it would have to unique each updated
/// array instance.
void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To,
Use *U) {
assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
Constant *ToC = cast<Constant>(To);
LLVMContext &Context = getType()->getContext();
LLVMContextImpl *pImpl = Context.pImpl;
std::pair<LLVMContextImpl::ArrayConstantsTy::MapKey, ConstantArray*> Lookup;
Lookup.first.first = getType();
Lookup.second = this;
std::vector<Constant*> &Values = Lookup.first.second;
Values.reserve(getNumOperands()); // Build replacement array.
// Fill values with the modified operands of the constant array. Also,
// compute whether this turns into an all-zeros array.
bool isAllZeros = false;
unsigned NumUpdated = 0;
if (!ToC->isNullValue()) {
for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
Constant *Val = cast<Constant>(O->get());
if (Val == From) {
Val = ToC;
++NumUpdated;
}
Values.push_back(Val);
}
} else {
isAllZeros = true;
for (Use *O = OperandList, *E = OperandList+getNumOperands();O != E; ++O) {
Constant *Val = cast<Constant>(O->get());
if (Val == From) {
Val = ToC;
++NumUpdated;
}
Values.push_back(Val);
if (isAllZeros) isAllZeros = Val->isNullValue();
}
}
Constant *Replacement = 0;
if (isAllZeros) {
Replacement = ConstantAggregateZero::get(getType());
} else {
// Check to see if we have this array type already.
bool Exists;
LLVMContextImpl::ArrayConstantsTy::MapTy::iterator I =
pImpl->ArrayConstants.InsertOrGetItem(Lookup, Exists);
if (Exists) {
Replacement = I->second;
} else {
// Okay, the new shape doesn't exist in the system yet. Instead of
// creating a new constant array, inserting it, replaceallusesof'ing the
// old with the new, then deleting the old... just update the current one
// in place!
pImpl->ArrayConstants.MoveConstantToNewSlot(this, I);
// Update to the new value. Optimize for the case when we have a single
// operand that we're changing, but handle bulk updates efficiently.
if (NumUpdated == 1) {
unsigned OperandToUpdate = U - OperandList;
assert(getOperand(OperandToUpdate) == From &&
"ReplaceAllUsesWith broken!");
setOperand(OperandToUpdate, ToC);
} else {
for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
if (getOperand(i) == From)
setOperand(i, ToC);
}
return;
}
}
// Otherwise, I do need to replace this with an existing value.
assert(Replacement != this && "I didn't contain From!");
// Everyone using this now uses the replacement.
uncheckedReplaceAllUsesWith(Replacement);
// Delete the old constant!
destroyConstant();
}
void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To,
Use *U) {
assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
Constant *ToC = cast<Constant>(To);
unsigned OperandToUpdate = U-OperandList;
assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!");
std::pair<LLVMContextImpl::StructConstantsTy::MapKey, ConstantStruct*> Lookup;
Lookup.first.first = getType();
Lookup.second = this;
std::vector<Constant*> &Values = Lookup.first.second;
Values.reserve(getNumOperands()); // Build replacement struct.
// Fill values with the modified operands of the constant struct. Also,
// compute whether this turns into an all-zeros struct.
bool isAllZeros = false;
if (!ToC->isNullValue()) {
for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O)
Values.push_back(cast<Constant>(O->get()));
} else {
isAllZeros = true;
for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
Constant *Val = cast<Constant>(O->get());
Values.push_back(Val);
if (isAllZeros) isAllZeros = Val->isNullValue();
}
}
Values[OperandToUpdate] = ToC;
LLVMContext &Context = getType()->getContext();
LLVMContextImpl *pImpl = Context.pImpl;
Constant *Replacement = 0;
if (isAllZeros) {
Replacement = ConstantAggregateZero::get(getType());
} else {
// Check to see if we have this array type already.
bool Exists;
LLVMContextImpl::StructConstantsTy::MapTy::iterator I =
pImpl->StructConstants.InsertOrGetItem(Lookup, Exists);
if (Exists) {
Replacement = I->second;
} else {
// Okay, the new shape doesn't exist in the system yet. Instead of
// creating a new constant struct, inserting it, replaceallusesof'ing the
// old with the new, then deleting the old... just update the current one
// in place!
pImpl->StructConstants.MoveConstantToNewSlot(this, I);
// Update to the new value.
setOperand(OperandToUpdate, ToC);
return;
}
}
assert(Replacement != this && "I didn't contain From!");
// Everyone using this now uses the replacement.
uncheckedReplaceAllUsesWith(Replacement);
// Delete the old constant!
destroyConstant();
}
void ConstantVector::replaceUsesOfWithOnConstant(Value *From, Value *To,
Use *U) {
assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
std::vector<Constant*> Values;
Values.reserve(getNumOperands()); // Build replacement array...
