llvm-6502/lib/Target/MSIL/MSILWriter.cpp
Chris Lattner 31c2ec3afb add this back
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@36892 91177308-0d34-0410-b5e6-96231b3b80d8
2007-05-06 20:31:17 +00:00

1658 lines
51 KiB
C++

//===-- MSILWriter.cpp - Library for converting LLVM code to MSIL ---------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Roman Samoilov and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This library converts LLVM code to MSIL code.
//
//===----------------------------------------------------------------------===//
#include "MSILWriter.h"
#include "llvm/CallingConv.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Intrinsics.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/ParameterAttributes.h"
#include "llvm/TypeSymbolTable.h"
#include "llvm/Analysis/ConstantsScanner.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/InstVisitor.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/ADT/StringExtras.h"
namespace {
// TargetMachine for the MSIL
struct VISIBILITY_HIDDEN MSILTarget : public TargetMachine {
const TargetData DataLayout; // Calculates type size & alignment
MSILTarget(const Module &M, const std::string &FS)
: DataLayout(&M) {}
virtual bool WantsWholeFile() const { return true; }
virtual bool addPassesToEmitWholeFile(PassManager &PM, std::ostream &Out,
CodeGenFileType FileType, bool Fast);
// This class always works, but shouldn't be the default in most cases.
static unsigned getModuleMatchQuality(const Module &M) { return 1; }
virtual const TargetData *getTargetData() const { return &DataLayout; }
};
}
RegisterTarget<MSILTarget> X("msil", " MSIL backend");
bool MSILModule::runOnModule(Module &M) {
ModulePtr = &M;
TD = &getAnalysis<TargetData>();
bool Changed = false;
// Find named types.
TypeSymbolTable& Table = M.getTypeSymbolTable();
std::set<const Type *> Types = getAnalysis<FindUsedTypes>().getTypes();
for (TypeSymbolTable::iterator I = Table.begin(), E = Table.end(); I!=E; ) {
if (!isa<StructType>(I->second) && !isa<OpaqueType>(I->second))
Table.remove(I++);
else {
std::set<const Type *>::iterator T = Types.find(I->second);
if (T==Types.end())
Table.remove(I++);
else {
Types.erase(T);
++I;
}
}
}
// Find unnamed types.
unsigned RenameCounter = 0;
for (std::set<const Type *>::const_iterator I = Types.begin(),
E = Types.end(); I!=E; ++I)
if (const StructType *STy = dyn_cast<StructType>(*I)) {
while (ModulePtr->addTypeName("unnamed$"+utostr(RenameCounter), STy))
++RenameCounter;
Changed = true;
}
// Pointer for FunctionPass.
UsedTypes = &getAnalysis<FindUsedTypes>().getTypes();
return Changed;
}
char MSILModule::ID = 0;
char MSILWriter::ID = 0;
bool MSILWriter::runOnFunction(Function &F) {
if (F.isDeclaration()) return false;
LInfo = &getAnalysis<LoopInfo>();
printFunction(F);
return false;
}
bool MSILWriter::doInitialization(Module &M) {
ModulePtr = &M;
Mang = new Mangler(M);
Out << ".assembly extern mscorlib {}\n";
Out << ".assembly MSIL {}\n\n";
Out << "// External\n";
printExternals();
Out << "// Declarations\n";
printDeclarations(M.getTypeSymbolTable());
Out << "// Definitions\n";
printGlobalVariables();
Out << "// Startup code\n";
printModuleStartup();
return false;
}
bool MSILWriter::doFinalization(Module &M) {
delete Mang;
return false;
}
void MSILWriter::printModuleStartup() {
Out <<
".method static public int32 $MSIL_Startup() {\n"
"\t.entrypoint\n"
"\t.locals (native int i)\n"
"\t.locals (native int argc)\n"
"\t.locals (native int ptr)\n"
"\t.locals (void* argv)\n"
"\t.locals (string[] args)\n"
"\tcall\tstring[] [mscorlib]System.Environment::GetCommandLineArgs()\n"
"\tdup\n"
"\tstloc\targs\n"
"\tldlen\n"
"\tconv.i4\n"
"\tdup\n"
"\tstloc\targc\n";
printPtrLoad(TD->getPointerSize());
Out <<
"\tmul\n"
"\tlocalloc\n"
"\tstloc\targv\n"
"\tldc.i4.0\n"
"\tstloc\ti\n"
"L_01:\n"
"\tldloc\ti\n"
"\tldloc\targc\n"
"\tceq\n"
"\tbrtrue\tL_02\n"
"\tldloc\targs\n"
"\tldloc\ti\n"
"\tldelem.ref\n"
"\tcall\tnative int [mscorlib]System.Runtime.InteropServices.Marshal::"
"StringToHGlobalAnsi(string)\n"
"\tstloc\tptr\n"
"\tldloc\targv\n"
"\tldloc\ti\n";
printPtrLoad(TD->getPointerSize());
Out <<
"\tmul\n"
"\tadd\n"
"\tldloc\tptr\n"
"\tstind.i\n"
"\tldloc\ti\n"
"\tldc.i4.1\n"
"\tadd\n"
"\tstloc\ti\n"
"\tbr\tL_01\n"
"L_02:\n"
"\tcall void $MSIL_Init()\n";
// Call user 'main' function.
const Function* F = ModulePtr->getFunction("main");
if (!F || F->isDeclaration()) {
Out << "\tldc.i4.0\n\tret\n}\n";
return;
}
bool BadSig = true;;
std::string Args("");
Function::const_arg_iterator Arg1,Arg2;
switch (F->arg_size()) {
case 0:
BadSig = false;
break;
case 1:
Arg1 = F->arg_begin();
if (Arg1->getType()->isInteger()) {
Out << "\tldloc\targc\n";
Args = getTypeName(Arg1->getType());
BadSig = false;
}
break;
case 2:
Arg1 = Arg2 = F->arg_begin(); ++Arg2;
if (Arg1->getType()->isInteger() &&
Arg2->getType()->getTypeID() == Type::PointerTyID) {
Out << "\tldloc\targc\n\tldloc\targv\n";
Args = getTypeName(Arg1->getType())+","+getTypeName(Arg2->getType());
BadSig = false;
}
break;
default:
BadSig = true;
}
bool RetVoid = (F->getReturnType()->getTypeID() == Type::VoidTyID);
if (BadSig || !F->getReturnType()->isInteger() && !RetVoid) {
Out << "\tldc.i4.0\n";
} else {
Out << "\tcall\t" << getTypeName(F->getReturnType()) <<
getConvModopt(F->getCallingConv()) << "main(" << Args << ")\n";
if (RetVoid)
Out << "\tldc.i4.0\n";
else
Out << "\tconv.i4\n";
}
Out << "\tret\n}\n";
}
bool MSILWriter::isZeroValue(const Value* V) {
if (const Constant *C = dyn_cast<Constant>(V))
return C->isNullValue();
return false;
}
std::string MSILWriter::getValueName(const Value* V) {
// Name into the quotes allow control and space characters.
