llvm-6502/lib/VMCore/BasicBlock.cpp
Chris Lattner f8dfef7437 The (negative) offset from a SymbolTableListTraits-using ilist to its container
object is always constant.  As such, evaluate it at compile time instead of storing
it as an ivar in SymbolTableListTraits.  This shrinks every SymbolTableListTraits
ilist by a word, shrinking BasicBlock from 44->40 bytes, Function from 96->88 bytes,
and Module from 60->52 bytes.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@36189 91177308-0d34-0410-b5e6-96231b3b80d8
2007-04-17 04:04:14 +00:00

290 lines
10 KiB
C++

//===-- BasicBlock.cpp - Implement BasicBlock related methods -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the BasicBlock class for the VMCore library.
//
//===----------------------------------------------------------------------===//
#include "llvm/BasicBlock.h"
#include "llvm/Constants.h"
#include "llvm/Instructions.h"
#include "llvm/Type.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/LeakDetector.h"
#include "llvm/Support/Compiler.h"
#include "SymbolTableListTraitsImpl.h"
#include <algorithm>
using namespace llvm;
inline ValueSymbolTable *
ilist_traits<Instruction>::getSymTab(BasicBlock *BB) {
if (BB)
if (Function *F = BB->getParent())
return &F->getValueSymbolTable();
return 0;
}
namespace {
/// DummyInst - An instance of this class is used to mark the end of the
/// instruction list. This is not a real instruction.
struct VISIBILITY_HIDDEN DummyInst : public Instruction {
DummyInst() : Instruction(Type::VoidTy, OtherOpsEnd, 0, 0) {
// This should not be garbage monitored.
LeakDetector::removeGarbageObject(this);
}
virtual Instruction *clone() const {
assert(0 && "Cannot clone EOL");abort();
return 0;
}
virtual const char *getOpcodeName() const { return "*end-of-list-inst*"; }
// Methods for support type inquiry through isa, cast, and dyn_cast...
static inline bool classof(const DummyInst *) { return true; }
static inline bool classof(const Instruction *I) {
return I->getOpcode() == OtherOpsEnd;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
}
Instruction *ilist_traits<Instruction>::createSentinel() {
return new DummyInst();
}
iplist<Instruction> &ilist_traits<Instruction>::getList(BasicBlock *BB) {
return BB->getInstList();
}
// Explicit instantiation of SymbolTableListTraits since some of the methods
// are not in the public header file...
template class SymbolTableListTraits<Instruction, BasicBlock>;
BasicBlock::BasicBlock(const std::string &Name, Function *NewParent,
BasicBlock *InsertBefore)
: Value(Type::LabelTy, Value::BasicBlockVal), Parent(0) {
// Make sure that we get added to a function
LeakDetector::addGarbageObject(this);
if (InsertBefore) {
assert(NewParent &&
"Cannot insert block before another block with no function!");
NewParent->getBasicBlockList().insert(InsertBefore, this);
} else if (NewParent) {
NewParent->getBasicBlockList().push_back(this);
}
setName(Name);
}
BasicBlock::~BasicBlock() {
assert(getParent() == 0 && "BasicBlock still linked into the program!");
dropAllReferences();
InstList.clear();
}
void BasicBlock::setParent(Function *parent) {
if (getParent())
LeakDetector::addGarbageObject(this);
// Set Parent=parent, updating instruction symtab entries as appropriate.
InstList.setSymTabObject(&Parent, parent);
if (getParent())
LeakDetector::removeGarbageObject(this);
}
void BasicBlock::removeFromParent() {
getParent()->getBasicBlockList().remove(this);
}
void BasicBlock::eraseFromParent() {
getParent()->getBasicBlockList().erase(this);
}
/// moveBefore - Unlink this basic block from its current function and
/// insert it into the function that MovePos lives in, right before MovePos.
void BasicBlock::moveBefore(BasicBlock *MovePos) {
MovePos->getParent()->getBasicBlockList().splice(MovePos,
getParent()->getBasicBlockList(), this);
}
/// moveAfter - Unlink this basic block from its current function and
/// insert it into the function that MovePos lives in, right after MovePos.
void BasicBlock::moveAfter(BasicBlock *MovePos) {
Function::iterator I = MovePos;
MovePos->getParent()->getBasicBlockList().splice(++I,
getParent()->getBasicBlockList(), this);
}
TerminatorInst *BasicBlock::getTerminator() {
if (InstList.empty()) return 0;
return dyn_cast<TerminatorInst>(&InstList.back());
}
const TerminatorInst *const BasicBlock::getTerminator() const {
if (InstList.empty()) return 0;
return dyn_cast<TerminatorInst>(&InstList.back());
}
Instruction* BasicBlock::getFirstNonPHI()
{
BasicBlock::iterator i = begin();
// All valid basic blocks should have a terminator,
// which is not a PHINode. If we have invalid basic
// block we'll get assert when dereferencing past-the-end
// iterator.
while (isa<PHINode>(i)) ++i;
return &*i;
}
void BasicBlock::dropAllReferences() {
for(iterator I = begin(), E = end(); I != E; ++I)
I->dropAllReferences();
}
/// getSinglePredecessor - If this basic block has a single predecessor block,
/// return the block, otherwise return a null pointer.
