mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-16 11:30:51 +00:00
ac03e736c7
specified in the same file that the library itself is created. This is more idiomatic for CMake builds, and also allows us to correctly specify dependencies that are missed due to bugs in the GenLibDeps perl script, or change from compiler to compiler. On Linux, this returns CMake to a place where it can relably rebuild several targets of LLVM. I have tried not to change the dependencies from the ones in the current auto-generated file. The only places I've really diverged are in places where I was seeing link failures, and added a dependency. The goal of this patch is not to start changing the dependencies, merely to move them into the correct location, and an explicit form that we can control and change when necessary. This also removes a serialization point in the build because we don't have to scan all the libraries before we begin building various tools. We no longer have a step of the build that regenerates a file inside the source tree. A few other associated cleanups fall out of this. This isn't really finished yet though. After talking to dgregor he urged switching to a single CMake macro to construct libraries with both sources and dependencies in the arguments. Migrating from the two macros to that style will be a follow-up patch. Also, llvm-config is still generated with GenLibDeps.pl, which means it still has slightly buggy dependencies. The internal CMake 'llvm-config-like' macro uses the correct explicitly specified dependencies however. A future patch will switch llvm-config generation (when using CMake) to be based on these deps as well. This may well break Windows. I'm getting a machine set up now to dig into any failures there. If anyone can chime in with problems they see or ideas of how to solve them for Windows, much appreciated. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136433 91177308-0d34-0410-b5e6-96231b3b80d8 |
||
---|---|---|
.. | ||
MCTargetDesc | ||
TargetInfo | ||
CMakeLists.txt | ||
DelaySlotFiller.cpp | ||
FPMover.cpp | ||
Makefile | ||
README.txt | ||
Sparc.h | ||
Sparc.td | ||
SparcAsmPrinter.cpp | ||
SparcCallingConv.td | ||
SparcFrameLowering.cpp | ||
SparcFrameLowering.h | ||
SparcInstrFormats.td | ||
SparcInstrInfo.cpp | ||
SparcInstrInfo.h | ||
SparcInstrInfo.td | ||
SparcISelDAGToDAG.cpp | ||
SparcISelLowering.cpp | ||
SparcISelLowering.h | ||
SparcMachineFunctionInfo.h | ||
SparcRegisterInfo.cpp | ||
SparcRegisterInfo.h | ||
SparcRegisterInfo.td | ||
SparcSelectionDAGInfo.cpp | ||
SparcSelectionDAGInfo.h | ||
SparcSubtarget.cpp | ||
SparcSubtarget.h | ||
SparcTargetMachine.cpp | ||
SparcTargetMachine.h |
To-do ----- * Keep the address of the constant pool in a register instead of forming its address all of the time. * We can fold small constant offsets into the %hi/%lo references to constant pool addresses as well. * When in V9 mode, register allocate %icc[0-3]. * Add support for isel'ing UMUL_LOHI instead of marking it as Expand. * Emit the 'Branch on Integer Register with Prediction' instructions. It's not clear how to write a pattern for this though: float %t1(int %a, int* %p) { %C = seteq int %a, 0 br bool %C, label %T, label %F T: store int 123, int* %p br label %F F: ret float undef } codegens to this: t1: save -96, %o6, %o6 1) subcc %i0, 0, %l0 1) bne .LBBt1_2 ! F nop .LBBt1_1: ! T or %g0, 123, %l0 st %l0, [%i1] .LBBt1_2: ! F restore %g0, %g0, %g0 retl nop 1) should be replaced with a brz in V9 mode. * Same as above, but emit conditional move on register zero (p192) in V9 mode. Testcase: int %t1(int %a, int %b) { %C = seteq int %a, 0 %D = select bool %C, int %a, int %b ret int %D } * Emit MULX/[SU]DIVX instructions in V9 mode instead of fiddling with the Y register, if they are faster. * Codegen bswap(load)/store(bswap) -> load/store ASI * Implement frame pointer elimination, e.g. eliminate save/restore for leaf fns. * Fill delay slots * Implement JIT support