return "'"+Mang->getValueName(V)+"'";
}
std::string MSILWriter::getLabelName(const std::string& Name) {
if (Name.find('.')!=std::string::npos) {
std::string Tmp(Name);
// Replace unaccepable characters in the label name.
for (std::string::iterator I = Tmp.begin(), E = Tmp.end(); I!=E; ++I)
if (*I=='.') *I = '@';
return Tmp;
}
return Name;
}
std::string MSILWriter::getLabelName(const Value* V) {
return getLabelName(Mang->getValueName(V));
}
std::string MSILWriter::getConvModopt(unsigned CallingConvID) {
switch (CallingConvID) {
case CallingConv::C:
case CallingConv::Cold:
case CallingConv::Fast:
return "modopt([mscorlib]System.Runtime.CompilerServices.CallConvCdecl) ";
case CallingConv::X86_FastCall:
return "modopt([mscorlib]System.Runtime.CompilerServices.CallConvFastcall) ";
case CallingConv::X86_StdCall:
return "modopt([mscorlib]System.Runtime.CompilerServices.CallConvStdcall) ";
default:
cerr << "CallingConvID = " << CallingConvID << '\n';
assert(0 && "Unsupported calling convention");
}
}
std::string MSILWriter::getArrayTypeName(Type::TypeID TyID, const Type* Ty) {
std::string Tmp = "";
const Type* ElemTy = Ty;
assert(Ty->getTypeID()==TyID && "Invalid type passed");
// Walk trought array element types.
for (;;) {
// Multidimensional array.
if (ElemTy->getTypeID()==TyID) {
if (const ArrayType* ATy = dyn_cast<ArrayType>(ElemTy))
Tmp += utostr(ATy->getNumElements());
else if (const VectorType* VTy = dyn_cast<VectorType>(ElemTy))
Tmp += utostr(VTy->getNumElements());
ElemTy = cast<SequentialType>(ElemTy)->getElementType();
}
// Base element type found.
if (ElemTy->getTypeID()!=TyID) break;
Tmp += ",";
}
return getTypeName(ElemTy, false, true)+"["+Tmp+"]";
}
std::string MSILWriter::getPrimitiveTypeName(const Type* Ty, bool isSigned) {
unsigned NumBits = 0;
switch (Ty->getTypeID()) {
case Type::VoidTyID:
return "void ";
case Type::IntegerTyID:
NumBits = getBitWidth(Ty);
if(NumBits==1)
return "bool ";
if (!isSigned)
return "unsigned int"+utostr(NumBits)+" ";
return "int"+utostr(NumBits)+" ";
case Type::FloatTyID:
return "float32 ";
case Type::DoubleTyID:
return "float64 ";
default:
cerr << "Type = " << *Ty << '\n';
assert(0 && "Invalid primitive type");
}
}
std::string MSILWriter::getTypeName(const Type* Ty, bool isSigned,
bool isNested) {
if (Ty->isPrimitiveType() || Ty->isInteger())
return getPrimitiveTypeName(Ty,isSigned);
// FIXME: "OpaqueType" support
switch (Ty->getTypeID()) {
case Type::PointerTyID:
return "void* ";
case Type::StructTyID:
if (isNested)
return ModulePtr->getTypeName(Ty);
return "valuetype '"+ModulePtr->getTypeName(Ty)+"' ";
case Type::ArrayTyID:
if (isNested)
return getArrayTypeName(Ty->getTypeID(),Ty);
return "valuetype '"+getArrayTypeName(Ty->getTypeID(),Ty)+"' ";
case Type::VectorTyID:
if (isNested)
return getArrayTypeName(Ty->getTypeID(),Ty);
return "valuetype '"+getArrayTypeName(Ty->getTypeID(),Ty)+"' ";
default:
cerr << "Type = " << *Ty << '\n';
assert(0 && "Invalid type in getTypeName()");
}
}
MSILWriter::ValueType MSILWriter::getValueLocation(const Value* V) {
// Function argument
if (isa<Argument>(V))
return ArgumentVT;
// Function
else if (const Function* F = dyn_cast<Function>(V))
return F->hasInternalLinkage() ? InternalVT : GlobalVT;
// Variable
else if (const GlobalVariable* G = dyn_cast<GlobalVariable>(V))
return G->hasInternalLinkage() ? InternalVT : GlobalVT;
// Constant
else if (isa<Constant>(V))
return isa<ConstantExpr>(V) ? ConstExprVT : ConstVT;
// Local variable
return LocalVT;
}
std::string MSILWriter::getTypePostfix(const Type* Ty, bool Expand,
bool isSigned) {
unsigned NumBits = 0;
switch (Ty->getTypeID()) {
// Integer constant, expanding for stack operations.
case Type::IntegerTyID:
NumBits = getBitWidth(Ty);
// Expand integer value to "int32" or "int64".
if (Expand) return (NumBits<=32 ? "i4" : "i8");
if (NumBits==1) return "i1";
return (isSigned ? "i" : "u")+utostr(NumBits/8);
// Float constant.
case Type::FloatTyID:
return "r4";
case Type::DoubleTyID:
return "r8";
case Type::PointerTyID:
return "i"+utostr(TD->getTypeSize(Ty));
default:
cerr << "TypeID = " << Ty->getTypeID() << '\n';
assert(0 && "Invalid type in TypeToPostfix()");
}
}
void MSILWriter::printConvToPtr() {
switch (ModulePtr->getPointerSize()) {
case Module::Pointer32:
printSimpleInstruction("conv.u4");
break;
case Module::Pointer64:
printSimpleInstruction("conv.u8");
break;
default:
assert(0 && "Module use not supporting pointer size");
}
}
void MSILWriter::printPtrLoad(uint64_t N) {
switch (ModulePtr->getPointerSize()) {
case Module::Pointer32:
printSimpleInstruction("ldc.i4",utostr(N).c_str());
// FIXME: Need overflow test?
if (!isUInt32(N)) {
cerr << "Value = " << utostr(N) << '\n';
assert(0 && "32-bit pointer overflowed");
}
break;
case Module::Pointer64:
printSimpleInstruction("ldc.i8",utostr(N).c_str());
break;
default:
assert(0 && "Module use not supporting pointer size");
}
}
void MSILWriter::printValuePtrLoad(const Value* V) {
printValueLoad(V);
printConvToPtr();
}
void MSILWriter::printConstLoad(const Constant* C) {
if (const ConstantInt* CInt = dyn_cast<ConstantInt>(C)) {
// Integer constant
Out << "\tldc." << getTypePostfix(C->getType(),true) << '\t';
if (CInt->isMinValue(true))
Out << CInt->getSExtValue();
else
Out << CInt->getZExtValue();
} else if (const ConstantFP* FP = dyn_cast<ConstantFP>(C)) {
// Float constant
uint64_t X;
unsigned Size;
if (FP->getType()->getTypeID()==Type::FloatTyID) {
X = FloatToBits(FP->getValue());
Size = 4;
} else {
X = DoubleToBits(FP->getValue());
Size = 8;
}
Out << "\tldc.r" << Size << "\t( " << utohexstr(X) << ')';
} else if (isa<UndefValue>(C)) {
// Undefined constant value = NULL.
