llvm-6502/lib/Target/Sparc/SparcInstrInfo.td
Nate Begeman 551bf3f800 kill ADD_PARTS & SUB_PARTS and replace them with fancy new ADDC, ADDE, SUBC
and SUBE nodes that actually expose what's going on and allow for
significant simplifications in the targets.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@26255 91177308-0d34-0410-b5e6-96231b3b80d8
2006-02-17 05:43:56 +00:00

918 lines
39 KiB
TableGen

//===- SparcInstrInfo.td - Target Description for Sparc Target ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the Sparc instructions in TableGen format.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Instruction format superclass
//===----------------------------------------------------------------------===//
include "SparcInstrFormats.td"
//===----------------------------------------------------------------------===//
// Feature predicates.
//===----------------------------------------------------------------------===//
// HasV9 - This predicate is true when the target processor supports V9
// instructions. Note that the machine may be running in 32-bit mode.
def HasV9 : Predicate<"Subtarget.isV9()">;
// HasNoV9 - This predicate is true when the target doesn't have V9
// instructions. Use of this is just a hack for the isel not having proper
// costs for V8 instructions that are more expensive than their V9 ones.
def HasNoV9 : Predicate<"!Subtarget.isV9()">;
// HasVIS - This is true when the target processor has VIS extensions.
def HasVIS : Predicate<"Subtarget.isVIS()">;
// UseDeprecatedInsts - This predicate is true when the target processor is a
// V8, or when it is V9 but the V8 deprecated instructions are efficient enough
// to use when appropriate. In either of these cases, the instruction selector
// will pick deprecated instructions.
def UseDeprecatedInsts : Predicate<"Subtarget.useDeprecatedV8Instructions()">;
//===----------------------------------------------------------------------===//
// Instruction Pattern Stuff
//===----------------------------------------------------------------------===//
def simm11 : PatLeaf<(imm), [{
// simm11 predicate - True if the imm fits in a 11-bit sign extended field.
return (((int)N->getValue() << (32-11)) >> (32-11)) == (int)N->getValue();
}]>;
def simm13 : PatLeaf<(imm), [{
// simm13 predicate - True if the imm fits in a 13-bit sign extended field.
return (((int)N->getValue() << (32-13)) >> (32-13)) == (int)N->getValue();
}]>;
def LO10 : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant((unsigned)N->getValue() & 1023, MVT::i32);
}]>;
def HI22 : SDNodeXForm<imm, [{
// Transformation function: shift the immediate value down into the low bits.
return CurDAG->getTargetConstant((unsigned)N->getValue() >> 10, MVT::i32);
}]>;
def SETHIimm : PatLeaf<(imm), [{
return (((unsigned)N->getValue() >> 10) << 10) == (unsigned)N->getValue();
}], HI22>;
// Addressing modes.
def ADDRrr : ComplexPattern<i32, 2, "SelectADDRrr", []>;
def ADDRri : ComplexPattern<i32, 2, "SelectADDRri", [frameindex]>;
// Address operands
def MEMrr : Operand<i32> {
let PrintMethod = "printMemOperand";
let NumMIOperands = 2;
let MIOperandInfo = (ops IntRegs, IntRegs);
}
def MEMri : Operand<i32> {
let PrintMethod = "printMemOperand";
let NumMIOperands = 2;
let MIOperandInfo = (ops IntRegs, i32imm);
}
// Branch targets have OtherVT type.
def brtarget : Operand<OtherVT>;
def calltarget : Operand<i32>;
// Operand for printing out a condition code.
let PrintMethod = "printCCOperand" in
def CCOp : Operand<i32>;
def SDTSPcmpfcc :
SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisSameAs<0, 1>]>;
def SDTSPbrcc :
SDTypeProfile<0, 2, [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>]>;
def SDTSPselectcc :
SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i32>]>;
def SDTSPFTOI :
SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisFP<1>]>;
def SDTSPITOF :
SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f32>]>;
def SPcmpicc : SDNode<"SPISD::CMPICC", SDTIntBinOp, [SDNPOutFlag]>;
def SPcmpfcc : SDNode<"SPISD::CMPFCC", SDTSPcmpfcc, [SDNPOutFlag]>;
def SPbricc : SDNode<"SPISD::BRICC", SDTSPbrcc, [SDNPHasChain, SDNPInFlag]>;
def SPbrfcc : SDNode<"SPISD::BRFCC", SDTSPbrcc, [SDNPHasChain, SDNPInFlag]>;
def SPhi : SDNode<"SPISD::Hi", SDTIntUnaryOp>;
def SPlo : SDNode<"SPISD::Lo", SDTIntUnaryOp>;
def SPftoi : SDNode<"SPISD::FTOI", SDTSPFTOI>;
def SPitof : SDNode<"SPISD::ITOF", SDTSPITOF>;
def SPselecticc : SDNode<"SPISD::SELECT_ICC", SDTSPselectcc, [SDNPInFlag]>;
def SPselectfcc : SDNode<"SPISD::SELECT_FCC", SDTSPselectcc, [SDNPInFlag]>;
// These are target-independent nodes, but have target-specific formats.
def SDT_SPCallSeq : SDTypeProfile<0, 1, [ SDTCisVT<0, i32> ]>;
def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeq, [SDNPHasChain]>;
def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_SPCallSeq, [SDNPHasChain]>;
def SDT_SPCall : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
def call : SDNode<"SPISD::CALL", SDT_SPCall,
[SDNPHasChain, SDNPOptInFlag, SDNPOutFlag]>;
def SDT_SPRetFlag : SDTypeProfile<0, 0, []>;
def retflag : SDNode<"SPISD::RET_FLAG", SDT_SPRetFlag,
[SDNPHasChain, SDNPOptInFlag]>;
//===----------------------------------------------------------------------===//
// SPARC Flag Conditions
//===----------------------------------------------------------------------===//
// Note that these values must be kept in sync with the CCOp::CondCode enum
// values.
