llvm-6502/lib/CodeGen/SelectionDAG/SelectionDAG.cpp
Chris Lattner 01b3d73c20 Add FP versions of the binary operators, keeping the int and fp worlds seperate.
Though I have done extensive testing, it is possible that this will break
things in configs I can't test.  Please let me know if this causes a problem
and I'll fix it ASAP.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@23504 91177308-0d34-0410-b5e6-96231b3b80d8
2005-09-28 22:28:18 +00:00

2533 lines
94 KiB
C++

//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This implements the SelectionDAG class.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/Constants.h"
#include "llvm/GlobalValue.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Target/MRegisterInfo.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include <iostream>
#include <set>
#include <cmath>
#include <algorithm>
using namespace llvm;
// Temporary boolean for testing the dag combiner
namespace llvm {
extern bool CombinerEnabled;
}
static bool isCommutativeBinOp(unsigned Opcode) {
switch (Opcode) {
case ISD::ADD:
case ISD::MUL:
case ISD::FADD:
case ISD::FMUL:
case ISD::AND:
case ISD::OR:
case ISD::XOR: return true;
default: return false; // FIXME: Need commutative info for user ops!
}
}
static bool isAssociativeBinOp(unsigned Opcode) {
switch (Opcode) {
case ISD::ADD:
case ISD::MUL:
case ISD::AND:
case ISD::OR:
case ISD::XOR: return true;
default: return false; // FIXME: Need associative info for user ops!
}
}
// isInvertibleForFree - Return true if there is no cost to emitting the logical
// inverse of this node.
static bool isInvertibleForFree(SDOperand N) {
if (isa<ConstantSDNode>(N.Val)) return true;
if (N.Val->getOpcode() == ISD::SETCC && N.Val->hasOneUse())
return true;
return false;
}
//===----------------------------------------------------------------------===//
// ConstantFPSDNode Class
//===----------------------------------------------------------------------===//
/// isExactlyValue - We don't rely on operator== working on double values, as
/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
/// As such, this method can be used to do an exact bit-for-bit comparison of
/// two floating point values.
bool ConstantFPSDNode::isExactlyValue(double V) const {
return DoubleToBits(V) == DoubleToBits(Value);
}
//===----------------------------------------------------------------------===//
// ISD Class
//===----------------------------------------------------------------------===//
/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
/// when given the operation for (X op Y).
ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
// To perform this operation, we just need to swap the L and G bits of the
// operation.
unsigned OldL = (Operation >> 2) & 1;
unsigned OldG = (Operation >> 1) & 1;
return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits
(OldL << 1) | // New G bit
(OldG << 2)); // New L bit.
}
/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
/// 'op' is a valid SetCC operation.
ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
unsigned Operation = Op;
if (isInteger)
Operation ^= 7; // Flip L, G, E bits, but not U.
else
Operation ^= 15; // Flip all of the condition bits.
if (Operation > ISD::SETTRUE2)
Operation &= ~8; // Don't let N and U bits get set.
return ISD::CondCode(Operation);
}
/// isSignedOp - For an integer comparison, return 1 if the comparison is a
/// signed operation and 2 if the result is an unsigned comparison. Return zero
/// if the operation does not depend on the sign of the input (setne and seteq).
static int isSignedOp(ISD::CondCode Opcode) {
switch (Opcode) {
default: assert(0 && "Illegal integer setcc operation!");
case ISD::SETEQ:
case ISD::SETNE: return 0;
case ISD::SETLT:
case ISD::SETLE:
case ISD::SETGT:
case ISD::SETGE: return 1;
case ISD::SETULT:
case ISD::SETULE:
case ISD::SETUGT:
case ISD::SETUGE: return 2;
}
}
/// getSetCCOrOperation - Return the result of a logical OR between different
/// comparisons of identical values: ((X op1 Y) | (X op2 Y)). This function
/// returns SETCC_INVALID if it is not possible to represent the resultant
/// comparison.
ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
bool isInteger) {
if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
// Cannot fold a signed integer setcc with an unsigned integer setcc.
return ISD::SETCC_INVALID;
unsigned Op = Op1 | Op2; // Combine all of the condition bits.
// If the N and U bits get set then the resultant comparison DOES suddenly
// care about orderedness, and is true when ordered.
if (Op > ISD::SETTRUE2)
Op &= ~16; // Clear the N bit.
return ISD::CondCode(Op);
}
/// getSetCCAndOperation - Return the result of a logical AND between different
/// comparisons of identical values: ((X op1 Y) & (X op2 Y)). This
/// function returns zero if it is not possible to represent the resultant
/// comparison.
ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
bool isInteger) {
if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
// Cannot fold a signed setcc with an unsigned setcc.
return ISD::SETCC_INVALID;
// Combine all of the condition bits.
return ISD::CondCode(Op1 & Op2);
}
const TargetMachine &SelectionDAG::getTarget() const {
return TLI.getTargetMachine();
}
//===----------------------------------------------------------------------===//
// SelectionDAG Class
//===----------------------------------------------------------------------===//
/// RemoveDeadNodes - This method deletes all unreachable nodes in the
/// SelectionDAG, including nodes (like loads) that have uses of their token
/// chain but no other uses and no side effect. If a node is passed in as an
/// argument, it is used as the seed for node deletion.
void SelectionDAG::RemoveDeadNodes(SDNode *N) {
std::set<SDNode*> AllNodeSet(AllNodes.begin(), AllNodes.end());
// Create a dummy node (which is not added to allnodes), that adds a reference
// to the root node, preventing it from being deleted.
SDNode *DummyNode = new SDNode(ISD::EntryToken, getRoot());
// If we have a hint to start from, use it.
if (N) DeleteNodeIfDead(N, &AllNodeSet);
Restart:
unsigned NumNodes = AllNodeSet.size();
for (std::set<SDNode*>::iterator I = AllNodeSet.begin(), E = AllNodeSet.end();
I != E; ++I) {
// Try to delete this node.
DeleteNodeIfDead(*I, &AllNodeSet);
// If we actually deleted any nodes, do not use invalid iterators in
// AllNodeSet.
if (AllNodeSet.size() != NumNodes)
goto Restart;
}
// Restore AllNodes.
if (AllNodes.size() != NumNodes)
AllNodes.assign(AllNodeSet.begin(), AllNodeSet.end());
// If the root changed (e.g. it was a dead load, update the root).
setRoot(DummyNode->getOperand(0));
// Now that we are done with the dummy node, delete it.
DummyNode->getOperand(0).Val->removeUser(DummyNode);
delete DummyNode;
}
void SelectionDAG::DeleteNodeIfDead(SDNode *N, void *NodeSet) {
if (!N->use_empty())
return;
// Okay, we really are going to delete this node. First take this out of the
// appropriate CSE map.
RemoveNodeFromCSEMaps(N);
// Next, brutally remove the operand list. This is safe to do, as there are
// no cycles in the graph.
while (!N->Operands.empty()) {
SDNode *O = N->Operands.back().Val;
N->Operands.pop_back();
O->removeUser(N);
// Now that we removed this operand, see if there are no uses of it left.
DeleteNodeIfDead(O, NodeSet);
}
// Remove the node from the nodes set and delete it.
std::set<SDNode*> &AllNodeSet = *(std::set<SDNode*>*)NodeSet;
AllNodeSet.erase(N);
// Now that the node is gone, check to see if any of the operands of this node
// are dead now.
delete N;
}
void SelectionDAG::DeleteNode(SDNode *N) {
assert(N->use_empty() && "Cannot delete a node that is not dead!");
// First take this out of the appropriate CSE map.