printPtrLoad(0);
} else {
cerr << "Constant = " << *C << '\n';
assert(0 && "Invalid constant value");
}
Out << '\n';
}
void MSILWriter::printValueLoad(const Value* V) {
MSILWriter::ValueType Location = getValueLocation(V);
switch (Location) {
// Global variable or function address.
case GlobalVT:
case InternalVT:
if (const Function* F = dyn_cast<Function>(V)) {
std::string Name = getConvModopt(F->getCallingConv())+getValueName(F);
printSimpleInstruction("ldftn",
getCallSignature(F->getFunctionType(),NULL,Name).c_str());
} else {
std::string Tmp;
const Type* ElemTy = cast<PointerType>(V->getType())->getElementType();
if (Location==GlobalVT && cast<GlobalVariable>(V)->hasDLLImportLinkage()) {
Tmp = "void* "+getValueName(V);
printSimpleInstruction("ldsfld",Tmp.c_str());
} else {
Tmp = getTypeName(ElemTy)+getValueName(V);
printSimpleInstruction("ldsflda",Tmp.c_str());
}
}
break;
// Function argument.
case ArgumentVT:
printSimpleInstruction("ldarg",getValueName(V).c_str());
break;
// Local function variable.
case LocalVT:
printSimpleInstruction("ldloc",getValueName(V).c_str());
break;
// Constant value.
case ConstVT:
if (isa<ConstantPointerNull>(V))
printPtrLoad(0);
else
printConstLoad(cast<Constant>(V));
break;
// Constant expression.
case ConstExprVT:
printConstantExpr(cast<ConstantExpr>(V));
break;
default:
cerr << "Value = " << *V << '\n';
assert(0 && "Invalid value location");
}
}
void MSILWriter::printValueSave(const Value* V) {
switch (getValueLocation(V)) {
case ArgumentVT:
printSimpleInstruction("starg",getValueName(V).c_str());
break;
case LocalVT:
printSimpleInstruction("stloc",getValueName(V).c_str());
break;
default:
cerr << "Value = " << *V << '\n';
assert(0 && "Invalid value location");
}
}
void MSILWriter::printBinaryInstruction(const char* Name, const Value* Left,
const Value* Right) {
printValueLoad(Left);
printValueLoad(Right);
Out << '\t' << Name << '\n';
}
void MSILWriter::printSimpleInstruction(const char* Inst, const char* Operand) {
if(Operand)
Out << '\t' << Inst << '\t' << Operand << '\n';
else
Out << '\t' << Inst << '\n';
}
void MSILWriter::printPHICopy(const BasicBlock* Src, const BasicBlock* Dst) {
for (BasicBlock::const_iterator I = Dst->begin(), E = Dst->end();
isa<PHINode>(I); ++I) {
const PHINode* Phi = cast<PHINode>(I);
const Value* Val = Phi->getIncomingValueForBlock(Src);
if (isa<UndefValue>(Val)) continue;
printValueLoad(Val);
printValueSave(Phi);
}
}
void MSILWriter::printBranchToBlock(const BasicBlock* CurrBB,
const BasicBlock* TrueBB,
const BasicBlock* FalseBB) {
if (TrueBB==FalseBB) {
// "TrueBB" and "FalseBB" destination equals
printPHICopy(CurrBB,TrueBB);
printSimpleInstruction("pop");
printSimpleInstruction("br",getLabelName(TrueBB).c_str());
} else if (FalseBB==NULL) {
// If "FalseBB" not used the jump have condition
printPHICopy(CurrBB,TrueBB);
printSimpleInstruction("brtrue",getLabelName(TrueBB).c_str());
} else if (TrueBB==NULL) {
// If "TrueBB" not used the jump is unconditional
printPHICopy(CurrBB,FalseBB);
printSimpleInstruction("br",getLabelName(FalseBB).c_str());
} else {
// Copy PHI instructions for each block
std::string TmpLabel;
// Print PHI instructions for "TrueBB"
if (isa<PHINode>(TrueBB->begin())) {
TmpLabel = getLabelName(TrueBB)+"$phi_"+utostr(getUniqID());
printSimpleInstruction("brtrue",TmpLabel.c_str());
} else {
printSimpleInstruction("brtrue",getLabelName(TrueBB).c_str());
}
// Print PHI instructions for "FalseBB"
if (isa<PHINode>(FalseBB->begin())) {
printPHICopy(CurrBB,FalseBB);
printSimpleInstruction("br",getLabelName(FalseBB).c_str());
} else {
printSimpleInstruction("br",getLabelName(FalseBB).c_str());
}
if (isa<PHINode>(TrueBB->begin())) {
// Handle "TrueBB" PHI Copy
Out << TmpLabel << ":\n";
printPHICopy(CurrBB,TrueBB);
printSimpleInstruction("br",getLabelName(TrueBB).c_str());
}
}
}
void MSILWriter::printBranchInstruction(const BranchInst* Inst) {
if (Inst->isUnconditional()) {
printBranchToBlock(Inst->getParent(),NULL,Inst->getSuccessor(0));
} else {
printValueLoad(Inst->getCondition());
printBranchToBlock(Inst->getParent(),Inst->getSuccessor(0),
Inst->getSuccessor(1));
}
}
void MSILWriter::printSelectInstruction(const Value* Cond, const Value* VTrue,
const Value* VFalse) {
std::string TmpLabel = std::string("select$true_")+utostr(getUniqID());
printValueLoad(VTrue);
printValueLoad(Cond);
printSimpleInstruction("brtrue",TmpLabel.c_str());
printSimpleInstruction("pop");
printValueLoad(VFalse);
Out << TmpLabel << ":\n";
}
void MSILWriter::printIndirectLoad(const Value* V) {
const Type* Ty = V->getType();
printValueLoad(V);
if (const PointerType* P = dyn_cast<PointerType>(Ty))
Ty = P->getElementType();
std::string Tmp = "ldind."+getTypePostfix(Ty, false);
printSimpleInstruction(Tmp.c_str());
}
void MSILWriter::printIndirectSave(const Value* Ptr, const Value* Val) {
printValueLoad(Ptr);
printValueLoad(Val);
printIndirectSave(Val->getType());
}
void MSILWriter::printIndirectSave(const Type* Ty) {
// Instruction need signed postfix for any type.
std::string postfix = getTypePostfix(Ty, false);
if (*postfix.begin()=='u') *postfix.begin() = 'i';
postfix = "stind."+postfix;
printSimpleInstruction(postfix.c_str());
}
void MSILWriter::printCastInstruction(unsigned int Op, const Value* V,
const Type* Ty) {
std::string Tmp("");
printValueLoad(V);
switch (Op) {
// Signed
case Instruction::SExt:
case Instruction::SIToFP:
case Instruction::FPToSI:
Tmp = "conv."+getTypePostfix(Ty,false,true);
printSimpleInstruction(Tmp.c_str());
break;
// Unsigned
case Instruction::FPTrunc:
case Instruction::FPExt:
case Instruction::UIToFP:
case Instruction::Trunc:
case Instruction::ZExt:
case Instruction::FPToUI:
case Instruction::PtrToInt:
case Instruction::IntToPtr:
Tmp = "conv."+getTypePostfix(Ty,false);
printSimpleInstruction(Tmp.c_str());
break;
// Do nothing
case Instruction::BitCast:
// FIXME: meaning that ld*/st* instruction do not change data format.