class ICC_VAL<int N> : PatLeaf<(i32 N)>;
def ICC_NE : ICC_VAL< 9>; // Not Equal
def ICC_E : ICC_VAL< 1>; // Equal
def ICC_G : ICC_VAL<10>; // Greater
def ICC_LE : ICC_VAL< 2>; // Less or Equal
def ICC_GE : ICC_VAL<11>; // Greater or Equal
def ICC_L : ICC_VAL< 3>; // Less
def ICC_GU : ICC_VAL<12>; // Greater Unsigned
def ICC_LEU : ICC_VAL< 4>; // Less or Equal Unsigned
def ICC_CC : ICC_VAL<13>; // Carry Clear/Great or Equal Unsigned
def ICC_CS : ICC_VAL< 5>; // Carry Set/Less Unsigned
def ICC_POS : ICC_VAL<14>; // Positive
def ICC_NEG : ICC_VAL< 6>; // Negative
def ICC_VC : ICC_VAL<15>; // Overflow Clear
def ICC_VS : ICC_VAL< 7>; // Overflow Set
class FCC_VAL<int N> : PatLeaf<(i32 N)>;
def FCC_U : FCC_VAL<23>; // Unordered
def FCC_G : FCC_VAL<22>; // Greater
def FCC_UG : FCC_VAL<21>; // Unordered or Greater
def FCC_L : FCC_VAL<20>; // Less
def FCC_UL : FCC_VAL<19>; // Unordered or Less
def FCC_LG : FCC_VAL<18>; // Less or Greater
def FCC_NE : FCC_VAL<17>; // Not Equal
def FCC_E : FCC_VAL<25>; // Equal
def FCC_UE : FCC_VAL<24>; // Unordered or Equal
def FCC_GE : FCC_VAL<25>; // Greater or Equal
def FCC_UGE : FCC_VAL<26>; // Unordered or Greater or Equal
def FCC_LE : FCC_VAL<27>; // Less or Equal
def FCC_ULE : FCC_VAL<28>; // Unordered or Less or Equal
def FCC_O : FCC_VAL<29>; // Ordered
//===----------------------------------------------------------------------===//
// Instructions
//===----------------------------------------------------------------------===//
// Pseudo instructions.
class Pseudo<dag ops, string asmstr, list<dag> pattern>
: InstSP<ops, asmstr, pattern>;
def ADJCALLSTACKDOWN : Pseudo<(ops i32imm:$amt),
"!ADJCALLSTACKDOWN $amt",
[(callseq_start imm:$amt)]>;
def ADJCALLSTACKUP : Pseudo<(ops i32imm:$amt),
"!ADJCALLSTACKUP $amt",
[(callseq_end imm:$amt)]>;
def IMPLICIT_DEF_Int : Pseudo<(ops IntRegs:$dst),
"!IMPLICIT_DEF $dst",
[(set IntRegs:$dst, (undef))]>;
def IMPLICIT_DEF_FP : Pseudo<(ops FPRegs:$dst), "!IMPLICIT_DEF $dst",
[(set FPRegs:$dst, (undef))]>;
def IMPLICIT_DEF_DFP : Pseudo<(ops DFPRegs:$dst), "!IMPLICIT_DEF $dst",
[(set DFPRegs:$dst, (undef))]>;
// FpMOVD/FpNEGD/FpABSD - These are lowered to single-precision ops by the
// fpmover pass.
let Predicates = [HasNoV9] in { // Only emit these in SP mode.
def FpMOVD : Pseudo<(ops DFPRegs:$dst, DFPRegs:$src),
"!FpMOVD $src, $dst", []>;
def FpNEGD : Pseudo<(ops DFPRegs:$dst, DFPRegs:$src),
"!FpNEGD $src, $dst",
[(set DFPRegs:$dst, (fneg DFPRegs:$src))]>;
def FpABSD : Pseudo<(ops DFPRegs:$dst, DFPRegs:$src),
"!FpABSD $src, $dst",
[(set DFPRegs:$dst, (fabs DFPRegs:$src))]>;
}
// SELECT_CC_* - Used to implement the SELECT_CC DAG operation. Expanded by the
// scheduler into a branch sequence. This has to handle all permutations of
// selection between i32/f32/f64 on ICC and FCC.
let usesCustomDAGSchedInserter = 1, // Expanded by the scheduler.