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
Constant *Val = getOperand(i);
if (Val == From) Val = cast<Constant>(To);
Values.push_back(Val);
}
Constant *Replacement = get(getType(), Values);
assert(Replacement != this && "I didn't contain From!");
// Everyone using this now uses the replacement.
uncheckedReplaceAllUsesWith(Replacement);
// Delete the old constant!
destroyConstant();
}
void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV,
Use *U) {
assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
Constant *To = cast<Constant>(ToV);
Constant *Replacement = 0;
if (getOpcode() == Instruction::GetElementPtr) {
SmallVector<Constant*, 8> Indices;
Constant *Pointer = getOperand(0);
Indices.reserve(getNumOperands()-1);
if (Pointer == From) Pointer = To;
for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Constant *Val = getOperand(i);
if (Val == From) Val = To;
Indices.push_back(Val);
}
Replacement = ConstantExpr::getGetElementPtr(Pointer,
&Indices[0], Indices.size());
} else if (getOpcode() == Instruction::ExtractValue) {
Constant *Agg = getOperand(0);
if (Agg == From) Agg = To;
const SmallVector<unsigned, 4> &Indices = getIndices();
Replacement = ConstantExpr::getExtractValue(Agg,
&Indices[0], Indices.size());
} else if (getOpcode() == Instruction::InsertValue) {
Constant *Agg = getOperand(0);
Constant *Val = getOperand(1);
if (Agg == From) Agg = To;
if (Val == From) Val = To;
const SmallVector<unsigned, 4> &Indices = getIndices();
Replacement = ConstantExpr::getInsertValue(Agg, Val,
&Indices[0], Indices.size());
} else if (isCast()) {
assert(getOperand(0) == From && "Cast only has one use!");
Replacement = ConstantExpr::getCast(getOpcode(), To, getType());
} else if (getOpcode() == Instruction::Select) {
Constant *C1 = getOperand(0);
Constant *C2 = getOperand(1);
Constant *C3 = getOperand(2);
if (C1 == From) C1 = To;
if (C2 == From) C2 = To;
if (C3 == From) C3 = To;
Replacement = ConstantExpr::getSelect(C1, C2, C3);
} else if (getOpcode() == Instruction::ExtractElement) {
Constant *C1 = getOperand(0);
Constant *C2 = getOperand(1);
if (C1 == From) C1 = To;
if (C2 == From) C2 = To;
Replacement = ConstantExpr::getExtractElement(C1, C2);
} else if (getOpcode() == Instruction::InsertElement) {
Constant *C1 = getOperand(0);
Constant *C2 = getOperand(1);
Constant *C3 = getOperand(1);
if (C1 == From) C1 = To;
if (C2 == From) C2 = To;
if (C3 == From) C3 = To;
Replacement = ConstantExpr::getInsertElement(C1, C2, C3);
} else if (getOpcode() == Instruction::ShuffleVector) {
Constant *C1 = getOperand(0);
Constant *C2 = getOperand(1);
Constant *C3 = getOperand(2);
if (C1 == From) C1 = To;
if (C2 == From) C2 = To;
if (C3 == From) C3 = To;
Replacement = ConstantExpr::getShuffleVector(C1, C2, C3);
} else if (isCompare()) {
Constant *C1 = getOperand(0);
Constant *C2 = getOperand(1);
if (C1 == From) C1 = To;
if (C2 == From) C2 = To;
if (getOpcode() == Instruction::ICmp)
Replacement = ConstantExpr::getICmp(getPredicate(), C1, C2);
else {
assert(getOpcode() == Instruction::FCmp);
Replacement = ConstantExpr::getFCmp(getPredicate(), C1, C2);
}
} else if (getNumOperands() == 2) {
Constant *C1 = getOperand(0);
Constant *C2 = getOperand(1);
if (C1 == From) C1 = To;
if (C2 == From) C2 = To;
Replacement = ConstantExpr::get(getOpcode(), C1, C2, SubclassData);
} else {
llvm_unreachable("Unknown ConstantExpr type!");
return;
}
assert(Replacement != this && "I didn't contain From!");
// Everyone using this now uses the replacement.
uncheckedReplaceAllUsesWith(Replacement);
// Delete the old constant!
destroyConstant();
}