RemoveNodeFromCSEMaps(N);
// Finally, remove uses due to operands of this node, remove from the
// AllNodes list, and delete the node.
DeleteNodeNotInCSEMaps(N);
}
void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
// Remove it from the AllNodes list.
for (std::vector<SDNode*>::iterator I = AllNodes.begin(); ; ++I) {
assert(I != AllNodes.end() && "Node not in AllNodes list??");
if (*I == N) {
// Erase from the vector, which is not ordered.
std::swap(*I, AllNodes.back());
AllNodes.pop_back();
break;
}
}
// Drop all of the operands and decrement used nodes use counts.
while (!N->Operands.empty()) {
SDNode *O = N->Operands.back().Val;
N->Operands.pop_back();
O->removeUser(N);
}
delete N;
}
/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
/// correspond to it. This is useful when we're about to delete or repurpose
/// the node. We don't want future request for structurally identical nodes
/// to return N anymore.
void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
bool Erased = false;
switch (N->getOpcode()) {
case ISD::Constant:
Erased = Constants.erase(std::make_pair(cast<ConstantSDNode>(N)->getValue(),
N->getValueType(0)));
break;
case ISD::TargetConstant:
Erased = TargetConstants.erase(std::make_pair(
cast<ConstantSDNode>(N)->getValue(),
N->getValueType(0)));
break;
case ISD::ConstantFP: {
uint64_t V = DoubleToBits(cast<ConstantFPSDNode>(N)->getValue());
Erased = ConstantFPs.erase(std::make_pair(V, N->getValueType(0)));
break;
}
case ISD::CONDCODE:
assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
"Cond code doesn't exist!");
Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
break;
case ISD::GlobalAddress:
Erased = GlobalValues.erase(cast<GlobalAddressSDNode>(N)->getGlobal());
break;
case ISD::TargetGlobalAddress:
Erased =TargetGlobalValues.erase(cast<GlobalAddressSDNode>(N)->getGlobal());
break;
case ISD::FrameIndex:
Erased = FrameIndices.erase(cast<FrameIndexSDNode>(N)->getIndex());
break;
case ISD::TargetFrameIndex:
Erased = TargetFrameIndices.erase(cast<FrameIndexSDNode>(N)->getIndex());
break;
case ISD::ConstantPool:
Erased = ConstantPoolIndices.erase(cast<ConstantPoolSDNode>(N)->get());
break;
case ISD::TargetConstantPool:
Erased =TargetConstantPoolIndices.erase(cast<ConstantPoolSDNode>(N)->get());
break;
case ISD::BasicBlock:
Erased = BBNodes.erase(cast<BasicBlockSDNode>(N)->getBasicBlock());
break;
case ISD::ExternalSymbol:
Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
break;
case ISD::VALUETYPE:
Erased = ValueTypeNodes[cast<VTSDNode>(N)->getVT()] != 0;
ValueTypeNodes[cast<VTSDNode>(N)->getVT()] = 0;
break;
case ISD::Register:
Erased = RegNodes.erase(std::make_pair(cast<RegisterSDNode>(N)->getReg(),
N->getValueType(0)));
break;
case ISD::SRCVALUE: {
SrcValueSDNode *SVN = cast<SrcValueSDNode>(N);
Erased =ValueNodes.erase(std::make_pair(SVN->getValue(), SVN->getOffset()));
break;
}
case ISD::LOAD:
Erased = Loads.erase(std::make_pair(N->getOperand(1),
std::make_pair(N->getOperand(0),
N->getValueType(0))));
break;
default:
if (N->getNumValues() == 1) {
if (N->getNumOperands() == 0) {
Erased = NullaryOps.erase(std::make_pair(N->getOpcode(),
N->getValueType(0)));
} else if (N->getNumOperands() == 1) {
Erased =
UnaryOps.erase(std::make_pair(N->getOpcode(),
std::make_pair(N->getOperand(0),
N->getValueType(0))));
} else if (N->getNumOperands() == 2) {
Erased =
BinaryOps.erase(std::make_pair(N->getOpcode(),
std::make_pair(N->getOperand(0),
N->getOperand(1))));
} else {
std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
Erased =
OneResultNodes.erase(std::make_pair(N->getOpcode(),
std::make_pair(N->getValueType(0),
Ops)));
}
} else {
// Remove the node from the ArbitraryNodes map.
std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
Erased =
ArbitraryNodes.erase(std::make_pair(N->getOpcode(),
std::make_pair(RV, Ops)));
}
break;
}
#ifndef NDEBUG
// Verify that the node was actually in one of the CSE maps, unless it has a
// flag result (which cannot be CSE'd) or is one of the special cases that are
// not subject to CSE.
if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
N->getOpcode() != ISD::CALL && N->getOpcode() != ISD::CALLSEQ_START &&
N->getOpcode() != ISD::CALLSEQ_END && !N->isTargetOpcode()) {
N->dump();
assert(0 && "Node is not in map!");
}
#endif
}
/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps. It
/// has been taken out and modified in some way. If the specified node already
/// exists in the CSE maps, do not modify the maps, but return the existing node
/// instead. If it doesn't exist, add it and return null.
///
SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
assert(N->getNumOperands() && "This is a leaf node!");
if (N->getOpcode() == ISD::LOAD) {
SDNode *&L = Loads[std::make_pair(N->getOperand(1),
std::make_pair(N->getOperand(0),
N->getValueType(0)))];
if (L) return L;
L = N;
} else if (N->getNumOperands() == 1) {
SDNode *&U = UnaryOps[std::make_pair(N->getOpcode(),
std::make_pair(N->getOperand(0),
N->getValueType(0)))];
if (U) return U;
U = N;
} else if (N->getNumOperands() == 2) {
SDNode *&B = BinaryOps[std::make_pair(N->getOpcode(),
std::make_pair(N->getOperand(0),
N->getOperand(1)))];
if (B) return B;
B = N;
} else if (N->getNumValues() == 1) {
std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
SDNode *&ORN = OneResultNodes[std::make_pair(N->getOpcode(),
std::make_pair(N->getValueType(0), Ops))];
if (ORN) return ORN;
ORN = N;
} else {
// Remove the node from the ArbitraryNodes map.
std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
SDNode *&AN = ArbitraryNodes[std::make_pair(N->getOpcode(),
std::make_pair(RV, Ops))];
if (AN) return AN;
AN = N;
}
return 0;
}
SelectionDAG::~SelectionDAG() {
for (unsigned i = 0, e = AllNodes.size(); i != e; ++i)
delete AllNodes[i];
}
SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
if (Op.getValueType() == VT) return Op;
int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
return getNode(ISD::AND, Op.getValueType(), Op,
getConstant(Imm, Op.getValueType()));
}
SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT) {
assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
// Mask out any bits that are not valid for this constant.
if (VT != MVT::i64)
Val &= ((uint64_t)1 << MVT::getSizeInBits(VT)) - 1;
SDNode *&N = Constants[std::make_pair(Val, VT)];
if (N) return SDOperand(N, 0);
N = new ConstantSDNode(false, Val, VT);
AllNodes.push_back(N);
return SDOperand(N, 0);
}
SDOperand SelectionDAG::getTargetConstant(uint64_t Val, MVT::ValueType VT) {
assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
// Mask out any bits that are not valid for this constant.
if (VT != MVT::i64)
Val &= ((uint64_t)1 << MVT::getSizeInBits(VT)) - 1;
SDNode *&N = TargetConstants[std::make_pair(Val, VT)];
if (N) return SDOperand(N, 0);
N = new ConstantSDNode(true, Val, VT);
AllNodes.push_back(N);
return SDOperand(N, 0);
}
SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT) {
assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
if (VT == MVT::f32)
Val = (float)Val; // Mask out extra precision.