break;
default:
cerr << "Opcode = " << Op << '\n';
assert(0 && "Invalid conversion instruction");
}
}
void MSILWriter::printGepInstruction(const Value* V, gep_type_iterator I,
gep_type_iterator E) {
unsigned Size;
// Load address
printValuePtrLoad(V);
// Calculate element offset.
for (; I!=E; ++I){
Size = 0;
const Value* IndexValue = I.getOperand();
if (const StructType* StrucTy = dyn_cast<StructType>(*I)) {
uint64_t FieldIndex = cast<ConstantInt>(IndexValue)->getZExtValue();
// Offset is the sum of all previous structure fields.
for (uint64_t F = 0; F<FieldIndex; ++F)
Size += TD->getTypeSize(StrucTy->getContainedType((unsigned)F));
printPtrLoad(Size);
printSimpleInstruction("add");
continue;
} else if (const SequentialType* SeqTy = dyn_cast<SequentialType>(*I)) {
Size = TD->getTypeSize(SeqTy->getElementType());
} else {
Size = TD->getTypeSize(*I);
}
// Add offset of current element to stack top.
if (!isZeroValue(IndexValue)) {
// Constant optimization.
if (const ConstantInt* C = dyn_cast<ConstantInt>(IndexValue)) {
if (C->getValue().isNegative()) {
printPtrLoad(C->getValue().abs().getZExtValue()*Size);
printSimpleInstruction("sub");
continue;
} else
printPtrLoad(C->getZExtValue()*Size);
} else {
printPtrLoad(Size);
printValuePtrLoad(IndexValue);
printSimpleInstruction("mul");
}
printSimpleInstruction("add");
}
}
}
std::string MSILWriter::getCallSignature(const FunctionType* Ty,
const Instruction* Inst,
std::string Name) {
std::string Tmp("");
if (Ty->isVarArg()) Tmp += "vararg ";
// Name and return type.
Tmp += getTypeName(Ty->getReturnType())+Name+"(";
// Function argument type list.
unsigned NumParams = Ty->getNumParams();
for (unsigned I = 0; I!=NumParams; ++I) {
if (I!=0) Tmp += ",";
Tmp += getTypeName(Ty->getParamType(I));
}
// CLR needs to know the exact amount of parameters received by vararg
// function, because caller cleans the stack.
if (Ty->isVarArg() && Inst) {
// Origin to function arguments in "CallInst" or "InvokeInst".
unsigned Org = isa<InvokeInst>(Inst) ? 3 : 1;
// Print variable argument types.
unsigned NumOperands = Inst->getNumOperands()-Org;
if (NumParams<NumOperands) {
if (NumParams!=0) Tmp += ", ";
Tmp += "... , ";
for (unsigned J = NumParams; J!=NumOperands; ++J) {
if (J!=NumParams) Tmp += ", ";
Tmp += getTypeName(Inst->getOperand(J+Org)->getType());
}
}
}
return Tmp+")";
}
void MSILWriter::printFunctionCall(const Value* FnVal,
const Instruction* Inst) {
// Get function calling convention.
std::string Name = "";
if (const CallInst* Call = dyn_cast<CallInst>(Inst))
Name = getConvModopt(Call->getCallingConv());
else if (const InvokeInst* Invoke = dyn_cast<InvokeInst>(Inst))
Name = getConvModopt(Invoke->getCallingConv());
else {
cerr << "Instruction = " << Inst->getName() << '\n';
assert(0 && "Need \"Invoke\" or \"Call\" instruction only");
}
if (const Function* F = dyn_cast<Function>(FnVal)) {
// Direct call.
Name += getValueName(F);
printSimpleInstruction("call",
getCallSignature(F->getFunctionType(),Inst,Name).c_str());
} else {
// Indirect function call.
const PointerType* PTy = cast<PointerType>(FnVal->getType());
const FunctionType* FTy = cast<FunctionType>(PTy->getElementType());
// Load function address.
printValueLoad(FnVal);
printSimpleInstruction("calli",getCallSignature(FTy,Inst,Name).c_str());
}
}
void MSILWriter::printIntrinsicCall(const IntrinsicInst* Inst) {
std::string Name;
switch (Inst->getIntrinsicID()) {
case Intrinsic::vastart:
Name = getValueName(Inst->getOperand(1));
Name.insert(Name.length()-1,"$valist");
// Obtain the argument handle.
printSimpleInstruction("ldloca",Name.c_str());
printSimpleInstruction("arglist");
printSimpleInstruction("call",
"instance void [mscorlib]System.ArgIterator::.ctor"
"(valuetype [mscorlib]System.RuntimeArgumentHandle)");
// Save as pointer type "void*"
printValueLoad(Inst->getOperand(1));
printSimpleInstruction("ldloca",Name.c_str());
printIndirectSave(PointerType::get(IntegerType::get(8)));
break;
case Intrinsic::vaend:
// Close argument list handle.
printIndirectLoad(Inst->getOperand(1));
printSimpleInstruction("call","instance void [mscorlib]System.ArgIterator::End()");
break;
case Intrinsic::vacopy:
// Copy "ArgIterator" valuetype.
printIndirectLoad(Inst->getOperand(1));
printIndirectLoad(Inst->getOperand(2));
printSimpleInstruction("cpobj","[mscorlib]System.ArgIterator");
break;
default:
cerr << "Intrinsic ID = " << Inst->getIntrinsicID() << '\n';
assert(0 && "Invalid intrinsic function");
}
}
void MSILWriter::printCallInstruction(const Instruction* Inst) {
if (isa<IntrinsicInst>(Inst)) {
// Handle intrinsic function.
printIntrinsicCall(cast<IntrinsicInst>(Inst));
} else {
// Load arguments to stack and call function.