Predicates = [HasNoV9] in { // V9 has conditional moves
def SELECT_CC_Int_ICC
: Pseudo<(ops IntRegs:$dst, IntRegs:$T, IntRegs:$F, i32imm:$Cond),
"; SELECT_CC_Int_ICC PSEUDO!",
[(set IntRegs:$dst, (SPselecticc IntRegs:$T, IntRegs:$F,
imm:$Cond))]>;
def SELECT_CC_Int_FCC
: Pseudo<(ops IntRegs:$dst, IntRegs:$T, IntRegs:$F, i32imm:$Cond),
"; SELECT_CC_Int_FCC PSEUDO!",
[(set IntRegs:$dst, (SPselectfcc IntRegs:$T, IntRegs:$F,
imm:$Cond))]>;
def SELECT_CC_FP_ICC
: Pseudo<(ops FPRegs:$dst, FPRegs:$T, FPRegs:$F, i32imm:$Cond),
"; SELECT_CC_FP_ICC PSEUDO!",
[(set FPRegs:$dst, (SPselecticc FPRegs:$T, FPRegs:$F,
imm:$Cond))]>;
def SELECT_CC_FP_FCC
: Pseudo<(ops FPRegs:$dst, FPRegs:$T, FPRegs:$F, i32imm:$Cond),
"; SELECT_CC_FP_FCC PSEUDO!",
[(set FPRegs:$dst, (SPselectfcc FPRegs:$T, FPRegs:$F,
imm:$Cond))]>;
def SELECT_CC_DFP_ICC
: Pseudo<(ops DFPRegs:$dst, DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
"; SELECT_CC_DFP_ICC PSEUDO!",
[(set DFPRegs:$dst, (SPselecticc DFPRegs:$T, DFPRegs:$F,
imm:$Cond))]>;
def SELECT_CC_DFP_FCC
: Pseudo<(ops DFPRegs:$dst, DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
"; SELECT_CC_DFP_FCC PSEUDO!",
[(set DFPRegs:$dst, (SPselectfcc DFPRegs:$T, DFPRegs:$F,
imm:$Cond))]>;
}
// Section A.3 - Synthetic Instructions, p. 85
// special cases of JMPL:
let isReturn = 1, isTerminator = 1, hasDelaySlot = 1, noResults = 1 in {
let rd = O7.Num, rs1 = G0.Num, simm13 = 8 in
def RETL: F3_2<2, 0b111000, (ops), "retl", [(retflag)]>;
}
// Section B.1 - Load Integer Instructions, p. 90
def LDSBrr : F3_1<3, 0b001001,
(ops IntRegs:$dst, MEMrr:$addr),
"ldsb [$addr], $dst",
[(set IntRegs:$dst, (sextload ADDRrr:$addr, i8))]>;
def LDSBri : F3_2<3, 0b001001,
(ops IntRegs:$dst, MEMri:$addr),
"ldsb [$addr], $dst",
[(set IntRegs:$dst, (sextload ADDRri:$addr, i8))]>;
def LDSHrr : F3_1<3, 0b001010,
(ops IntRegs:$dst, MEMrr:$addr),
"ldsh [$addr], $dst",
[(set IntRegs:$dst, (sextload ADDRrr:$addr, i16))]>;
def LDSHri : F3_2<3, 0b001010,
(ops IntRegs:$dst, MEMri:$addr),
"ldsh [$addr], $dst",
[(set IntRegs:$dst, (sextload ADDRri:$addr, i16))]>;
def LDUBrr : F3_1<3, 0b000001,
(ops IntRegs:$dst, MEMrr:$addr),
"ldub [$addr], $dst",
[(set IntRegs:$dst, (zextload ADDRrr:$addr, i8))]>;
def LDUBri : F3_2<3, 0b000001,
(ops IntRegs:$dst, MEMri:$addr),
"ldub [$addr], $dst",
[(set IntRegs:$dst, (zextload ADDRri:$addr, i8))]>;
def LDUHrr : F3_1<3, 0b000010,
(ops IntRegs:$dst, MEMrr:$addr),
"lduh [$addr], $dst",
[(set IntRegs:$dst, (zextload ADDRrr:$addr, i16))]>;
def LDUHri : F3_2<3, 0b000010,
(ops IntRegs:$dst, MEMri:$addr),
"lduh [$addr], $dst",
[(set IntRegs:$dst, (zextload ADDRri:$addr, i16))]>;
def LDrr : F3_1<3, 0b000000,
(ops IntRegs:$dst, MEMrr:$addr),
"ld [$addr], $dst",
[(set IntRegs:$dst, (load ADDRrr:$addr))]>;
def LDri : F3_2<3, 0b000000,
(ops IntRegs:$dst, MEMri:$addr),
"ld [$addr], $dst",
[(set IntRegs:$dst, (load ADDRri:$addr))]>;
// Section B.2 - Load Floating-point Instructions, p. 92
def LDFrr : F3_1<3, 0b100000,
(ops FPRegs:$dst, MEMrr:$addr),
"ld [$addr], $dst",
[(set FPRegs:$dst, (load ADDRrr:$addr))]>;
def LDFri : F3_2<3, 0b100000,
(ops FPRegs:$dst, MEMri:$addr),
"ld [$addr], $dst",
[(set FPRegs:$dst, (load ADDRri:$addr))]>;
def LDDFrr : F3_1<3, 0b100011,
(ops DFPRegs:$dst, MEMrr:$addr),
"ldd [$addr], $dst",
[(set DFPRegs:$dst, (load ADDRrr:$addr))]>;
def LDDFri : F3_2<3, 0b100011,
(ops DFPRegs:$dst, MEMri:$addr),
"ldd [$addr], $dst",
[(set DFPRegs:$dst, (load ADDRri:$addr))]>;
// Section B.4 - Store Integer Instructions, p. 95
def STBrr : F3_1<3, 0b000101,
(ops MEMrr:$addr, IntRegs:$src),
"stb $src, [$addr]",
[(truncstore IntRegs:$src, ADDRrr:$addr, i8)]>;
def STBri : F3_2<3, 0b000101,
(ops MEMri:$addr, IntRegs:$src),
"stb $src, [$addr]",
[(truncstore IntRegs:$src, ADDRri:$addr, i8)]>;
def STHrr : F3_1<3, 0b000110,
(ops MEMrr:$addr, IntRegs:$src),
"sth $src, [$addr]",
[(truncstore IntRegs:$src, ADDRrr:$addr, i16)]>;
def STHri : F3_2<3, 0b000110,
(ops MEMri:$addr, IntRegs:$src),
"sth $src, [$addr]",
[(truncstore IntRegs:$src, ADDRri:$addr, i16)]>;
def STrr : F3_1<3, 0b000100,
(ops MEMrr:$addr, IntRegs:$src),
"st $src, [$addr]",
[(store IntRegs:$src, ADDRrr:$addr)]>;
def STri : F3_2<3, 0b000100,
(ops MEMri:$addr, IntRegs:$src),
"st $src, [$addr]",
[(store IntRegs:$src, ADDRri:$addr)]>;
// Section B.5 - Store Floating-point Instructions, p. 97
def STFrr : F3_1<3, 0b100100,
(ops MEMrr:$addr, FPRegs:$src),
"st $src, [$addr]",
[(store FPRegs:$src, ADDRrr:$addr)]>;
def STFri : F3_2<3, 0b100100,
(ops MEMri:$addr, FPRegs:$src),
"st $src, [$addr]",
[(store FPRegs:$src, ADDRri:$addr)]>;
def STDFrr : F3_1<3, 0b100111,
(ops MEMrr:$addr, DFPRegs:$src),
"std $src, [$addr]",
[(store DFPRegs:$src, ADDRrr:$addr)]>;
def STDFri : F3_2<3, 0b100111,
(ops MEMri:$addr, DFPRegs:$src),
"std $src, [$addr]",
[(store DFPRegs:$src, ADDRri:$addr)]>;