// Do the map lookup using the actual bit pattern for the floating point
// value, so that we don't have problems with 0.0 comparing equal to -0.0, and
// we don't have issues with SNANs.
SDNode *&N = ConstantFPs[std::make_pair(DoubleToBits(Val), VT)];
if (N) return SDOperand(N, 0);
N = new ConstantFPSDNode(Val, VT);
AllNodes.push_back(N);
return SDOperand(N, 0);
}
SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
MVT::ValueType VT) {
SDNode *&N = GlobalValues[GV];
if (N) return SDOperand(N, 0);
N = new GlobalAddressSDNode(false, GV, VT);
AllNodes.push_back(N);
return SDOperand(N, 0);
}
SDOperand SelectionDAG::getTargetGlobalAddress(const GlobalValue *GV,
MVT::ValueType VT) {
SDNode *&N = TargetGlobalValues[GV];
if (N) return SDOperand(N, 0);
N = new GlobalAddressSDNode(true, GV, VT);
AllNodes.push_back(N);
return SDOperand(N, 0);
}
SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT) {
SDNode *&N = FrameIndices[FI];
if (N) return SDOperand(N, 0);
N = new FrameIndexSDNode(FI, VT, false);
AllNodes.push_back(N);
return SDOperand(N, 0);
}
SDOperand SelectionDAG::getTargetFrameIndex(int FI, MVT::ValueType VT) {
SDNode *&N = TargetFrameIndices[FI];
if (N) return SDOperand(N, 0);
N = new FrameIndexSDNode(FI, VT, true);
AllNodes.push_back(N);
return SDOperand(N, 0);
}
SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT) {
SDNode *&N = ConstantPoolIndices[C];
if (N) return SDOperand(N, 0);
N = new ConstantPoolSDNode(C, VT, false);
AllNodes.push_back(N);
return SDOperand(N, 0);
}
SDOperand SelectionDAG::getTargetConstantPool(Constant *C, MVT::ValueType VT) {
SDNode *&N = TargetConstantPoolIndices[C];
if (N) return SDOperand(N, 0);
N = new ConstantPoolSDNode(C, VT, true);
AllNodes.push_back(N);
return SDOperand(N, 0);
}
SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
SDNode *&N = BBNodes[MBB];
if (N) return SDOperand(N, 0);
N = new BasicBlockSDNode(MBB);
AllNodes.push_back(N);
return SDOperand(N, 0);
}
SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
if ((unsigned)VT >= ValueTypeNodes.size())
ValueTypeNodes.resize(VT+1);
if (ValueTypeNodes[VT] == 0) {
ValueTypeNodes[VT] = new VTSDNode(VT);
AllNodes.push_back(ValueTypeNodes[VT]);
}
return SDOperand(ValueTypeNodes[VT], 0);
}
SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
SDNode *&N = ExternalSymbols[Sym];
if (N) return SDOperand(N, 0);
N = new ExternalSymbolSDNode(Sym, VT);
AllNodes.push_back(N);
return SDOperand(N, 0);
}
SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
if ((unsigned)Cond >= CondCodeNodes.size())
CondCodeNodes.resize(Cond+1);
if (CondCodeNodes[Cond] == 0) {
CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
AllNodes.push_back(CondCodeNodes[Cond]);
}
return SDOperand(CondCodeNodes[Cond], 0);
}
SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
RegisterSDNode *&Reg = RegNodes[std::make_pair(RegNo, VT)];
if (!Reg) {
Reg = new RegisterSDNode(RegNo, VT);
AllNodes.push_back(Reg);
}
return SDOperand(Reg, 0);
}
/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
/// this predicate to simplify operations downstream. V and Mask are known to
/// be the same type.
static bool MaskedValueIsZero(const SDOperand &Op, uint64_t Mask,
const TargetLowering &TLI) {
unsigned SrcBits;
if (Mask == 0) return true;
// If we know the result of a setcc has the top bits zero, use this info.
switch (Op.getOpcode()) {
case ISD::Constant:
return (cast<ConstantSDNode>(Op)->getValue() & Mask) == 0;
case ISD::SETCC:
return ((Mask & 1) == 0) &&
TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult;
case ISD::ZEXTLOAD:
SrcBits = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(3))->getVT());
return (Mask & ((1ULL << SrcBits)-1)) == 0; // Returning only the zext bits.
case ISD::ZERO_EXTEND:
SrcBits = MVT::getSizeInBits(Op.getOperand(0).getValueType());
return MaskedValueIsZero(Op.getOperand(0),Mask & ((1ULL << SrcBits)-1),TLI);
case ISD::AssertZext:
SrcBits = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
return (Mask & ((1ULL << SrcBits)-1)) == 0; // Returning only the zext bits.
case ISD::AND:
// (X & C1) & C2 == 0 iff C1 & C2 == 0.
if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
return MaskedValueIsZero(Op.getOperand(0),AndRHS->getValue() & Mask, TLI);
// FALL THROUGH
case ISD::OR:
case ISD::XOR:
return MaskedValueIsZero(Op.getOperand(0), Mask, TLI) &&
MaskedValueIsZero(Op.getOperand(1), Mask, TLI);
case ISD::SELECT:
return MaskedValueIsZero(Op.getOperand(1), Mask, TLI) &&
MaskedValueIsZero(Op.getOperand(2), Mask, TLI);
case ISD::SELECT_CC:
return MaskedValueIsZero(Op.getOperand(2), Mask, TLI) &&
MaskedValueIsZero(Op.getOperand(3), Mask, TLI);
case ISD::SRL:
// (ushr X, C1) & C2 == 0 iff X & (C2 << C1) == 0
if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
uint64_t NewVal = Mask << ShAmt->getValue();
SrcBits = MVT::getSizeInBits(Op.getValueType());
if (SrcBits != 64) NewVal &= (1ULL << SrcBits)-1;
return MaskedValueIsZero(Op.getOperand(0), NewVal, TLI);
}
return false;
case ISD::SHL:
// (ushl X, C1) & C2 == 0 iff X & (C2 >> C1) == 0
if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
uint64_t NewVal = Mask >> ShAmt->getValue();
return MaskedValueIsZero(Op.getOperand(0), NewVal, TLI);
}
return false;
case ISD::CTTZ:
case ISD::CTLZ:
case ISD::CTPOP:
// Bit counting instructions can not set the high bits of the result
// register. The max number of bits sets depends on the input.
return (Mask & (MVT::getSizeInBits(Op.getValueType())*2-1)) == 0;
// TODO we could handle some SRA cases here.
default: break;
}
return false;
}
SDOperand SelectionDAG::SimplifySetCC(MVT::ValueType VT, SDOperand N1,
SDOperand N2, ISD::CondCode Cond) {
// These setcc operations always fold.