for (int I = 1, E = Inst->getNumOperands(); I!=E; ++I)
printValueLoad(Inst->getOperand(I));
printFunctionCall(Inst->getOperand(0),Inst);
}
}
void MSILWriter::printICmpInstruction(unsigned Predicate, const Value* Left,
const Value* Right) {
switch (Predicate) {
case ICmpInst::ICMP_EQ:
printBinaryInstruction("ceq",Left,Right);
break;
case ICmpInst::ICMP_NE:
// Emulate = not neg (Op1 eq Op2)
printBinaryInstruction("ceq",Left,Right);
printSimpleInstruction("neg");
printSimpleInstruction("not");
break;
case ICmpInst::ICMP_ULE:
case ICmpInst::ICMP_SLE:
// Emulate = (Op1 eq Op2) or (Op1 lt Op2)
printBinaryInstruction("ceq",Left,Right);
if (Predicate==ICmpInst::ICMP_ULE)
printBinaryInstruction("clt.un",Left,Right);
else
printBinaryInstruction("clt",Left,Right);
printSimpleInstruction("or");
break;
case ICmpInst::ICMP_UGE:
case ICmpInst::ICMP_SGE:
// Emulate = (Op1 eq Op2) or (Op1 gt Op2)
printBinaryInstruction("ceq",Left,Right);
if (Predicate==ICmpInst::ICMP_UGE)
printBinaryInstruction("cgt.un",Left,Right);
else
printBinaryInstruction("cgt",Left,Right);
printSimpleInstruction("or");
break;
case ICmpInst::ICMP_ULT:
printBinaryInstruction("clt.un",Left,Right);
break;
case ICmpInst::ICMP_SLT:
printBinaryInstruction("clt",Left,Right);
break;
case ICmpInst::ICMP_UGT:
printBinaryInstruction("cgt.un",Left,Right);
case ICmpInst::ICMP_SGT:
printBinaryInstruction("cgt",Left,Right);
break;
default:
cerr << "Predicate = " << Predicate << '\n';
assert(0 && "Invalid icmp predicate");
}
}
void MSILWriter::printFCmpInstruction(unsigned Predicate, const Value* Left,
const Value* Right) {
// FIXME: Correct comparison
std::string NanFunc = "bool [mscorlib]System.Double::IsNaN(float64)";
switch (Predicate) {
case FCmpInst::FCMP_UGT:
// X > Y || llvm_fcmp_uno(X, Y)
printBinaryInstruction("cgt",Left,Right);
printFCmpInstruction(FCmpInst::FCMP_UNO,Left,Right);
printSimpleInstruction("or");
break;
case FCmpInst::FCMP_OGT:
// X > Y
printBinaryInstruction("cgt",Left,Right);
break;
case FCmpInst::FCMP_UGE:
// X >= Y || llvm_fcmp_uno(X, Y)
printBinaryInstruction("ceq",Left,Right);
printBinaryInstruction("cgt",Left,Right);
printSimpleInstruction("or");
printFCmpInstruction(FCmpInst::FCMP_UNO,Left,Right);
printSimpleInstruction("or");
break;
case FCmpInst::FCMP_OGE:
// X >= Y
printBinaryInstruction("ceq",Left,Right);
printBinaryInstruction("cgt",Left,Right);
printSimpleInstruction("or");
break;
case FCmpInst::FCMP_ULT:
// X < Y || llvm_fcmp_uno(X, Y)
printBinaryInstruction("clt",Left,Right);
printFCmpInstruction(FCmpInst::FCMP_UNO,Left,Right);
printSimpleInstruction("or");
break;
case FCmpInst::FCMP_OLT:
// X < Y
printBinaryInstruction("clt",Left,Right);
break;
case FCmpInst::FCMP_ULE:
// X <= Y || llvm_fcmp_uno(X, Y)
printBinaryInstruction("ceq",Left,Right);
printBinaryInstruction("clt",Left,Right);
printSimpleInstruction("or");
printFCmpInstruction(FCmpInst::FCMP_UNO,Left,Right);
printSimpleInstruction("or");
break;
case FCmpInst::FCMP_OLE:
// X <= Y
printBinaryInstruction("ceq",Left,Right);
printBinaryInstruction("clt",Left,Right);
printSimpleInstruction("or");
break;
case FCmpInst::FCMP_UEQ:
// X == Y || llvm_fcmp_uno(X, Y)
printBinaryInstruction("ceq",Left,Right);
printFCmpInstruction(FCmpInst::FCMP_UNO,Left,Right);
printSimpleInstruction("or");
break;
case FCmpInst::FCMP_OEQ:
// X == Y
printBinaryInstruction("ceq",Left,Right);
break;
case FCmpInst::FCMP_UNE:
// X != Y
printBinaryInstruction("ceq",Left,Right);
printSimpleInstruction("neg");
printSimpleInstruction("not");
break;
case FCmpInst::FCMP_ONE:
// X != Y && llvm_fcmp_ord(X, Y)
printBinaryInstruction("ceq",Left,Right);
printSimpleInstruction("not");
break;
case FCmpInst::FCMP_ORD:
// return X == X && Y == Y
printBinaryInstruction("ceq",Left,Left);
printBinaryInstruction("ceq",Right,Right);
printSimpleInstruction("or");
break;
case FCmpInst::FCMP_UNO:
// X != X || Y != Y
printBinaryInstruction("ceq",Left,Left);
printSimpleInstruction("not");
printBinaryInstruction("ceq",Right,Right);
printSimpleInstruction("not");
printSimpleInstruction("or");
break;
default:
assert(0 && "Illegal FCmp predicate");
}
}
void MSILWriter::printInvokeInstruction(const InvokeInst* Inst) {
std::string Label = "leave$normal_"+utostr(getUniqID());
Out << ".try {\n";
// Load arguments
for (int I = 3, E = Inst->getNumOperands(); I!=E; ++I)
printValueLoad(Inst->getOperand(I));
// Print call instruction
printFunctionCall(Inst->getOperand(0),Inst);
// Save function result and leave "try" block
printValueSave(Inst);
printSimpleInstruction("leave",Label.c_str());
Out << "}\n";
Out << "catch [mscorlib]System.Exception {\n";
// Redirect to unwind block
printSimpleInstruction("pop");
printBranchToBlock(Inst->getParent(),NULL,Inst->getUnwindDest());
Out << "}\n" << Label << ":\n";
// Redirect to continue block
printBranchToBlock(Inst->getParent(),NULL,Inst->getNormalDest());
}
void MSILWriter::printSwitchInstruction(const SwitchInst* Inst) {
// FIXME: Emulate with IL "switch" instruction
// Emulate = if () else if () else if () else ...
for (unsigned int I = 1, E = Inst->getNumCases(); I!=E; ++I) {
printValueLoad(Inst->getCondition());
printValueLoad(Inst->getCaseValue(I));
printSimpleInstruction("ceq");
// Condition jump to successor block
printBranchToBlock(Inst->getParent(),Inst->getSuccessor(I),NULL);
}
// Jump to default block
printBranchToBlock(Inst->getParent(),NULL,Inst->getDefaultDest());
}
void MSILWriter::printVAArgInstruction(const VAArgInst* Inst) {
printIndirectLoad(Inst->getOperand(0));
printSimpleInstruction("call",
"instance typedref [mscorlib]System.ArgIterator::GetNextArg()");
printSimpleInstruction("refanyval","void*");
std::string Name = "ldind."+getTypePostfix(PointerType::get(IntegerType::get(8)),false);
printSimpleInstruction(Name.c_str());
}
void MSILWriter::printAllocaInstruction(const AllocaInst* Inst) {
uint64_t Size = TD->getTypeSize(Inst->getAllocatedType());
// Constant optimization.
if (const ConstantInt* CInt = dyn_cast<ConstantInt>(Inst->getOperand(0))) {
printPtrLoad(CInt->getZExtValue()*Size);
} else {
printPtrLoad(Size);
printValueLoad(Inst->getOperand(0));
printSimpleInstruction("mul");
}
printSimpleInstruction("localloc");
}
void MSILWriter::printInstruction(const Instruction* Inst) {
const Value *Left = 0, *Right = 0;
if (Inst->getNumOperands()>=1) Left = Inst->getOperand(0);
if (Inst->getNumOperands()>=2) Right = Inst->getOperand(1);
// Print instruction
// FIXME: "ShuffleVector","ExtractElement","InsertElement" support.