// Section B.9 - SETHI Instruction, p. 104
def SETHIi: F2_1<0b100,
(ops IntRegs:$dst, i32imm:$src),
"sethi $src, $dst",
[(set IntRegs:$dst, SETHIimm:$src)]>;
// Section B.10 - NOP Instruction, p. 105
// (It's a special case of SETHI)
let rd = 0, imm22 = 0 in
def NOP : F2_1<0b100, (ops), "nop", []>;
// Section B.11 - Logical Instructions, p. 106
def ANDrr : F3_1<2, 0b000001,
(ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
"and $b, $c, $dst",
[(set IntRegs:$dst, (and IntRegs:$b, IntRegs:$c))]>;
def ANDri : F3_2<2, 0b000001,
(ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
"and $b, $c, $dst",
[(set IntRegs:$dst, (and IntRegs:$b, simm13:$c))]>;
def ANDNrr : F3_1<2, 0b000101,
(ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
"andn $b, $c, $dst",
[(set IntRegs:$dst, (and IntRegs:$b, (not IntRegs:$c)))]>;
def ANDNri : F3_2<2, 0b000101,
(ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
"andn $b, $c, $dst", []>;
def ORrr : F3_1<2, 0b000010,
(ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
"or $b, $c, $dst",
[(set IntRegs:$dst, (or IntRegs:$b, IntRegs:$c))]>;
def ORri : F3_2<2, 0b000010,
(ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
"or $b, $c, $dst",
[(set IntRegs:$dst, (or IntRegs:$b, simm13:$c))]>;
def ORNrr : F3_1<2, 0b000110,
(ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
"orn $b, $c, $dst",
[(set IntRegs:$dst, (or IntRegs:$b, (not IntRegs:$c)))]>;
def ORNri : F3_2<2, 0b000110,
(ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
"orn $b, $c, $dst", []>;
def XORrr : F3_1<2, 0b000011,
(ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
"xor $b, $c, $dst",
[(set IntRegs:$dst, (xor IntRegs:$b, IntRegs:$c))]>;
def XORri : F3_2<2, 0b000011,
(ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
"xor $b, $c, $dst",
[(set IntRegs:$dst, (xor IntRegs:$b, simm13:$c))]>;
def XNORrr : F3_1<2, 0b000111,
(ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
"xnor $b, $c, $dst",
[(set IntRegs:$dst, (not (xor IntRegs:$b, IntRegs:$c)))]>;
def XNORri : F3_2<2, 0b000111,
(ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
"xnor $b, $c, $dst", []>;
// Section B.12 - Shift Instructions, p. 107
def SLLrr : F3_1<2, 0b100101,
(ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
"sll $b, $c, $dst",
[(set IntRegs:$dst, (shl IntRegs:$b, IntRegs:$c))]>;
def SLLri : F3_2<2, 0b100101,
(ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
"sll $b, $c, $dst",
[(set IntRegs:$dst, (shl IntRegs:$b, simm13:$c))]>;
def SRLrr : F3_1<2, 0b100110,
(ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
"srl $b, $c, $dst",
[(set IntRegs:$dst, (srl IntRegs:$b, IntRegs:$c))]>;
def SRLri : F3_2<2, 0b100110,
(ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
"srl $b, $c, $dst",
[(set IntRegs:$dst, (srl IntRegs:$b, simm13:$c))]>;
def SRArr : F3_1<2, 0b100111,
(ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
"sra $b, $c, $dst",
[(set IntRegs:$dst, (sra IntRegs:$b, IntRegs:$c))]>;
def SRAri : F3_2<2, 0b100111,
(ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
"sra $b, $c, $dst",
[(set IntRegs:$dst, (sra IntRegs:$b, simm13:$c))]>;
// Section B.13 - Add Instructions, p. 108
def ADDrr : F3_1<2, 0b000000,
(ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
"add $b, $c, $dst",
[(set IntRegs:$dst, (add IntRegs:$b, IntRegs:$c))]>;
def ADDri : F3_2<2, 0b000000,
(ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
"add $b, $c, $dst",
[(set IntRegs:$dst, (add IntRegs:$b, simm13:$c))]>;
// "LEA" forms of add (patterns to make tblgen happy)
def LEA_ADDri : F3_2<2, 0b000000,
(ops IntRegs:$dst, MEMri:$addr),
"add ${addr:arith}, $dst",
[(set IntRegs:$dst, ADDRri:$addr)]>;
def ADDCCrr : F3_1<2, 0b010000,
(ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
"addcc $b, $c, $dst",
[(set IntRegs:$dst, (addc IntRegs:$b, IntRegs:$c))]>;
def ADDCCri : F3_2<2, 0b010000,
(ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
"addcc $b, $c, $dst",
[(set IntRegs:$dst, (addc IntRegs:$b, simm13:$c))]>;
def ADDXrr : F3_1<2, 0b001000,
(ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
"addx $b, $c, $dst",
[(set IntRegs:$dst, (adde IntRegs:$b, IntRegs:$c))]>;
def ADDXri : F3_2<2, 0b001000,
(ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
"addx $b, $c, $dst",
[(set IntRegs:$dst, (adde IntRegs:$b, simm13:$c))]>;
// Section B.15 - Subtract Instructions, p. 110
def SUBrr : F3_1<2, 0b000100,
(ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
"sub $b, $c, $dst",
[(set IntRegs:$dst, (sub IntRegs:$b, IntRegs:$c))]>;
def SUBri : F3_2<2, 0b000100,
(ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
"sub $b, $c, $dst",
[(set IntRegs:$dst, (sub IntRegs:$b, simm13:$c))]>;
def SUBXrr : F3_1<2, 0b001100,
(ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
"subx $b, $c, $dst",
[(set IntRegs:$dst, (sube IntRegs:$b, IntRegs:$c))]>;