BasicBlock *BasicBlock::getSinglePredecessor() {
pred_iterator PI = pred_begin(this), E = pred_end(this);
if (PI == E) return 0; // No preds.
BasicBlock *ThePred = *PI;
++PI;
return (PI == E) ? ThePred : 0 /*multiple preds*/;
}
/// removePredecessor - This method is used to notify a BasicBlock that the
/// specified Predecessor of the block is no longer able to reach it. This is
/// actually not used to update the Predecessor list, but is actually used to
/// update the PHI nodes that reside in the block. Note that this should be
/// called while the predecessor still refers to this block.
///
void BasicBlock::removePredecessor(BasicBlock *Pred,
bool DontDeleteUselessPHIs) {
assert((hasNUsesOrMore(16)||// Reduce cost of this assertion for complex CFGs.
find(pred_begin(this), pred_end(this), Pred) != pred_end(this)) &&
"removePredecessor: BB is not a predecessor!");
if (InstList.empty()) return;
PHINode *APN = dyn_cast<PHINode>(&front());
if (!APN) return; // Quick exit.
// If there are exactly two predecessors, then we want to nuke the PHI nodes
// altogether. However, we cannot do this, if this in this case:
//
// Loop:
// %x = phi [X, Loop]
// %x2 = add %x, 1 ;; This would become %x2 = add %x2, 1
// br Loop ;; %x2 does not dominate all uses
//
// This is because the PHI node input is actually taken from the predecessor
// basic block. The only case this can happen is with a self loop, so we
// check for this case explicitly now.
//
unsigned max_idx = APN->getNumIncomingValues();
assert(max_idx != 0 && "PHI Node in block with 0 predecessors!?!?!");
if (max_idx == 2) {
BasicBlock *Other = APN->getIncomingBlock(APN->getIncomingBlock(0) == Pred);
// Disable PHI elimination!
if (this == Other) max_idx = 3;
}
// <= Two predecessors BEFORE I remove one?
if (max_idx <= 2 && !DontDeleteUselessPHIs) {
// Yup, loop through and nuke the PHI nodes
while (PHINode *PN = dyn_cast<PHINode>(&front())) {
// Remove the predecessor first.
PN->removeIncomingValue(Pred, !DontDeleteUselessPHIs);
// If the PHI _HAD_ two uses, replace PHI node with its now *single* value
if (max_idx == 2) {
if (PN->getOperand(0) != PN)
PN->replaceAllUsesWith(PN->getOperand(0));
else
// We are left with an infinite loop with no entries: kill the PHI.
PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
getInstList().pop_front(); // Remove the PHI node
}
// If the PHI node already only had one entry, it got deleted by
// removeIncomingValue.
}
} else {
// Okay, now we know that we need to remove predecessor #pred_idx from all
// PHI nodes. Iterate over each PHI node fixing them up
PHINode *PN;
for (iterator II = begin(); (PN = dyn_cast<PHINode>(II)); ) {
++II;
PN->removeIncomingValue(Pred, false);
// If all incoming values to the Phi are the same, we can replace the Phi
// with that value.
Value* PNV = 0;
if (!DontDeleteUselessPHIs && (PNV = PN->hasConstantValue())) {
PN->replaceAllUsesWith(PNV);
PN->eraseFromParent();
}
}
}
}
/// splitBasicBlock - This splits a basic block into two at the specified
/// instruction. Note that all instructions BEFORE the specified iterator stay
/// as part of the original basic block, an unconditional branch is added to
/// the new BB, and the rest of the instructions in the BB are moved to the new
/// BB, including the old terminator. This invalidates the iterator.
///
/// Note that this only works on well formed basic blocks (must have a
/// terminator), and 'I' must not be the end of instruction list (which would
/// cause a degenerate basic block to be formed, having a terminator inside of
/// the basic block).
///
BasicBlock *BasicBlock::splitBasicBlock(iterator I, const std::string &BBName) {
assert(getTerminator() && "Can't use splitBasicBlock on degenerate BB!");
assert(I != InstList.end() &&
"Trying to get me to create degenerate basic block!");
BasicBlock *New = new BasicBlock(BBName, getParent(), getNext());
// Move all of the specified instructions from the original basic block into
// the new basic block.
New->getInstList().splice(New->end(), this->getInstList(), I, end());
// Add a branch instruction to the newly formed basic block.
new BranchInst(New, this);
// Now we must loop through all of the successors of the New block (which
// _were_ the successors of the 'this' block), and update any PHI nodes in
// successors. If there were PHI nodes in the successors, then they need to
// know that incoming branches will be from New, not from Old.
//
for (succ_iterator I = succ_begin(New), E = succ_end(New); I != E; ++I) {
// Loop over any phi nodes in the basic block, updating the BB field of
// incoming values...
BasicBlock *Successor = *I;
PHINode *PN;
for (BasicBlock::iterator II = Successor->begin();
(PN = dyn_cast<PHINode>(II)); ++II) {
int IDX = PN->getBasicBlockIndex(this);
while (IDX != -1) {
PN->setIncomingBlock((unsigned)IDX, New);
IDX = PN->getBasicBlockIndex(this);
}
}
}
return New;
}