switch (Inst->getOpcode()) {
// Terminator
case Instruction::Ret:
if (Inst->getNumOperands()) {
printValueLoad(Left);
printSimpleInstruction("ret");
} else
printSimpleInstruction("ret");
break;
case Instruction::Br:
printBranchInstruction(cast<BranchInst>(Inst));
break;
// Binary
case Instruction::Add:
printBinaryInstruction("add",Left,Right);
break;
case Instruction::Sub:
printBinaryInstruction("sub",Left,Right);
break;
case Instruction::Mul:
printBinaryInstruction("mul",Left,Right);
break;
case Instruction::UDiv:
printBinaryInstruction("div.un",Left,Right);
break;
case Instruction::SDiv:
case Instruction::FDiv:
printBinaryInstruction("div",Left,Right);
break;
case Instruction::URem:
printBinaryInstruction("rem.un",Left,Right);
break;
case Instruction::SRem:
case Instruction::FRem:
printBinaryInstruction("rem",Left,Right);
break;
// Binary Condition
case Instruction::ICmp:
printICmpInstruction(cast<ICmpInst>(Inst)->getPredicate(),Left,Right);
break;
case Instruction::FCmp:
printFCmpInstruction(cast<FCmpInst>(Inst)->getPredicate(),Left,Right);
break;
// Bitwise Binary
case Instruction::And:
printBinaryInstruction("and",Left,Right);
break;
case Instruction::Or:
printBinaryInstruction("or",Left,Right);
break;
case Instruction::Xor:
printBinaryInstruction("xor",Left,Right);
break;
case Instruction::Shl:
printValueLoad(Left);
printValueLoad(Right);
printSimpleInstruction("conv.i4");
printSimpleInstruction("shl");
break;
case Instruction::LShr:
printValueLoad(Left);
printValueLoad(Right);
printSimpleInstruction("conv.i4");
printSimpleInstruction("shr.un");
break;
case Instruction::AShr:
printValueLoad(Left);
printValueLoad(Right);
printSimpleInstruction("conv.i4");
printSimpleInstruction("shr");
break;
case Instruction::Select:
printSelectInstruction(Inst->getOperand(0),Inst->getOperand(1),Inst->getOperand(2));
break;
case Instruction::Load:
printIndirectLoad(Inst->getOperand(0));
break;
case Instruction::Store:
printIndirectSave(Inst->getOperand(1), Inst->getOperand(0));
break;
case Instruction::Trunc:
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPTrunc:
case Instruction::FPExt:
case Instruction::UIToFP:
case Instruction::SIToFP:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::PtrToInt:
case Instruction::IntToPtr:
case Instruction::BitCast:
printCastInstruction(Inst->getOpcode(),Left,
cast<CastInst>(Inst)->getDestTy());
break;
case Instruction::GetElementPtr:
printGepInstruction(Inst->getOperand(0),gep_type_begin(Inst),
gep_type_end(Inst));
break;
case Instruction::Call:
printCallInstruction(cast<CallInst>(Inst));
break;
case Instruction::Invoke:
printInvokeInstruction(cast<InvokeInst>(Inst));
break;
case Instruction::Unwind:
printSimpleInstruction("newobj",
"instance void [mscorlib]System.Exception::.ctor()");
printSimpleInstruction("throw");
break;
case Instruction::Switch:
printSwitchInstruction(cast<SwitchInst>(Inst));
break;
case Instruction::Alloca:
printAllocaInstruction(cast<AllocaInst>(Inst));
break;
case Instruction::Malloc:
assert(0 && "LowerAllocationsPass used");
break;
case Instruction::Free:
assert(0 && "LowerAllocationsPass used");
break;
case Instruction::Unreachable:
printSimpleInstruction("ldstr", "\"Unreachable instruction\"");
printSimpleInstruction("newobj",
"instance void [mscorlib]System.Exception::.ctor(string)");
printSimpleInstruction("throw");
break;
case Instruction::VAArg:
printVAArgInstruction(cast<VAArgInst>(Inst));
break;
default:
cerr << "Instruction = " << Inst->getName() << '\n';
assert(0 && "Unsupported instruction");
}
}
void MSILWriter::printLoop(const Loop* L) {
Out << getLabelName(L->getHeader()->getName()) << ":\n";
const std::vector<BasicBlock*>& blocks = L->getBlocks();
for (unsigned I = 0, E = blocks.size(); I!=E; I++) {
BasicBlock* BB = blocks[I];
Loop* BBLoop = LInfo->getLoopFor(BB);
if (BBLoop == L)
printBasicBlock(BB);
else if (BB==BBLoop->getHeader() && BBLoop->getParentLoop()==L)
printLoop(BBLoop);
}
printSimpleInstruction("br",getLabelName(L->getHeader()->getName()).c_str());
}
void MSILWriter::printBasicBlock(const BasicBlock* BB) {
Out << getLabelName(BB) << ":\n";
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) {
const Instruction* Inst = I;
// Comment llvm original instruction
Out << "\n//" << *Inst << "\n";
// Do not handle PHI instruction in current block
if (Inst->getOpcode()==Instruction::PHI) continue;
// Print instruction
printInstruction(Inst);
// Save result
if (Inst->getType()!=Type::VoidTy) {
// Do not save value after invoke, it done in "try" block
if (Inst->getOpcode()==Instruction::Invoke) continue;
printValueSave(Inst);
}
}
}
void MSILWriter::printLocalVariables(const Function& F) {
std::string Name;
const Type* Ty = NULL;
std::set<const Value*> Printed;
const Value* VaList = NULL;
unsigned StackDepth = 8;
// Find local variables
for (const_inst_iterator I = inst_begin(&F), E = inst_end(&F); I!=E; ++I) {
if (I->getOpcode()==Instruction::Call ||
I->getOpcode()==Instruction::Invoke) {
// Test stack depth.
if (StackDepth<I->getNumOperands())
StackDepth = I->getNumOperands();
}
const AllocaInst* AI = dyn_cast<AllocaInst>(&*I);
if (AI && !isa<GlobalVariable>(AI)) {
// Local variable allocation.
Ty = PointerType::get(AI->getAllocatedType());
Name = getValueName(AI);
Out << "\t.locals (" << getTypeName(Ty) << Name << ")\n";
} else if (I->getType()!=Type::VoidTy) {
// Operation result.