def SUBXri : F3_2<2, 0b001100,
(ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
"subx $b, $c, $dst",
[(set IntRegs:$dst, (sube IntRegs:$b, simm13:$c))]>;
def SUBCCrr : F3_1<2, 0b010100,
(ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
"subcc $b, $c, $dst",
[(set IntRegs:$dst, (SPcmpicc IntRegs:$b, IntRegs:$c))]>;
def SUBCCri : F3_2<2, 0b010100,
(ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
"subcc $b, $c, $dst",
[(set IntRegs:$dst, (SPcmpicc IntRegs:$b, simm13:$c))]>;
def SUBXCCrr: F3_1<2, 0b011100,
(ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
"subxcc $b, $c, $dst", []>;
// Section B.18 - Multiply Instructions, p. 113
def UMULrr : F3_1<2, 0b001010,
(ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
"umul $b, $c, $dst", []>;
def UMULri : F3_2<2, 0b001010,
(ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
"umul $b, $c, $dst", []>;
def SMULrr : F3_1<2, 0b001011,
(ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
"smul $b, $c, $dst",
[(set IntRegs:$dst, (mul IntRegs:$b, IntRegs:$c))]>;
def SMULri : F3_2<2, 0b001011,
(ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
"smul $b, $c, $dst",
[(set IntRegs:$dst, (mul IntRegs:$b, simm13:$c))]>;
/*
//===-------------------------
// Sparc Example
defm intinst<id OPC1, id OPC2, bits Opc, string asmstr, SDNode code> {
def OPC1 : F3_1<2, Opc, asmstr, (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
[(set IntRegs:$dst, (code IntRegs:$b, IntRegs:$c))]>;
def OPC2 : F3_2<2, Opc, asmstr, (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
[(set IntRegs:$dst, (code IntRegs:$b, simm13:$c))]>;
}
defm intinst_np<id OPC1, id OPC2, bits Opc, string asmstr> {
def OPC1 : F3_1<2, Opc, asmstr, (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
[]>;
def OPC2 : F3_2<2, Opc, asmstr, (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
[]>;
}
def intinstnp< ADDXrr, ADDXri, 0b001000, "addx $b, $c, $dst">;
def intinst < SUBrr, SUBri, 0b000100, "sub $b, $c, $dst", sub>;
def intinstnp< SUBXrr, SUBXri, 0b001100, "subx $b, $c, $dst">;
def intinst <SUBCCrr, SUBCCri, 0b010100, "subcc $b, $c, $dst", SPcmpicc>;
def intinst < SMULrr, SMULri, 0b001011, "smul $b, $c, $dst", mul>;
//===-------------------------
// X86 Example
defm cmov32<id OPC1, id OPC2, int opc, string asmstr, PatLeaf cond> {
def OPC1 : I<opc, MRMSrcReg, (ops R32:$dst, R32:$src1, R32:$src2),
asmstr+" {$src2, $dst|$dst, $src2}",
[(set R32:$dst, (X86cmov R32:$src1, R32:$src2, cond))]>, TB;
def OPC2 : I<opc, MRMSrcMem, (ops R32:$dst, R32:$src1, i32mem:$src2),
asmstr+" {$src2, $dst|$dst, $src2}",
[(set R32:$dst, (X86cmov R32:$src1,
(loadi32 addr:$src2), cond))]>, TB;
}
def cmov<CMOVL32rr, CMOVL32rm, 0x4C, "cmovl", X86_COND_L>;
def cmov<CMOVB32rr, CMOVB32rm, 0x4C, "cmovb", X86_COND_B>;
//===-------------------------
// PPC Example
def fpunop<id OPC1, id OPC2, id FORM, int op1, int op2, int op3, string asmstr,
SDNode code> {
def OPC1 : FORM<op1, op3, (ops F4RC:$frD, F4RC:$frB),
asmstr+" $frD, $frB", FPGeneral,
[(set F4RC:$frD, (code F4RC:$frB))]>;
def OPC2 : FORM<op2, op3, (ops F8RC:$frD, F8RC:$frB),
asmstr+" $frD, $frB", FPGeneral,
[(set F8RC:$frD, (code F8RC:$frB))]>;
}
def fpunop< FABSS, FABSD, XForm_26, 63, 63, 264, "fabs", fabs>;
def fpunop<FNABSS, FNABSD, XForm_26, 63, 63, 136, "fnabs", fnabs>;
def fpunop< FNEGS, FNEGD, XForm_26, 63, 63, 40, "fneg", fneg>;
*/
// Section B.19 - Divide Instructions, p. 115
def UDIVrr : F3_1<2, 0b001110,
(ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
"udiv $b, $c, $dst", []>;
def UDIVri : F3_2<2, 0b001110,
(ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
"udiv $b, $c, $dst", []>;
def SDIVrr : F3_1<2, 0b001111,
(ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
"sdiv $b, $c, $dst", []>;
def SDIVri : F3_2<2, 0b001111,
(ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
"sdiv $b, $c, $dst", []>;
// Section B.20 - SAVE and RESTORE, p. 117
def SAVErr : F3_1<2, 0b111100,
(ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
"save $b, $c, $dst", []>;
def SAVEri : F3_2<2, 0b111100,
(ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
"save $b, $c, $dst", []>;
def RESTORErr : F3_1<2, 0b111101,
(ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
"restore $b, $c, $dst", []>;
def RESTOREri : F3_2<2, 0b111101,
(ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
"restore $b, $c, $dst", []>;
// Section B.21 - Branch on Integer Condition Codes Instructions, p. 119
// conditional branch class:
class BranchSP<bits<4> cc, dag ops, string asmstr, list<dag> pattern>
: F2_2<cc, 0b010, ops, asmstr, pattern> {
let isBranch = 1;
let isTerminator = 1;
let hasDelaySlot = 1;
let noResults = 1;
}
let isBarrier = 1 in
def BA : BranchSP<0b1000, (ops brtarget:$dst),
"ba $dst",
[(br bb:$dst)]>;
// FIXME: the encoding for the JIT should look at the condition field.