switch (Cond) {
default: break;
case ISD::SETFALSE:
case ISD::SETFALSE2: return getConstant(0, VT);
case ISD::SETTRUE:
case ISD::SETTRUE2: return getConstant(1, VT);
}
if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
uint64_t C2 = N2C->getValue();
if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
uint64_t C1 = N1C->getValue();
// Sign extend the operands if required
if (ISD::isSignedIntSetCC(Cond)) {
C1 = N1C->getSignExtended();
C2 = N2C->getSignExtended();
}
switch (Cond) {
default: assert(0 && "Unknown integer setcc!");
case ISD::SETEQ: return getConstant(C1 == C2, VT);
case ISD::SETNE: return getConstant(C1 != C2, VT);
case ISD::SETULT: return getConstant(C1 < C2, VT);
case ISD::SETUGT: return getConstant(C1 > C2, VT);
case ISD::SETULE: return getConstant(C1 <= C2, VT);
case ISD::SETUGE: return getConstant(C1 >= C2, VT);
case ISD::SETLT: return getConstant((int64_t)C1 < (int64_t)C2, VT);
case ISD::SETGT: return getConstant((int64_t)C1 > (int64_t)C2, VT);
case ISD::SETLE: return getConstant((int64_t)C1 <= (int64_t)C2, VT);
case ISD::SETGE: return getConstant((int64_t)C1 >= (int64_t)C2, VT);
}
} else {
// If the LHS is a ZERO_EXTEND, perform the comparison on the input.
if (N1.getOpcode() == ISD::ZERO_EXTEND) {
unsigned InSize = MVT::getSizeInBits(N1.getOperand(0).getValueType());
// If the comparison constant has bits in the upper part, the
// zero-extended value could never match.
if (C2 & (~0ULL << InSize)) {
unsigned VSize = MVT::getSizeInBits(N1.getValueType());
switch (Cond) {
case ISD::SETUGT:
case ISD::SETUGE:
case ISD::SETEQ: return getConstant(0, VT);
case ISD::SETULT:
case ISD::SETULE:
case ISD::SETNE: return getConstant(1, VT);
case ISD::SETGT:
case ISD::SETGE:
// True if the sign bit of C2 is set.
return getConstant((C2 & (1ULL << VSize)) != 0, VT);
case ISD::SETLT:
case ISD::SETLE:
// True if the sign bit of C2 isn't set.
return getConstant((C2 & (1ULL << VSize)) == 0, VT);
default:
break;
}
}
// Otherwise, we can perform the comparison with the low bits.
switch (Cond) {
case ISD::SETEQ:
case ISD::SETNE:
case ISD::SETUGT:
case ISD::SETUGE:
case ISD::SETULT:
case ISD::SETULE:
return getSetCC(VT, N1.getOperand(0),
getConstant(C2, N1.getOperand(0).getValueType()),
Cond);
default:
break; // todo, be more careful with signed comparisons
}
} else if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG &&
(Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
MVT::ValueType ExtSrcTy = cast<VTSDNode>(N1.getOperand(1))->getVT();
unsigned ExtSrcTyBits = MVT::getSizeInBits(ExtSrcTy);
MVT::ValueType ExtDstTy = N1.getValueType();
unsigned ExtDstTyBits = MVT::getSizeInBits(ExtDstTy);
// If the extended part has any inconsistent bits, it cannot ever
// compare equal. In other words, they have to be all ones or all
// zeros.
uint64_t ExtBits =
(~0ULL >> (64-ExtSrcTyBits)) & (~0ULL << (ExtDstTyBits-1));
if ((C2 & ExtBits) != 0 && (C2 & ExtBits) != ExtBits)
return getConstant(Cond == ISD::SETNE, VT);
// Otherwise, make this a use of a zext.
return getSetCC(VT, getZeroExtendInReg(N1.getOperand(0), ExtSrcTy),
getConstant(C2 & (~0ULL>>(64-ExtSrcTyBits)), ExtDstTy),
Cond);
}
uint64_t MinVal, MaxVal;
unsigned OperandBitSize = MVT::getSizeInBits(N2C->getValueType(0));
if (ISD::isSignedIntSetCC(Cond)) {
MinVal = 1ULL << (OperandBitSize-1);
if (OperandBitSize != 1) // Avoid X >> 64, which is undefined.
MaxVal = ~0ULL >> (65-OperandBitSize);
else
MaxVal = 0;
} else {
MinVal = 0;
MaxVal = ~0ULL >> (64-OperandBitSize);
}
// Canonicalize GE/LE comparisons to use GT/LT comparisons.
if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
if (C2 == MinVal) return getConstant(1, VT); // X >= MIN --> true
--C2; // X >= C1 --> X > (C1-1)
return getSetCC(VT, N1, getConstant(C2, N2.getValueType()),
(Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
}
if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
if (C2 == MaxVal) return getConstant(1, VT); // X <= MAX --> true
++C2; // X <= C1 --> X < (C1+1)
return getSetCC(VT, N1, getConstant(C2, N2.getValueType()),
(Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
}
if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal)
return getConstant(0, VT); // X < MIN --> false
// Canonicalize setgt X, Min --> setne X, Min
if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MinVal)
return getSetCC(VT, N1, N2, ISD::SETNE);
// If we have setult X, 1, turn it into seteq X, 0
if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal+1)
return getSetCC(VT, N1, getConstant(MinVal, N1.getValueType()),
ISD::SETEQ);
// If we have setugt X, Max-1, turn it into seteq X, Max
else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MaxVal-1)
return getSetCC(VT, N1, getConstant(MaxVal, N1.getValueType()),
ISD::SETEQ);
// If we have "setcc X, C1", check to see if we can shrink the immediate
// by changing cc.
// SETUGT X, SINTMAX -> SETLT X, 0
if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
C2 == (~0ULL >> (65-OperandBitSize)))
return getSetCC(VT, N1, getConstant(0, N2.getValueType()), ISD::SETLT);
// FIXME: Implement the rest of these.
// Fold bit comparisons when we can.
if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
VT == N1.getValueType() && N1.getOpcode() == ISD::AND)
if (ConstantSDNode *AndRHS =
dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
if (Cond == ISD::SETNE && C2 == 0) {// (X & 8) != 0 --> (X & 8) >> 3
// Perform the xform if the AND RHS is a single bit.
if ((AndRHS->getValue() & (AndRHS->getValue()-1)) == 0) {
return getNode(ISD::SRL, VT, N1,
getConstant(Log2_64(AndRHS->getValue()),
TLI.getShiftAmountTy()));
}
} else if (Cond == ISD::SETEQ && C2 == AndRHS->getValue()) {
// (X & 8) == 8 --> (X & 8) >> 3
// Perform the xform if C2 is a single bit.
if ((C2 & (C2-1)) == 0) {
return getNode(ISD::SRL, VT, N1,
getConstant(Log2_64(C2),TLI.getShiftAmountTy()));
}
}
}
}
} else if (isa<ConstantSDNode>(N1.Val)) {
// Ensure that the constant occurs on the RHS.
return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
}
if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
double C1 = N1C->getValue(), C2 = N2C->getValue();
switch (Cond) {
default: break; // FIXME: Implement the rest of these!
case ISD::SETEQ: return getConstant(C1 == C2, VT);
case ISD::SETNE: return getConstant(C1 != C2, VT);
case ISD::SETLT: return getConstant(C1 < C2, VT);
case ISD::SETGT: return getConstant(C1 > C2, VT);
case ISD::SETLE: return getConstant(C1 <= C2, VT);
case ISD::SETGE: return getConstant(C1 >= C2, VT);
}
} else {
// Ensure that the constant occurs on the RHS.
return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
}
if (N1 == N2) {
// We can always fold X == Y for integer setcc's.
if (MVT::isInteger(N1.getValueType()))
return getConstant(ISD::isTrueWhenEqual(Cond), VT);
unsigned UOF = ISD::getUnorderedFlavor(Cond);
if (UOF == 2) // FP operators that are undefined on NaNs.
return getConstant(ISD::isTrueWhenEqual(Cond), VT);
if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
return getConstant(UOF, VT);
// Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO
// if it is not already.