Ty = I->getType();
Name = getValueName(&*I);
Out << "\t.locals (" << getTypeName(Ty) << Name << ")\n";
}
// Test on 'va_list' variable
bool isVaList = false;
if (const VAArgInst* VaInst = dyn_cast<VAArgInst>(&*I)) {
// "va_list" as "va_arg" instruction operand.
isVaList = true;
VaList = VaInst->getOperand(0);
} else if (const IntrinsicInst* Inst = dyn_cast<IntrinsicInst>(&*I)) {
// "va_list" as intrinsic function operand.
switch (Inst->getIntrinsicID()) {
case Intrinsic::vastart:
case Intrinsic::vaend:
case Intrinsic::vacopy:
isVaList = true;
VaList = Inst->getOperand(1);
break;
default:
isVaList = false;
}
}
// Print "va_list" variable.
if (isVaList && Printed.insert(VaList).second) {
Name = getValueName(VaList);
Name.insert(Name.length()-1,"$valist");
Out << "\t.locals (valuetype [mscorlib]System.ArgIterator "
<< Name << ")\n";
}
}
printSimpleInstruction(".maxstack",utostr(StackDepth*2).c_str());
}
void MSILWriter::printFunctionBody(const Function& F) {
// Print body
for (Function::const_iterator I = F.begin(), E = F.end(); I!=E; ++I) {
if (Loop *L = LInfo->getLoopFor(I)) {
if (L->getHeader()==I && L->getParentLoop()==0)
printLoop(L);
} else {
printBasicBlock(I);
}
}
}
void MSILWriter::printConstantExpr(const ConstantExpr* CE) {
const Value *left = 0, *right = 0;
if (CE->getNumOperands()>=1) left = CE->getOperand(0);
if (CE->getNumOperands()>=2) right = CE->getOperand(1);
// Print instruction
switch (CE->getOpcode()) {
case Instruction::Trunc:
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPTrunc:
case Instruction::FPExt:
case Instruction::UIToFP:
case Instruction::SIToFP:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::PtrToInt:
case Instruction::IntToPtr:
case Instruction::BitCast:
printCastInstruction(CE->getOpcode(),left,CE->getType());
break;
case Instruction::GetElementPtr:
printGepInstruction(CE->getOperand(0),gep_type_begin(CE),gep_type_end(CE));
break;
case Instruction::ICmp:
printICmpInstruction(CE->getPredicate(),left,right);
break;
case Instruction::FCmp:
printFCmpInstruction(CE->getPredicate(),left,right);
break;
case Instruction::Select:
printSelectInstruction(CE->getOperand(0),CE->getOperand(1),CE->getOperand(2));
break;
case Instruction::Add:
printBinaryInstruction("add",left,right);
break;
case Instruction::Sub:
printBinaryInstruction("sub",left,right);
break;
case Instruction::Mul:
printBinaryInstruction("mul",left,right);
break;
case Instruction::UDiv:
printBinaryInstruction("div.un",left,right);
break;
case Instruction::SDiv:
case Instruction::FDiv:
printBinaryInstruction("div",left,right);
break;
case Instruction::URem:
printBinaryInstruction("rem.un",left,right);
break;
case Instruction::SRem:
case Instruction::FRem:
printBinaryInstruction("rem",left,right);
break;
case Instruction::And:
printBinaryInstruction("and",left,right);
break;
case Instruction::Or:
printBinaryInstruction("or",left,right);
break;
case Instruction::Xor:
printBinaryInstruction("xor",left,right);
break;
case Instruction::Shl:
printBinaryInstruction("shl",left,right);
break;
case Instruction::LShr:
printBinaryInstruction("shr.un",left,right);
break;
case Instruction::AShr:
printBinaryInstruction("shr",left,right);
break;
default:
cerr << "Expression = " << *CE << "\n";
assert(0 && "Invalid constant expression");
}
}
void MSILWriter::printStaticInitializerList() {
// List of global variables with uninitialized fields.
for (std::map<const GlobalVariable*,std::vector<StaticInitializer> >::iterator
VarI = StaticInitList.begin(), VarE = StaticInitList.end(); VarI!=VarE;
++VarI) {
const std::vector<StaticInitializer>& InitList = VarI->second;
if (InitList.empty()) continue;
// For each uninitialized field.
for (std::vector<StaticInitializer>::const_iterator I = InitList.begin(),
E = InitList.end(); I!=E; ++I) {
if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(I->constant)) {
Out << "\n// Init " << getValueName(VarI->first) << ", offset " <<
utostr(I->offset) << ", type "<< *I->constant->getType() << "\n\n";
// Load variable address
printValueLoad(VarI->first);
// Add offset
if (I->offset!=0) {
printPtrLoad(I->offset);
printSimpleInstruction("add");
}
// Load value
printConstantExpr(CE);
// Save result at offset
std::string postfix = getTypePostfix(CE->getType(),true);
if (*postfix.begin()=='u') *postfix.begin() = 'i';
postfix = "stind."+postfix;
printSimpleInstruction(postfix.c_str());
} else {
cerr << "Constant = " << *I->constant << '\n';
assert(0 && "Invalid static initializer");
}
}
}
}
void MSILWriter::printFunction(const Function& F) {
const FunctionType* FTy = F.getFunctionType();
const ParamAttrsList *Attrs = FTy->getParamAttrs();
bool isSigned = Attrs && Attrs->paramHasAttr(0, ParamAttr::SExt);
Out << "\n.method static ";
Out << (F.hasInternalLinkage() ? "private " : "public ");
if (F.isVarArg()) Out << "vararg ";
Out << getTypeName(F.getReturnType(),isSigned) <<
getConvModopt(F.getCallingConv()) << getValueName(&F) << '\n';
// Arguments
Out << "\t(";
unsigned ArgIdx = 1;
for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I!=E;
++I, ++ArgIdx) {
isSigned = Attrs && Attrs->paramHasAttr(ArgIdx, ParamAttr::SExt);
if (I!=F.arg_begin()) Out << ", ";
Out << getTypeName(I->getType(),isSigned) << getValueName(I);
}
Out << ") cil managed\n";
// Body
Out << "{\n";
printLocalVariables(F);
printFunctionBody(F);
Out << "}\n";
}
void MSILWriter::printDeclarations(const TypeSymbolTable& ST) {
std::string Name;
std::set<const Type*> Printed;
for (std::set<const Type*>::const_iterator
UI = UsedTypes->begin(), UE = UsedTypes->end(); UI!=UE; ++UI) {
const Type* Ty = *UI;
if (isa<ArrayType>(Ty) || isa<VectorType>(Ty) || isa<StructType>(Ty))
Name = getTypeName(Ty, false, true);
// Type with no need to declare.
else continue;
// Print not duplicated type
if (Printed.insert(Ty).second) {
Out << ".class value explicit ansi sealed '" << Name << "'";
Out << " { .pack " << 1 << " .size " << TD->getTypeSize(Ty) << " }\n\n";
}
}
}
unsigned int MSILWriter::getBitWidth(const Type* Ty) {
unsigned int N = Ty->getPrimitiveSizeInBits();
assert(N!=0 && "Invalid type in getBitWidth()");
switch (N) {
case 1:
case 8:
case 16:
case 32:
case 64:
return N;
default:
cerr << "Bits = " << N << '\n';
assert(0 && "Unsupported integer width");
}
}
void MSILWriter::printStaticConstant(const Constant* C, uint64_t& Offset) {
uint64_t TySize = 0;
const Type* Ty = C->getType();
// Print zero initialized constant.