def BCOND : BranchSP<0, (ops brtarget:$dst, CCOp:$cc),
"b$cc $dst",
[(SPbricc bb:$dst, imm:$cc)]>;
// Section B.22 - Branch on Floating-point Condition Codes Instructions, p. 121
// floating-point conditional branch class:
class FPBranchSP<bits<4> cc, dag ops, string asmstr, list<dag> pattern>
: F2_2<cc, 0b110, ops, asmstr, pattern> {
let isBranch = 1;
let isTerminator = 1;
let hasDelaySlot = 1;
let noResults = 1;
}
// FIXME: the encoding for the JIT should look at the condition field.
def FBCOND : FPBranchSP<0, (ops brtarget:$dst, CCOp:$cc),
"fb$cc $dst",
[(SPbrfcc bb:$dst, imm:$cc)]>;
// Section B.24 - Call and Link Instruction, p. 125
// This is the only Format 1 instruction
let Uses = [O0, O1, O2, O3, O4, O5],
hasDelaySlot = 1, isCall = 1, noResults = 1,
Defs = [O0, O1, O2, O3, O4, O5, O7, G1, G2, G3, G4, G5, G6, G7,
D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15] in {
def CALL : InstSP<(ops calltarget:$dst),
"call $dst", []> {
bits<30> disp;
let op = 1;
let Inst{29-0} = disp;
}
// indirect calls
def JMPLrr : F3_1<2, 0b111000,
(ops MEMrr:$ptr),
"call $ptr",
[(call ADDRrr:$ptr)]>;
def JMPLri : F3_2<2, 0b111000,
(ops MEMri:$ptr),
"call $ptr",
[(call ADDRri:$ptr)]>;
}
// Section B.28 - Read State Register Instructions
def RDY : F3_1<2, 0b101000,
(ops IntRegs:$dst),
"rd %y, $dst", []>;
// Section B.29 - Write State Register Instructions
def WRYrr : F3_1<2, 0b110000,
(ops IntRegs:$b, IntRegs:$c),
"wr $b, $c, %y", []>;
def WRYri : F3_2<2, 0b110000,
(ops IntRegs:$b, i32imm:$c),
"wr $b, $c, %y", []>;
// Convert Integer to Floating-point Instructions, p. 141
def FITOS : F3_3<2, 0b110100, 0b011000100,
(ops FPRegs:$dst, FPRegs:$src),
"fitos $src, $dst",
[(set FPRegs:$dst, (SPitof FPRegs:$src))]>;
def FITOD : F3_3<2, 0b110100, 0b011001000,
(ops DFPRegs:$dst, FPRegs:$src),
"fitod $src, $dst",
[(set DFPRegs:$dst, (SPitof FPRegs:$src))]>;
// Convert Floating-point to Integer Instructions, p. 142
def FSTOI : F3_3<2, 0b110100, 0b011010001,
(ops FPRegs:$dst, FPRegs:$src),
"fstoi $src, $dst",
[(set FPRegs:$dst, (SPftoi FPRegs:$src))]>;
def FDTOI : F3_3<2, 0b110100, 0b011010010,
(ops FPRegs:$dst, DFPRegs:$src),
"fdtoi $src, $dst",
[(set FPRegs:$dst, (SPftoi DFPRegs:$src))]>;
// Convert between Floating-point Formats Instructions, p. 143
def FSTOD : F3_3<2, 0b110100, 0b011001001,
(ops DFPRegs:$dst, FPRegs:$src),
"fstod $src, $dst",
[(set DFPRegs:$dst, (fextend FPRegs:$src))]>;
def FDTOS : F3_3<2, 0b110100, 0b011000110,
(ops FPRegs:$dst, DFPRegs:$src),
"fdtos $src, $dst",
[(set FPRegs:$dst, (fround DFPRegs:$src))]>;
// Floating-point Move Instructions, p. 144
def FMOVS : F3_3<2, 0b110100, 0b000000001,
(ops FPRegs:$dst, FPRegs:$src),
"fmovs $src, $dst", []>;
def FNEGS : F3_3<2, 0b110100, 0b000000101,
(ops FPRegs:$dst, FPRegs:$src),
"fnegs $src, $dst",
[(set FPRegs:$dst, (fneg FPRegs:$src))]>;
def FABSS : F3_3<2, 0b110100, 0b000001001,
(ops FPRegs:$dst, FPRegs:$src),
"fabss $src, $dst",
[(set FPRegs:$dst, (fabs FPRegs:$src))]>;
// Floating-point Square Root Instructions, p.145
def FSQRTS : F3_3<2, 0b110100, 0b000101001,
