llvm-6502/test/CodeGen/X86/avx-logic.ll
Sanjay Patel 62dd074fe9 use update_llc_test_checks.py to tighten checking in these tests
1. There were no CHECK-LABELs, so we could match instructions from the wrong function.
2. The use of zero operands meant multiple xor instructions could match some CHECKs.
3. The test was over-specified to need a Sandybridge CPU and Darwin triple.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@233198 91177308-0d34-0410-b5e6-96231b3b80d8
2015-03-25 17:34:11 +00:00

272 lines
9.9 KiB
LLVM

; RUN: llc < %s -mtriple=x86_64-unknown-unknown -mattr=+avx | FileCheck %s
define <4 x double> @andpd256(<4 x double> %y, <4 x double> %x) nounwind uwtable readnone ssp {
; CHECK-LABEL: andpd256:
; CHECK: # BB#0: # %entry
; CHECK-NEXT: vandpd %ymm0, %ymm1, %ymm0
; CHECK-NEXT: vxorpd %ymm1, %ymm1, %ymm1
; CHECK-NEXT: vaddpd %ymm1, %ymm0, %ymm0
; CHECK-NEXT: retq
entry:
%0 = bitcast <4 x double> %x to <4 x i64>
%1 = bitcast <4 x double> %y to <4 x i64>
%and.i = and <4 x i64> %0, %1
%2 = bitcast <4 x i64> %and.i to <4 x double>
; add forces execution domain
%3 = fadd <4 x double> %2, <double 0x0, double 0x0, double 0x0, double 0x0>
ret <4 x double> %3
}
define <4 x double> @andpd256fold(<4 x double> %y) nounwind uwtable readnone ssp {
; CHECK-LABEL: andpd256fold:
; CHECK: # BB#0: # %entry
; CHECK-NEXT: vandpd {{.*}}(%rip), %ymm0, %ymm0
; CHECK-NEXT: vxorpd %ymm1, %ymm1, %ymm1
; CHECK-NEXT: vaddpd %ymm1, %ymm0, %ymm0
; CHECK-NEXT: retq
entry:
%0 = bitcast <4 x double> %y to <4 x i64>
%and.i = and <4 x i64> %0, <i64 4616752568008179712, i64 4614838538166547251, i64 4612361558371493478, i64 4608083138725491507>
%1 = bitcast <4 x i64> %and.i to <4 x double>
; add forces execution domain
%2 = fadd <4 x double> %1, <double 0x0, double 0x0, double 0x0, double 0x0>
ret <4 x double> %2
}
define <8 x float> @andps256(<8 x float> %y, <8 x float> %x) nounwind uwtable readnone ssp {
; CHECK-LABEL: andps256:
; CHECK: # BB#0: # %entry
; CHECK-NEXT: vandps %ymm0, %ymm1, %ymm0
; CHECK-NEXT: retq
entry:
%0 = bitcast <8 x float> %x to <8 x i32>
%1 = bitcast <8 x float> %y to <8 x i32>
%and.i = and <8 x i32> %0, %1
%2 = bitcast <8 x i32> %and.i to <8 x float>
ret <8 x float> %2
}
define <8 x float> @andps256fold(<8 x float> %y) nounwind uwtable readnone ssp {
; CHECK-LABEL: andps256fold:
; CHECK: # BB#0: # %entry
; CHECK-NEXT: vandps {{.*}}(%rip), %ymm0, %ymm0
; CHECK-NEXT: retq
entry:
%0 = bitcast <8 x float> %y to <8 x i32>
%and.i = and <8 x i32> %0, <i32 1083179008, i32 1079613850, i32 1075000115, i32 1067030938, i32 1083179008, i32 1079613850, i32 1075000115, i32 1067030938>
%1 = bitcast <8 x i32> %and.i to <8 x float>
ret <8 x float> %1
}
define <4 x double> @xorpd256(<4 x double> %y, <4 x double> %x) nounwind uwtable readnone ssp {
; CHECK-LABEL: xorpd256:
; CHECK: # BB#0: # %entry
; CHECK-NEXT: vxorpd %ymm0, %ymm1, %ymm0
; CHECK-NEXT: vxorpd %ymm1, %ymm1, %ymm1
; CHECK-NEXT: vaddpd %ymm1, %ymm0, %ymm0
; CHECK-NEXT: retq
entry:
%0 = bitcast <4 x double> %x to <4 x i64>
%1 = bitcast <4 x double> %y to <4 x i64>
%xor.i = xor <4 x i64> %0, %1
%2 = bitcast <4 x i64> %xor.i to <4 x double>
; add forces execution domain
%3 = fadd <4 x double> %2, <double 0x0, double 0x0, double 0x0, double 0x0>
ret <4 x double> %3
}
define <4 x double> @xorpd256fold(<4 x double> %y) nounwind uwtable readnone ssp {
; CHECK-LABEL: xorpd256fold:
; CHECK: # BB#0: # %entry
; CHECK-NEXT: vxorpd {{.*}}(%rip), %ymm0, %ymm0
; CHECK-NEXT: vxorpd %ymm1, %ymm1, %ymm1
; CHECK-NEXT: vaddpd %ymm1, %ymm0, %ymm0
; CHECK-NEXT: retq
entry:
%0 = bitcast <4 x double> %y to <4 x i64>
%xor.i = xor <4 x i64> %0, <i64 4616752568008179712, i64 4614838538166547251, i64 4612361558371493478, i64 4608083138725491507>
%1 = bitcast <4 x i64> %xor.i to <4 x double>
; add forces execution domain
%2 = fadd <4 x double> %1, <double 0x0, double 0x0, double 0x0, double 0x0>
ret <4 x double> %2
}
define <8 x float> @xorps256(<8 x float> %y, <8 x float> %x) nounwind uwtable readnone ssp {
; CHECK-LABEL: xorps256:
; CHECK: # BB#0: # %entry
; CHECK-NEXT: vxorps %ymm0, %ymm1, %ymm0
; CHECK-NEXT: retq
entry:
%0 = bitcast <8 x float> %x to <8 x i32>
%1 = bitcast <8 x float> %y to <8 x i32>
%xor.i = xor <8 x i32> %0, %1
%2 = bitcast <8 x i32> %xor.i to <8 x float>
ret <8 x float> %2
}
define <8 x float> @xorps256fold(<8 x float> %y) nounwind uwtable readnone ssp {
; CHECK-LABEL: xorps256fold:
; CHECK: # BB#0: # %entry
; CHECK-NEXT: vxorps {{.*}}(%rip), %ymm0, %ymm0
; CHECK-NEXT: retq
entry:
%0 = bitcast <8 x float> %y to <8 x i32>
%xor.i = xor <8 x i32> %0, <i32 1083179008, i32 1079613850, i32 1075000115, i32 1067030938, i32 1083179008, i32 1079613850, i32 1075000115, i32 1067030938>
%1 = bitcast <8 x i32> %xor.i to <8 x float>
ret <8 x float> %1
}
define <4 x double> @orpd256(<4 x double> %y, <4 x double> %x) nounwind uwtable readnone ssp {
; CHECK-LABEL: orpd256:
; CHECK: # BB#0: # %entry
; CHECK-NEXT: vorpd %ymm0, %ymm1, %ymm0
; CHECK-NEXT: vxorpd %ymm1, %ymm1, %ymm1
; CHECK-NEXT: vaddpd %ymm1, %ymm0, %ymm0
; CHECK-NEXT: retq
entry:
%0 = bitcast <4 x double> %x to <4 x i64>
%1 = bitcast <4 x double> %y to <4 x i64>
%or.i = or <4 x i64> %0, %1
%2 = bitcast <4 x i64> %or.i to <4 x double>
; add forces execution domain
%3 = fadd <4 x double> %2, <double 0x0, double 0x0, double 0x0, double 0x0>
ret <4 x double> %3
}
define <4 x double> @orpd256fold(<4 x double> %y) nounwind uwtable readnone ssp {
; CHECK-LABEL: orpd256fold:
; CHECK: # BB#0: # %entry
; CHECK-NEXT: vorpd {{.*}}(%rip), %ymm0, %ymm0
; CHECK-NEXT: vxorpd %ymm1, %ymm1, %ymm1
; CHECK-NEXT: vaddpd %ymm1, %ymm0, %ymm0
; CHECK-NEXT: retq
entry:
%0 = bitcast <4 x double> %y to <4 x i64>
%or.i = or <4 x i64> %0, <i64 4616752568008179712, i64 4614838538166547251, i64 4612361558371493478, i64 4608083138725491507>
%1 = bitcast <4 x i64> %or.i to <4 x double>
; add forces execution domain
%2 = fadd <4 x double> %1, <double 0x0, double 0x0, double 0x0, double 0x0>
ret <4 x double> %2
}
define <8 x float> @orps256(<8 x float> %y, <8 x float> %x) nounwind uwtable readnone ssp {
; CHECK-LABEL: orps256:
; CHECK: # BB#0: # %entry
; CHECK-NEXT: vorps %ymm0, %ymm1, %ymm0
; CHECK-NEXT: retq
entry:
%0 = bitcast <8 x float> %x to <8 x i32>
%1 = bitcast <8 x float> %y to <8 x i32>
%or.i = or <8 x i32> %0, %1
%2 = bitcast <8 x i32> %or.i to <8 x float>
ret <8 x float> %2
}
define <8 x float> @orps256fold(<8 x float> %y) nounwind uwtable readnone ssp {
; CHECK-LABEL: orps256fold:
; CHECK: # BB#0: # %entry
; CHECK-NEXT: vorps {{.*}}(%rip), %ymm0, %ymm0
; CHECK-NEXT: retq
entry:
%0 = bitcast <8 x float> %y to <8 x i32>
%or.i = or <8 x i32> %0, <i32 1083179008, i32 1079613850, i32 1075000115, i32 1067030938, i32 1083179008, i32 1079613850, i32 1075000115, i32 1067030938>