ISD::CondCode NewCond = UOF == 0 ? ISD::SETUO : ISD::SETO;
if (NewCond != Cond)
return getSetCC(VT, N1, N2, NewCond);
}
if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
N1.getOpcode() == ISD::XOR) {
// Simplify (X+Y) == (X+Z) --> Y == Z
if (N1.getOpcode() == N2.getOpcode()) {
if (N1.getOperand(0) == N2.getOperand(0))
return getSetCC(VT, N1.getOperand(1), N2.getOperand(1), Cond);
if (N1.getOperand(1) == N2.getOperand(1))
return getSetCC(VT, N1.getOperand(0), N2.getOperand(0), Cond);
if (isCommutativeBinOp(N1.getOpcode())) {
// If X op Y == Y op X, try other combinations.
if (N1.getOperand(0) == N2.getOperand(1))
return getSetCC(VT, N1.getOperand(1), N2.getOperand(0), Cond);
if (N1.getOperand(1) == N2.getOperand(0))
return getSetCC(VT, N1.getOperand(1), N2.getOperand(1), Cond);
}
}
// FIXME: move this stuff to the DAG Combiner when it exists!
// Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. Common for condcodes.
if (N1.getOpcode() == ISD::XOR)
if (ConstantSDNode *XORC = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N2)) {
// If we know that all of the inverted bits are zero, don't bother
// performing the inversion.
if (MaskedValueIsZero(N1.getOperand(0), ~XORC->getValue(), TLI))
return getSetCC(VT, N1.getOperand(0),
getConstant(XORC->getValue()^RHSC->getValue(),
N1.getValueType()), Cond);
}
// Simplify (X+Z) == X --> Z == 0
if (N1.getOperand(0) == N2)
return getSetCC(VT, N1.getOperand(1),
getConstant(0, N1.getValueType()), Cond);
if (N1.getOperand(1) == N2) {
if (isCommutativeBinOp(N1.getOpcode()))
return getSetCC(VT, N1.getOperand(0),
getConstant(0, N1.getValueType()), Cond);
else {
assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
// (Z-X) == X --> Z == X<<1
return getSetCC(VT, N1.getOperand(0),
getNode(ISD::SHL, N2.getValueType(),
N2, getConstant(1, TLI.getShiftAmountTy())),
Cond);
}
}
}
if (N2.getOpcode() == ISD::ADD || N2.getOpcode() == ISD::SUB ||
N2.getOpcode() == ISD::XOR) {
// Simplify X == (X+Z) --> Z == 0
if (N2.getOperand(0) == N1) {
return getSetCC(VT, N2.getOperand(1),
getConstant(0, N2.getValueType()), Cond);
} else if (N2.getOperand(1) == N1) {
if (isCommutativeBinOp(N2.getOpcode())) {
return getSetCC(VT, N2.getOperand(0),
getConstant(0, N2.getValueType()), Cond);
} else {
assert(N2.getOpcode() == ISD::SUB && "Unexpected operation!");
// X == (Z-X) --> X<<1 == Z
return getSetCC(VT, getNode(ISD::SHL, N2.getValueType(), N1,
getConstant(1, TLI.getShiftAmountTy())),
N2.getOperand(0), Cond);
}
}
}
}
// Fold away ALL boolean setcc's.
if (N1.getValueType() == MVT::i1) {
switch (Cond) {
default: assert(0 && "Unknown integer setcc!");
case ISD::SETEQ: // X == Y -> (X^Y)^1
N1 = getNode(ISD::XOR, MVT::i1,
getNode(ISD::XOR, MVT::i1, N1, N2),
getConstant(1, MVT::i1));
break;
case ISD::SETNE: // X != Y --> (X^Y)
N1 = getNode(ISD::XOR, MVT::i1, N1, N2);
break;
case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> X^1 & Y
case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> X^1 & Y
N1 = getNode(ISD::AND, MVT::i1, N2,
getNode(ISD::XOR, MVT::i1, N1, getConstant(1, MVT::i1)));
break;
case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> Y^1 & X
case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> Y^1 & X
N1 = getNode(ISD::AND, MVT::i1, N1,
getNode(ISD::XOR, MVT::i1, N2, getConstant(1, MVT::i1)));
break;
case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> X^1 | Y
case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> X^1 | Y
N1 = getNode(ISD::OR, MVT::i1, N2,
getNode(ISD::XOR, MVT::i1, N1, getConstant(1, MVT::i1)));
break;
case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> Y^1 | X
case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> Y^1 | X
N1 = getNode(ISD::OR, MVT::i1, N1,
getNode(ISD::XOR, MVT::i1, N2, getConstant(1, MVT::i1)));
break;
}
if (VT != MVT::i1)
N1 = getNode(ISD::ZERO_EXTEND, VT, N1);
return N1;
}
// Could not fold it.
return SDOperand();
}
SDOperand SelectionDAG::SimplifySelectCC(SDOperand N1, SDOperand N2,
SDOperand N3, SDOperand N4,
ISD::CondCode CC) {
MVT::ValueType VT = N3.getValueType();
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.Val);
ConstantSDNode *N4C = dyn_cast<ConstantSDNode>(N4.Val);
// Check to see if we can simplify the select into an fabs node
if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2)) {
// Allow either -0.0 or 0.0
if (CFP->getValue() == 0.0) {
// select (setg[te] X, +/-0.0), X, fneg(X) -> fabs
if ((CC == ISD::SETGE || CC == ISD::SETGT) &&
N1 == N3 && N4.getOpcode() == ISD::FNEG &&
N1 == N4.getOperand(0))
return getNode(ISD::FABS, VT, N1);
// select (setl[te] X, +/-0.0), fneg(X), X -> fabs
if ((CC == ISD::SETLT || CC == ISD::SETLE) &&
N1 == N4 && N3.getOpcode() == ISD::FNEG &&
N3.getOperand(0) == N4)
return getNode(ISD::FABS, VT, N4);
}
}
// check to see if we're select_cc'ing a select_cc.