(ops FPRegs:$dst, FPRegs:$src),
"fsqrts $src, $dst",
[(set FPRegs:$dst, (fsqrt FPRegs:$src))]>;
def FSQRTD : F3_3<2, 0b110100, 0b000101010,
(ops DFPRegs:$dst, DFPRegs:$src),
"fsqrtd $src, $dst",
[(set DFPRegs:$dst, (fsqrt DFPRegs:$src))]>;
// Floating-point Add and Subtract Instructions, p. 146
def FADDS : F3_3<2, 0b110100, 0b001000001,
(ops FPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
"fadds $src1, $src2, $dst",
[(set FPRegs:$dst, (fadd FPRegs:$src1, FPRegs:$src2))]>;
def FADDD : F3_3<2, 0b110100, 0b001000010,
(ops DFPRegs:$dst, DFPRegs:$src1, DFPRegs:$src2),
"faddd $src1, $src2, $dst",
[(set DFPRegs:$dst, (fadd DFPRegs:$src1, DFPRegs:$src2))]>;
def FSUBS : F3_3<2, 0b110100, 0b001000101,
(ops FPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
"fsubs $src1, $src2, $dst",
[(set FPRegs:$dst, (fsub FPRegs:$src1, FPRegs:$src2))]>;
def FSUBD : F3_3<2, 0b110100, 0b001000110,
(ops DFPRegs:$dst, DFPRegs:$src1, DFPRegs:$src2),
"fsubd $src1, $src2, $dst",
[(set DFPRegs:$dst, (fsub DFPRegs:$src1, DFPRegs:$src2))]>;
// Floating-point Multiply and Divide Instructions, p. 147
def FMULS : F3_3<2, 0b110100, 0b001001001,
(ops FPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
"fmuls $src1, $src2, $dst",
[(set FPRegs:$dst, (fmul FPRegs:$src1, FPRegs:$src2))]>;
def FMULD : F3_3<2, 0b110100, 0b001001010,
(ops DFPRegs:$dst, DFPRegs:$src1, DFPRegs:$src2),
"fmuld $src1, $src2, $dst",
[(set DFPRegs:$dst, (fmul DFPRegs:$src1, DFPRegs:$src2))]>;
def FSMULD : F3_3<2, 0b110100, 0b001101001,
(ops DFPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
"fsmuld $src1, $src2, $dst",
[(set DFPRegs:$dst, (fmul (fextend FPRegs:$src1),
(fextend FPRegs:$src2)))]>;
def FDIVS : F3_3<2, 0b110100, 0b001001101,
(ops FPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
"fdivs $src1, $src2, $dst",
[(set FPRegs:$dst, (fdiv FPRegs:$src1, FPRegs:$src2))]>;
def FDIVD : F3_3<2, 0b110100, 0b001001110,
(ops DFPRegs:$dst, DFPRegs:$src1, DFPRegs:$src2),
"fdivd $src1, $src2, $dst",
[(set DFPRegs:$dst, (fdiv DFPRegs:$src1, DFPRegs:$src2))]>;
// Floating-point Compare Instructions, p. 148
// Note: the 2nd template arg is different for these guys.
// Note 2: the result of a FCMP is not available until the 2nd cycle
// after the instr is retired, but there is no interlock. This behavior
// is modelled with a forced noop after the instruction.
def FCMPS : F3_3<2, 0b110101, 0b001010001,
(ops FPRegs:$src1, FPRegs:$src2),
"fcmps $src1, $src2\n\tnop",
[(SPcmpfcc FPRegs:$src1, FPRegs:$src2)]>;
def FCMPD : F3_3<2, 0b110101, 0b001010010,
(ops DFPRegs:$src1, DFPRegs:$src2),
"fcmpd $src1, $src2\n\tnop",
[(SPcmpfcc DFPRegs:$src1, DFPRegs:$src2)]>;
//===----------------------------------------------------------------------===//
// V9 Instructions
//===----------------------------------------------------------------------===//
// V9 Conditional Moves.
let Predicates = [HasV9], isTwoAddress = 1 in {
// Move Integer Register on Condition (MOVcc) p. 194 of the V9 manual.
// FIXME: Add instruction encodings for the JIT some day.