%1 = bitcast <8 x i32> %or.i to <8 x float>
ret <8 x float> %1
}
define <4 x double> @andnotpd256(<4 x double> %y, <4 x double> %x) nounwind uwtable readnone ssp {
; CHECK-LABEL: andnotpd256:
; CHECK: # BB#0: # %entry
; CHECK-NEXT: vandnpd %ymm0, %ymm1, %ymm0
; CHECK-NEXT: vxorpd %ymm1, %ymm1, %ymm1
; CHECK-NEXT: vaddpd %ymm1, %ymm0, %ymm0
; CHECK-NEXT: retq
entry:
%0 = bitcast <4 x double> %x to <4 x i64>
%neg.i = xor <4 x i64> %0, <i64 -1, i64 -1, i64 -1, i64 -1>
%1 = bitcast <4 x double> %y to <4 x i64>
%and.i = and <4 x i64> %1, %neg.i
%2 = bitcast <4 x i64> %and.i to <4 x double>
; add forces execution domain
%3 = fadd <4 x double> %2, <double 0x0, double 0x0, double 0x0, double 0x0>
ret <4 x double> %3
}
define <4 x double> @andnotpd256fold(<4 x double> %y, <4 x double>* nocapture %x) nounwind uwtable readonly ssp {
; CHECK-LABEL: andnotpd256fold:
; CHECK: # BB#0: # %entry
; CHECK-NEXT: vandnpd (%rdi), %ymm0, %ymm0
; CHECK-NEXT: vxorpd %ymm1, %ymm1, %ymm1
; CHECK-NEXT: vaddpd %ymm1, %ymm0, %ymm0
; CHECK-NEXT: retq
entry:
%tmp2 = load <4 x double>, <4 x double>* %x, align 32
%0 = bitcast <4 x double> %y to <4 x i64>
%neg.i = xor <4 x i64> %0, <i64 -1, i64 -1, i64 -1, i64 -1>
%1 = bitcast <4 x double> %tmp2 to <4 x i64>
%and.i = and <4 x i64> %1, %neg.i
%2 = bitcast <4 x i64> %and.i to <4 x double>
; add forces execution domain
%3 = fadd <4 x double> %2, <double 0x0, double 0x0, double 0x0, double 0x0>
ret <4 x double> %3
}
define <8 x float> @andnotps256(<8 x float> %y, <8 x float> %x) nounwind uwtable readnone ssp {
; CHECK-LABEL: andnotps256:
; CHECK: # BB#0: # %entry
; CHECK-NEXT: vandnps %ymm0, %ymm1, %ymm0
; CHECK-NEXT: retq
entry:
%0 = bitcast <8 x float> %x to <8 x i32>
%neg.i = xor <8 x i32> %0, <i32 -1, i32 -1, i32 -1, i32 -1, i32 -1, i32 -1, i32 -1, i32 -1>
%1 = bitcast <8 x float> %y to <8 x i32>
%and.i = and <8 x i32> %1, %neg.i
%2 = bitcast <8 x i32> %and.i to <8 x float>
ret <8 x float> %2
}
define <8 x float> @andnotps256fold(<8 x float> %y, <8 x float>* nocapture %x) nounwind uwtable readonly ssp {
; CHECK-LABEL: andnotps256fold:
; CHECK: # BB#0: # %entry
; CHECK-NEXT: vandnps (%rdi), %ymm0, %ymm0
; CHECK-NEXT: retq
entry:
%tmp2 = load <8 x float>, <8 x float>* %x, align 32
%0 = bitcast <8 x float> %y to <8 x i32>
%neg.i = xor <8 x i32> %0, <i32 -1, i32 -1, i32 -1, i32 -1, i32 -1, i32 -1, i32 -1, i32 -1>
%1 = bitcast <8 x float> %tmp2 to <8 x i32>
%and.i = and <8 x i32> %1, %neg.i
%2 = bitcast <8 x i32> %and.i to <8 x float>
ret <8 x float> %2
}
;;; Test that basic 2 x i64 logic use the integer version on AVX
define <2 x i64> @vpandn(<2 x i64> %a, <2 x i64> %b) nounwind uwtable readnone ssp {
; CHECK-LABEL: vpandn:
; CHECK: # BB#0: # %entry
; CHECK-NEXT: vpaddq {{.*}}(%rip), %xmm0, %xmm1
; CHECK-NEXT: vpandn %xmm0, %xmm1, %xmm0
; CHECK-NEXT: retq
entry:
; Force the execution domain with an add.
%a2 = add <2 x i64> %a, <i64 1, i64 1>
%y = xor <2 x i64> %a2, <i64 -1, i64 -1>
%x = and <2 x i64> %a, %y
ret <2 x i64> %x
}
define <2 x i64> @vpand(<2 x i64> %a, <2 x i64> %b) nounwind uwtable readnone ssp {
; CHECK-LABEL: vpand:
; CHECK: # BB#0: # %entry
; CHECK-NEXT: vpaddq {{.*}}(%rip), %xmm0, %xmm0
; CHECK-NEXT: vpand %xmm1, %xmm0, %xmm0
; CHECK-NEXT: retq
entry:
; Force the execution domain with an add.
%a2 = add <2 x i64> %a, <i64 1, i64 1>
%x = and <2 x i64> %a2, %b
ret <2 x i64> %x
}