// this allows us to turn:
// select_cc set[eq,ne] (select_cc cc, lhs, rhs, 1, 0), 0, true, false ->
// select_cc cc, lhs, rhs, true, false
if ((N1C && N1C->isNullValue() && N2.getOpcode() == ISD::SELECT_CC) ||
(N2C && N2C->isNullValue() && N1.getOpcode() == ISD::SELECT_CC) &&
(CC == ISD::SETEQ || CC == ISD::SETNE)) {
SDOperand SCC = N1C ? N2 : N1;
ConstantSDNode *SCCT = dyn_cast<ConstantSDNode>(SCC.getOperand(2));
ConstantSDNode *SCCF = dyn_cast<ConstantSDNode>(SCC.getOperand(3));
if (SCCT && SCCF && SCCF->isNullValue() && SCCT->getValue() == 1ULL) {
if (CC == ISD::SETEQ) std::swap(N3, N4);
return getNode(ISD::SELECT_CC, N3.getValueType(), SCC.getOperand(0),
SCC.getOperand(1), N3, N4, SCC.getOperand(4));
}
}
// Check to see if we can perform the "gzip trick", transforming
// select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A
if (N2C && N2C->isNullValue() && N4C && N4C->isNullValue() &&
MVT::isInteger(N1.getValueType()) &&
MVT::isInteger(N3.getValueType()) && CC == ISD::SETLT) {
MVT::ValueType XType = N1.getValueType();
MVT::ValueType AType = N3.getValueType();
if (XType >= AType) {
// and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a
// single-bit constant. FIXME: remove once the dag combiner
// exists.
if (N3C && ((N3C->getValue() & (N3C->getValue()-1)) == 0)) {
unsigned ShCtV = Log2_64(N3C->getValue());
ShCtV = MVT::getSizeInBits(XType)-ShCtV-1;
SDOperand ShCt = getConstant(ShCtV, TLI.getShiftAmountTy());
SDOperand Shift = getNode(ISD::SRL, XType, N1, ShCt);
if (XType > AType)
Shift = getNode(ISD::TRUNCATE, AType, Shift);
return getNode(ISD::AND, AType, Shift, N3);
}
SDOperand Shift = getNode(ISD::SRA, XType, N1,
getConstant(MVT::getSizeInBits(XType)-1,
TLI.getShiftAmountTy()));
if (XType > AType)
Shift = getNode(ISD::TRUNCATE, AType, Shift);
return getNode(ISD::AND, AType, Shift, N3);
}
}
// Check to see if this is the equivalent of setcc
if (N4C && N4C->isNullValue() && N3C && (N3C->getValue() == 1ULL)) {
MVT::ValueType XType = N1.getValueType();
if (TLI.isOperationLegal(ISD::SETCC, TLI.getSetCCResultTy())) {
SDOperand Res = getSetCC(TLI.getSetCCResultTy(), N1, N2, CC);
if (Res.getValueType() != VT)
Res = getNode(ISD::ZERO_EXTEND, VT, Res);
return Res;
}
// seteq X, 0 -> srl (ctlz X, log2(size(X)))
if (N2C && N2C->isNullValue() && CC == ISD::SETEQ &&
TLI.isOperationLegal(ISD::CTLZ, XType)) {
SDOperand Ctlz = getNode(ISD::CTLZ, XType, N1);
return getNode(ISD::SRL, XType, Ctlz,
getConstant(Log2_32(MVT::getSizeInBits(XType)),
TLI.getShiftAmountTy()));
}
// setgt X, 0 -> srl (and (-X, ~X), size(X)-1)
if (N2C && N2C->isNullValue() && CC == ISD::SETGT) {
SDOperand NegN1 = getNode(ISD::SUB, XType, getConstant(0, XType), N1);
SDOperand NotN1 = getNode(ISD::XOR, XType, N1, getConstant(~0ULL, XType));
return getNode(ISD::SRL, XType, getNode(ISD::AND, XType, NegN1, NotN1),
getConstant(MVT::getSizeInBits(XType)-1,
TLI.getShiftAmountTy()));
}
// setgt X, -1 -> xor (srl (X, size(X)-1), 1)
if (N2C && N2C->isAllOnesValue() && CC == ISD::SETGT) {
SDOperand Sign = getNode(ISD::SRL, XType, N1,
getConstant(MVT::getSizeInBits(XType)-1,
TLI.getShiftAmountTy()));
return getNode(ISD::XOR, XType, Sign, getConstant(1, XType));
}
}
// Check to see if this is an integer abs. select_cc setl[te] X, 0, -X, X ->
// Y = sra (X, size(X)-1); xor (add (X, Y), Y)
if (N2C && N2C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE) &&
N1 == N4 && N3.getOpcode() == ISD::SUB && N1 == N3.getOperand(1)) {
if (ConstantSDNode *SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0))) {
MVT::ValueType XType = N1.getValueType();
if (SubC->isNullValue() && MVT::isInteger(XType)) {
SDOperand Shift = getNode(ISD::SRA, XType, N1,
getConstant(MVT::getSizeInBits(XType)-1,
TLI.getShiftAmountTy()));
return getNode(ISD::XOR, XType, getNode(ISD::ADD, XType, N1, Shift),
Shift);
}
}
}
// Could not fold it.
return SDOperand();
}
/// getNode - Gets or creates the specified node.
///
SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
SDNode *&N = NullaryOps[std::make_pair(Opcode, VT)];
if (!N) {
N = new SDNode(Opcode, VT);
AllNodes.push_back(N);
}
return SDOperand(N, 0);
}
SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
SDOperand Operand) {
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
uint64_t Val = C->getValue();
switch (Opcode) {
default: break;
case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
case ISD::ANY_EXTEND:
case ISD::ZERO_EXTEND: return getConstant(Val, VT);
case ISD::TRUNCATE: return getConstant(Val, VT);
case ISD::SINT_TO_FP: return getConstantFP(C->getSignExtended(), VT);
case ISD::UINT_TO_FP: return getConstantFP(C->getValue(), VT);
}
}
if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val))
switch (Opcode) {
case ISD::FNEG:
return getConstantFP(-C->getValue(), VT);
case ISD::FP_ROUND:
case ISD::FP_EXTEND:
return getConstantFP(C->getValue(), VT);
case ISD::FP_TO_SINT:
return getConstant((int64_t)C->getValue(), VT);
case ISD::FP_TO_UINT:
return getConstant((uint64_t)C->getValue(), VT);
}
unsigned OpOpcode = Operand.Val->getOpcode();
switch (Opcode) {
case ISD::TokenFactor:
return Operand; // Factor of one node? No factor.
case ISD::SIGN_EXTEND:
if (Operand.getValueType() == VT) return Operand; // noop extension
if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
break;
case ISD::ZERO_EXTEND:
if (Operand.getValueType() == VT) return Operand; // noop extension
if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x)
return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
break;
case ISD::ANY_EXTEND:
if (Operand.getValueType() == VT) return Operand; // noop extension
if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
// (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x)
return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
break;
case ISD::TRUNCATE:
if (Operand.getValueType() == VT) return Operand; // noop truncate
if (OpOpcode == ISD::TRUNCATE)
return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
OpOpcode == ISD::ANY_EXTEND) {
// If the source is smaller than the dest, we still need an extend.
if (Operand.Val->getOperand(0).getValueType() < VT)
return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
else if (Operand.Val->getOperand(0).getValueType() > VT)
return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
else
return Operand.Val->getOperand(0);
}
break;
case ISD::FNEG:
if (OpOpcode == ISD::FSUB) // -(X-Y) -> (Y-X)
return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
Operand.Val->getOperand(0));
if (OpOpcode == ISD::FNEG) // --X -> X
return Operand.Val->getOperand(0);
break;
case ISD::FABS:
if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X)
return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
break;
}
SDNode *N;
if (VT != MVT::Flag) { // Don't CSE flag producing nodes
SDNode *&E = UnaryOps[std::make_pair(Opcode, std::make_pair(Operand, VT))];
if (E) return SDOperand(E, 0);
E = N = new SDNode(Opcode, Operand);
} else {
N = new SDNode(Opcode, Operand);
}
N->setValueTypes(VT);
AllNodes.push_back(N);
return SDOperand(N, 0);
}
SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
SDOperand N1, SDOperand N2) {
#ifndef NDEBUG
switch (Opcode) {
case ISD::TokenFactor:
assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
N2.getValueType() == MVT::Other && "Invalid token factor!");
break;
case ISD::AND:
case ISD::OR:
case ISD::XOR:
case ISD::UDIV:
case ISD::UREM:
case ISD::MULHU:
case ISD::MULHS:
assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
// fall through
case ISD::ADD:
case ISD::SUB:
case ISD::MUL:
case ISD::SDIV:
case ISD::SREM:
assert(MVT::isInteger(N1.getValueType()) && "Should use F* for FP ops");
// fall through.