if (isa<ConstantAggregateZero>(C) || C->isNullValue()) {
TySize = TD->getTypeSize(C->getType());
Offset += TySize;
Out << "int8 (0) [" << TySize << "]";
return;
}
// Print constant initializer
switch (Ty->getTypeID()) {
case Type::IntegerTyID: {
TySize = TD->getTypeSize(Ty);
const ConstantInt* Int = cast<ConstantInt>(C);
Out << getPrimitiveTypeName(Ty,true) << "(" << Int->getSExtValue() << ")";
break;
}
case Type::FloatTyID:
case Type::DoubleTyID: {
TySize = TD->getTypeSize(Ty);
const ConstantFP* FP = cast<ConstantFP>(C);
if (Ty->getTypeID() == Type::FloatTyID)
Out << "int32 (" << FloatToBits(FP->getValue()) << ')';
else
Out << "int64 (" << DoubleToBits(FP->getValue()) << ')';
break;
}
case Type::ArrayTyID:
case Type::VectorTyID:
case Type::StructTyID:
for (unsigned I = 0, E = C->getNumOperands(); I<E; I++) {
if (I!=0) Out << ",\n";
printStaticConstant(C->getOperand(I),Offset);
}
break;
case Type::PointerTyID:
TySize = TD->getTypeSize(C->getType());
// Initialize with global variable address
if (const GlobalVariable *G = dyn_cast<GlobalVariable>(C)) {
std::string name = getValueName(G);
Out << "&(" << name.insert(name.length()-1,"$data") << ")";
} else {
// Dynamic initialization
if (!isa<ConstantPointerNull>(C) && !C->isNullValue())
InitListPtr->push_back(StaticInitializer(C,Offset));
// Null pointer initialization
if (TySize==4) Out << "int32 (0)";
else if (TySize==8) Out << "int64 (0)";
else assert(0 && "Invalid pointer size");
}
break;
default:
cerr << "TypeID = " << Ty->getTypeID() << '\n';
assert(0 && "Invalid type in printStaticConstant()");
}
// Increase offset.
Offset += TySize;
}
void MSILWriter::printStaticInitializer(const Constant* C,
const std::string& Name) {
switch (C->getType()->getTypeID()) {
case Type::IntegerTyID:
case Type::FloatTyID:
case Type::DoubleTyID:
Out << getPrimitiveTypeName(C->getType(), false);
break;
case Type::ArrayTyID:
case Type::VectorTyID:
case Type::StructTyID:
case Type::PointerTyID:
Out << getTypeName(C->getType());
break;
default:
cerr << "Type = " << *C << "\n";
assert(0 && "Invalid constant type");
}
// Print initializer
std::string label = Name;
label.insert(label.length()-1,"$data");
Out << Name << " at " << label << '\n';
Out << ".data " << label << " = {\n";
uint64_t offset = 0;
printStaticConstant(C,offset);
Out << "\n}\n\n";
}
void MSILWriter::printVariableDefinition(const GlobalVariable* G) {
const Constant* C = G->getInitializer();
if (C->isNullValue() || isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
InitListPtr = 0;
else
InitListPtr = &StaticInitList[G];
printStaticInitializer(C,getValueName(G));
}
void MSILWriter::printGlobalVariables() {
if (ModulePtr->global_empty()) return;
Module::global_iterator I,E;
for (I = ModulePtr->global_begin(), E = ModulePtr->global_end(); I!=E; ++I) {
// Variable definition
Out << ".field static " << (I->isDeclaration() ? "public " :
"private ");
if (I->isDeclaration()) {
Out << getTypeName(I->getType()) << getValueName(&*I) << "\n\n";
} else
printVariableDefinition(&*I);
}
}
const char* MSILWriter::getLibraryName(const Function* F) {
return getLibraryForSymbol(F->getName().c_str(), true, F->getCallingConv());
}
const char* MSILWriter::getLibraryName(const GlobalVariable* GV) {
return getLibraryForSymbol(Mang->getValueName(GV).c_str(), false, 0);
}
const char* MSILWriter::getLibraryForSymbol(const char* Name, bool isFunction,
unsigned CallingConv) {
// TODO: Read *.def file with function and libraries definitions.
return "MSVCRT.DLL";
}
void MSILWriter::printExternals() {
Module::const_iterator I,E;
// Functions.
for (I=ModulePtr->begin(),E=ModulePtr->end(); I!=E; ++I) {
// Skip intrisics
if (I->getIntrinsicID()) continue;
if (I->isDeclaration()) {
const Function* F = I;
std::string Name = getConvModopt(F->getCallingConv())+getValueName(F);
std::string Sig =
getCallSignature(cast<FunctionType>(F->getFunctionType()), NULL, Name);
Out << ".method static hidebysig pinvokeimpl(\""
<< getLibraryName(F) << "\")\n\t" << Sig << " preservesig {}\n\n";
}
}
// External variables and static initialization.
Out <<
".method public hidebysig static pinvokeimpl(\"KERNEL32.DLL\" ansi winapi)"
" native int LoadLibrary(string) preservesig {}\n"
".method public hidebysig static pinvokeimpl(\"KERNEL32.DLL\" ansi winapi)"
" native int GetProcAddress(native int, string) preservesig {}\n";
Out <<
".method private static void* $MSIL_Import(string lib,string sym)\n"
" managed cil\n{\n"
"\tldarg\tlib\n"
"\tcall\tnative int LoadLibrary(string)\n"
"\tldarg\tsym\n"
"\tcall\tnative int GetProcAddress(native int,string)\n"
"\tdup\n"
"\tbrtrue\tL_01\n"
"\tldstr\t\"Can no import variable\"\n"
"\tnewobj\tinstance void [mscorlib]System.Exception::.ctor(string)\n"
"\tthrow\n"
"L_01:\n"
"\tret\n"
"}\n\n"
".method static private void $MSIL_Init() managed cil\n{\n";
printStaticInitializerList();
// Foreach global variable.
for (Module::global_iterator I = ModulePtr->global_begin(),
E = ModulePtr->global_end(); I!=E; ++I) {
if (!I->isDeclaration() || !I->hasDLLImportLinkage()) continue;
// Use "LoadLibrary"/"GetProcAddress" to recive variable address.
std::string Label = "not_null$_"+utostr(getUniqID());
std::string Tmp = getTypeName(I->getType())+getValueName(&*I);
printSimpleInstruction("ldsflda",Tmp.c_str());
Out << "\tldstr\t\"" << getLibraryName(&*I) << "\"\n";
Out << "\tldstr\t\"" << Mang->getValueName(&*I) << "\"\n";
printSimpleInstruction("call","void* $MSIL_Import(string,string)");
printIndirectSave(I->getType());
}
printSimpleInstruction("ret");
Out << "}\n\n";
}
//===----------------------------------------------------------------------===//
// External Interface declaration
//===----------------------------------------------------------------------===//
bool MSILTarget::addPassesToEmitWholeFile(PassManager &PM, std::ostream &o,
CodeGenFileType FileType, bool Fast)
{
if (FileType != TargetMachine::AssemblyFile) return true;
MSILWriter* Writer = new MSILWriter(o);
PM.add(createLowerGCPass());
PM.add(createLowerAllocationsPass(true));
// FIXME: Handle switch trougth native IL instruction "switch"
PM.add(createLowerSwitchPass());
PM.add(createCFGSimplificationPass());
PM.add(new MSILModule(Writer->UsedTypes,Writer->TD));
PM.add(Writer);
return false;
}