def MOVICCrr
: Pseudo<(ops IntRegs:$dst, IntRegs:$T, IntRegs:$F, CCOp:$cc),
"mov$cc %icc, $F, $dst",
[(set IntRegs:$dst,
(SPselecticc IntRegs:$F, IntRegs:$T, imm:$cc))]>;
def MOVICCri
: Pseudo<(ops IntRegs:$dst, IntRegs:$T, i32imm:$F, CCOp:$cc),
"mov$cc %icc, $F, $dst",
[(set IntRegs:$dst,
(SPselecticc simm11:$F, IntRegs:$T, imm:$cc))]>;
def MOVFCCrr
: Pseudo<(ops IntRegs:$dst, IntRegs:$T, IntRegs:$F, CCOp:$cc),
"mov$cc %fcc0, $F, $dst",
[(set IntRegs:$dst,
(SPselectfcc IntRegs:$F, IntRegs:$T, imm:$cc))]>;
def MOVFCCri
: Pseudo<(ops IntRegs:$dst, IntRegs:$T, i32imm:$F, CCOp:$cc),
"mov$cc %fcc0, $F, $dst",
[(set IntRegs:$dst,
(SPselectfcc simm11:$F, IntRegs:$T, imm:$cc))]>;
def FMOVS_ICC
: Pseudo<(ops FPRegs:$dst, FPRegs:$T, FPRegs:$F, CCOp:$cc),
"fmovs$cc %icc, $F, $dst",
[(set FPRegs:$dst,
(SPselecticc FPRegs:$F, FPRegs:$T, imm:$cc))]>;
def FMOVD_ICC
: Pseudo<(ops DFPRegs:$dst, DFPRegs:$T, DFPRegs:$F, CCOp:$cc),
"fmovd$cc %icc, $F, $dst",
[(set DFPRegs:$dst,
(SPselecticc DFPRegs:$F, DFPRegs:$T, imm:$cc))]>;
def FMOVS_FCC
: Pseudo<(ops FPRegs:$dst, FPRegs:$T, FPRegs:$F, CCOp:$cc),
"fmovs$cc %fcc0, $F, $dst",
[(set FPRegs:$dst,
(SPselectfcc FPRegs:$F, FPRegs:$T, imm:$cc))]>;
def FMOVD_FCC
: Pseudo<(ops DFPRegs:$dst, DFPRegs:$T, DFPRegs:$F, CCOp:$cc),
"fmovd$cc %fcc0, $F, $dst",
[(set DFPRegs:$dst,
(SPselectfcc DFPRegs:$F, DFPRegs:$T, imm:$cc))]>;
}
// Floating-Point Move Instructions, p. 164 of the V9 manual.
let Predicates = [HasV9] in {
def FMOVD : F3_3<2, 0b110100, 0b000000010,
(ops DFPRegs:$dst, DFPRegs:$src),
"fmovd $src, $dst", []>;
def FNEGD : F3_3<2, 0b110100, 0b000000110,
(ops DFPRegs:$dst, DFPRegs:$src),
"fnegd $src, $dst",
[(set DFPRegs:$dst, (fneg DFPRegs:$src))]>;
def FABSD : F3_3<2, 0b110100, 0b000001010,
(ops DFPRegs:$dst, DFPRegs:$src),
"fabsd $src, $dst",
[(set DFPRegs:$dst, (fabs DFPRegs:$src))]>;
}
// POPCrr - This does a ctpop of a 64-bit register. As such, we have to clear
// the top 32-bits before using it. To do this clearing, we use a SLLri X,0.
def POPCrr : F3_1<2, 0b101110,
(ops IntRegs:$dst, IntRegs:$src),
"popc $src, $dst", []>, Requires<[HasV9]>;
def : Pat<(ctpop IntRegs:$src),
(POPCrr (SLLri IntRegs:$src, 0))>;
//===----------------------------------------------------------------------===//
// Non-Instruction Patterns
//===----------------------------------------------------------------------===//
// Small immediates.
def : Pat<(i32 simm13:$val),
(ORri G0, imm:$val)>;
// Arbitrary immediates.
def : Pat<(i32 imm:$val),
(ORri (SETHIi (HI22 imm:$val)), (LO10 imm:$val))>;
// subc
def : Pat<(subc IntRegs:$b, IntRegs:$c),
(SUBCCrr IntRegs:$b, IntRegs:$c)>;
def : Pat<(subc IntRegs:$b, simm13:$val),
(SUBCCri IntRegs:$b, imm:$val)>;
// Global addresses, constant pool entries
def : Pat<(SPhi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>;
def : Pat<(SPlo tglobaladdr:$in), (ORri G0, tglobaladdr:$in)>;
def : Pat<(SPhi tconstpool:$in), (SETHIi tconstpool:$in)>;
def : Pat<(SPlo tconstpool:$in), (ORri G0, tconstpool:$in)>;
// Add reg, lo. This is used when taking the addr of a global/constpool entry.
def : Pat<(add IntRegs:$r, (SPlo tglobaladdr:$in)),
(ADDri IntRegs:$r, tglobaladdr:$in)>;
def : Pat<(add IntRegs:$r, (SPlo tconstpool:$in)),
(ADDri IntRegs:$r, tconstpool:$in)>;
// Calls:
def : Pat<(call tglobaladdr:$dst),
(CALL tglobaladdr:$dst)>;
def : Pat<(call texternalsym:$dst),
(CALL texternalsym:$dst)>;
def : Pat<(ret), (RETL)>;
// Map integer extload's to zextloads.
def : Pat<(i32 (extload ADDRrr:$src, i1)), (LDUBrr ADDRrr:$src)>;
def : Pat<(i32 (extload ADDRri:$src, i1)), (LDUBri ADDRri:$src)>;
def : Pat<(i32 (extload ADDRrr:$src, i8)), (LDUBrr ADDRrr:$src)>;
def : Pat<(i32 (extload ADDRri:$src, i8)), (LDUBri ADDRri:$src)>;
def : Pat<(i32 (extload ADDRrr:$src, i16)), (LDUHrr ADDRrr:$src)>;
def : Pat<(i32 (extload ADDRri:$src, i16)), (LDUHri ADDRri:$src)>;
// zextload bool -> zextload byte
def : Pat<(i32 (zextload ADDRrr:$src, i1)), (LDUBrr ADDRrr:$src)>;
def : Pat<(i32 (zextload ADDRri:$src, i1)), (LDUBri ADDRri:$src)>;
// truncstore bool -> truncstore byte.
def : Pat<(truncstore IntRegs:$src, ADDRrr:$addr, i1),
(STBrr ADDRrr:$addr, IntRegs:$src)>;
def : Pat<(truncstore IntRegs:$src, ADDRri:$addr, i1),
(STBri ADDRri:$addr, IntRegs:$src)>;