case ISD::FADD:
case ISD::FSUB:
case ISD::FMUL:
case ISD::FDIV:
case ISD::FREM:
assert(N1.getValueType() == N2.getValueType() &&
N1.getValueType() == VT && "Binary operator types must match!");
break;
case ISD::SHL:
case ISD::SRA:
case ISD::SRL:
assert(VT == N1.getValueType() &&
"Shift operators return type must be the same as their first arg");
assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
VT != MVT::i1 && "Shifts only work on integers");
break;
case ISD::FP_ROUND_INREG: {
MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
assert(VT == N1.getValueType() && "Not an inreg round!");
assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
"Cannot FP_ROUND_INREG integer types");
assert(EVT <= VT && "Not rounding down!");
break;
}
case ISD::AssertSext:
case ISD::AssertZext:
case ISD::SIGN_EXTEND_INREG: {
MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
assert(VT == N1.getValueType() && "Not an inreg extend!");
assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
"Cannot *_EXTEND_INREG FP types");
assert(EVT <= VT && "Not extending!");
}
default: break;
}
#endif
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
if (N1C) {
if (N2C) {
uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
switch (Opcode) {
case ISD::ADD: return getConstant(C1 + C2, VT);
case ISD::SUB: return getConstant(C1 - C2, VT);
case ISD::MUL: return getConstant(C1 * C2, VT);
case ISD::UDIV:
if (C2) return getConstant(C1 / C2, VT);
break;
case ISD::UREM :
if (C2) return getConstant(C1 % C2, VT);
break;
case ISD::SDIV :
if (C2) return getConstant(N1C->getSignExtended() /
N2C->getSignExtended(), VT);
break;
case ISD::SREM :
if (C2) return getConstant(N1C->getSignExtended() %
N2C->getSignExtended(), VT);
break;
case ISD::AND : return getConstant(C1 & C2, VT);
case ISD::OR : return getConstant(C1 | C2, VT);
case ISD::XOR : return getConstant(C1 ^ C2, VT);
case ISD::SHL : return getConstant(C1 << C2, VT);
case ISD::SRL : return getConstant(C1 >> C2, VT);
case ISD::SRA : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
default: break;
}
} else { // Cannonicalize constant to RHS if commutative
if (isCommutativeBinOp(Opcode)) {
std::swap(N1C, N2C);
std::swap(N1, N2);
}
}
if (!CombinerEnabled) {
switch (Opcode) {
default: break;
case ISD::SHL: // shl 0, X -> 0
if (N1C->isNullValue()) return N1;
break;
case ISD::SRL: // srl 0, X -> 0
if (N1C->isNullValue()) return N1;
break;
case ISD::SRA: // sra -1, X -> -1
if (N1C->isAllOnesValue()) return N1;
break;
case ISD::SIGN_EXTEND_INREG: // SIGN_EXTEND_INREG N1C, EVT
// Extending a constant? Just return the extended constant.
SDOperand Tmp = getNode(ISD::TRUNCATE, cast<VTSDNode>(N2)->getVT(), N1);
return getNode(ISD::SIGN_EXTEND, VT, Tmp);
}
}
}
if (!CombinerEnabled) {
if (N2C) {
uint64_t C2 = N2C->getValue();
switch (Opcode) {
case ISD::ADD:
if (!C2) return N1; // add X, 0 -> X
break;
case ISD::SUB:
if (!C2) return N1; // sub X, 0 -> X
return getNode(ISD::ADD, VT, N1, getConstant(-C2, VT));
case ISD::MUL:
if (!C2) return N2; // mul X, 0 -> 0
if (N2C->isAllOnesValue()) // mul X, -1 -> 0-X
return getNode(ISD::SUB, VT, getConstant(0, VT), N1);
// FIXME: Move this to the DAG combiner when it exists.
if ((C2 & C2-1) == 0) {
SDOperand ShAmt = getConstant(Log2_64(C2), TLI.getShiftAmountTy());
return getNode(ISD::SHL, VT, N1, ShAmt);
}
break;
case ISD::MULHU:
case ISD::MULHS:
if (!C2) return N2; // mul X, 0 -> 0
if (C2 == 1) // 0X*01 -> 0X hi(0X) == 0
return getConstant(0, VT);
// Many others could be handled here, including -1, powers of 2, etc.
break;
case ISD::UDIV:
// FIXME: Move this to the DAG combiner when it exists.
if ((C2 & C2-1) == 0 && C2) {
SDOperand ShAmt = getConstant(Log2_64(C2), TLI.getShiftAmountTy());
return getNode(ISD::SRL, VT, N1, ShAmt);
}
break;
case ISD::SHL:
case ISD::SRL:
case ISD::SRA:
// If the shift amount is bigger than the size of the data, then all the
// bits are shifted out. Simplify to undef.
if (C2 >= MVT::getSizeInBits(N1.getValueType())) {
return getNode(ISD::UNDEF, N1.getValueType());
}
if (C2 == 0) return N1;
if (Opcode == ISD::SRA) {
// If the sign bit is known to be zero, switch this to a SRL.
if (MaskedValueIsZero(N1,
1ULL << (MVT::getSizeInBits(N1.getValueType())-1),
TLI))
return getNode(ISD::SRL, N1.getValueType(), N1, N2);
} else {
// If the part left over is known to be zero, the whole thing is zero.
uint64_t TypeMask = ~0ULL >> (64-MVT::getSizeInBits(N1.getValueType()));
if (Opcode == ISD::SRL) {
if (MaskedValueIsZero(N1, TypeMask << C2, TLI))
return getConstant(0, N1.getValueType());
} else if (Opcode == ISD::SHL) {
if (MaskedValueIsZero(N1, TypeMask >> C2, TLI))
return getConstant(0, N1.getValueType());
}
}
if (Opcode == ISD::SHL && N1.getNumOperands() == 2)
if (ConstantSDNode *OpSA = dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
unsigned OpSAC = OpSA->getValue();
if (N1.getOpcode() == ISD::SHL) {
if (C2+OpSAC >= MVT::getSizeInBits(N1.getValueType()))
return getConstant(0, N1.getValueType());
return getNode(ISD::SHL, N1.getValueType(), N1.getOperand(0),
getConstant(C2+OpSAC, N2.getValueType()));
} else if (N1.getOpcode() == ISD::SRL) {
// (X >> C1) << C2: if C2 > C1, ((X & ~0<<C1) << C2-C1)
SDOperand Mask = getNode(ISD::AND, VT, N1.getOperand(0),
getConstant(~0ULL << OpSAC, VT));
if (C2 > OpSAC) {
return getNode(ISD::SHL, VT, Mask,
getConstant(C2-OpSAC, N2.getValueType()));
} else {
// (X >> C1) << C2: if C2 <= C1, ((X & ~0<<C1) >> C1-C2)
return getNode(ISD::SRL, VT, Mask,
getConstant(OpSAC-C2, N2.getValueType()));
}
} else if (N1.getOpcode() == ISD::SRA) {
// if C1 == C2, just mask out low bits.
if (C2 == OpSAC)
return getNode(ISD::AND, VT, N1.getOperand(0),
getConstant(~0ULL << C2, VT));
}
}
break;
case ISD::AND:
if (!C2) return N2; // X and 0 -> 0
if (N2C->isAllOnesValue())
return N1; // X and -1 -> X
if (MaskedValueIsZero(N1, C2, TLI)) // X and 0 -> 0
return getConstant(0, VT);
{
uint64_t NotC2 = ~C2;
if (VT != MVT::i64)
NotC2 &= (1ULL << MVT::getSizeInBits(VT))-1;
if (MaskedValueIsZero(N1, NotC2, TLI))
return N1; // if (X & ~C2) -> 0, the and is redundant
}
// FIXME: Should add a corresponding version of this for
// ZERO_EXTEND/SIGN_EXTEND by converting them to an ANY_EXTEND node which
// we don't have yet.
// FIXME: NOW WE DO, add this.
// and (sign_extend_inreg x:16:32), 1 -> and x, 1
if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) {
// If we are masking out the part of our input that was extended, just
// mask the input to the extension directly.
unsigned ExtendBits =
MVT::getSizeInBits(cast<VTSDNode>(N1.getOperand(1))->getVT());
if ((C2 & (~0ULL << ExtendBits)) == 0)
return getNode(ISD::AND, VT, N1.getOperand(0), N2);
} else if (N1.getOpcode() == ISD::OR) {
if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
if ((ORI->getValue() & C2) == C2) {
// If the 'or' is setting all of the bits that we are masking for,
// we know the result of the AND will be the AND mask itself.
return N2;
}
}
break;
case ISD::OR:
if (!C2)return N1; // X or 0 -> X
if (N2C->isAllOnesValue())
return N2; // X or -1 -> -1
break;
case ISD::XOR:
if (!C2) return N1; // X xor 0 -> X
if (N2C->getValue() == 1 && N1.Val->getOpcode() == ISD::SETCC) {
SDNode *SetCC = N1.Val;
// !(X op Y) -> (X !op Y)
bool isInteger = MVT::isInteger(SetCC->getOperand(0).getValueType());
ISD::CondCode CC = cast<CondCodeSDNode>(SetCC->getOperand(2))->get();
return getSetCC(SetCC->getValueType(0),
SetCC->getOperand(0), SetCC->getOperand(1),
ISD::getSetCCInverse(CC, isInteger));
} else if (N2C->isAllOnesValue()) {
if (N1.getOpcode() == ISD::AND || N1.getOpcode() == ISD::OR) {
SDNode *Op = N1.Val;
// !(X or Y) -> (!X and !Y) iff X or Y are freely invertible
// !(X and Y) -> (!X or !Y) iff X or Y are freely invertible
SDOperand LHS = Op->getOperand(0), RHS = Op->getOperand(1);
if (isInvertibleForFree(RHS) || isInvertibleForFree(LHS)) {
LHS = getNode(ISD::XOR, VT, LHS, N2); // RHS = ~LHS
RHS = getNode(ISD::XOR, VT, RHS, N2); // RHS = ~RHS
if (Op->getOpcode() == ISD::AND)
return getNode(ISD::OR, VT, LHS, RHS);
return getNode(ISD::AND, VT, LHS, RHS);
}
}
// X xor -1 -> not(x) ?
}
break;
}
// Reassociate ((X op C1) op C2) if possible.
if (N1.getOpcode() == Opcode && isAssociativeBinOp(Opcode))
if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N1.Val->getOperand(1)))
return getNode(Opcode, VT, N1.Val->getOperand(0),
getNode(Opcode, VT, N2, N1.Val->getOperand(1)));
}
}
ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
if (N1CFP) {
if (N2CFP) {
double C1 = N1CFP->getValue(), C2 = N2CFP->getValue();
switch (Opcode) {
case ISD::FADD: return getConstantFP(C1 + C2, VT);
case ISD::FSUB: return getConstantFP(C1 - C2, VT);
case ISD::FMUL: return getConstantFP(C1 * C2, VT);
case ISD::FDIV:
if (C2) return getConstantFP(C1 / C2, VT);
break;
case ISD::FREM :
if (C2) return getConstantFP(fmod(C1, C2), VT);
break;
default: break;
}
} else { // Cannonicalize constant to RHS if commutative
if (isCommutativeBinOp(Opcode)) {
std::swap(N1CFP, N2CFP);
std::swap(N1, N2);
}
}
if (!CombinerEnabled) {
if (Opcode == ISD::FP_ROUND_INREG)
return getNode(ISD::FP_EXTEND, VT,
getNode(ISD::FP_ROUND, cast<VTSDNode>(N2)->getVT(), N1));
}
}
// Finally, fold operations that do not require constants.
switch (Opcode) {
case ISD::TokenFactor:
if (!CombinerEnabled) {
if (N1.getOpcode() == ISD::EntryToken)
return N2;
if (N2.getOpcode() == ISD::EntryToken)
return N1;
}
break;
case ISD::AND:
case ISD::OR:
if (!CombinerEnabled) {
if (N1.Val->getOpcode() == ISD::SETCC && N2.Val->getOpcode() == ISD::SETCC){
SDNode *LHS = N1.Val, *RHS = N2.Val;
SDOperand LL = LHS->getOperand(0), RL = RHS->getOperand(0);
SDOperand LR = LHS->getOperand(1), RR = RHS->getOperand(1);
ISD::CondCode Op1 = cast<CondCodeSDNode>(LHS->getOperand(2))->get();
ISD::CondCode Op2 = cast<CondCodeSDNode>(RHS->getOperand(2))->get();
if (LR == RR && isa<ConstantSDNode>(LR) &&
Op2 == Op1 && MVT::isInteger(LL.getValueType())) {
// (X != 0) | (Y != 0) -> (X|Y != 0)
// (X == 0) & (Y == 0) -> (X|Y == 0)
// (X < 0) | (Y < 0) -> (X|Y < 0)
if (cast<ConstantSDNode>(LR)->getValue() == 0 &&
((Op2 == ISD::SETEQ && Opcode == ISD::AND) ||
(Op2 == ISD::SETNE && Opcode == ISD::OR) ||
(Op2 == ISD::SETLT && Opcode == ISD::OR)))
return getSetCC(VT, getNode(ISD::OR, LR.getValueType(), LL, RL), LR,
Op2);
if (cast<ConstantSDNode>(LR)->isAllOnesValue()) {
// (X == -1) & (Y == -1) -> (X&Y == -1)
// (X != -1) | (Y != -1) -> (X&Y != -1)
// (X > -1) | (Y > -1) -> (X&Y > -1)
if ((Opcode == ISD::AND && Op2 == ISD::SETEQ) ||
(Opcode == ISD::OR && Op2 == ISD::SETNE) ||
(Opcode == ISD::OR && Op2 == ISD::SETGT))
return getSetCC(VT, getNode(ISD::AND, LR.getValueType(), LL, RL),
LR, Op2);
// (X > -1) & (Y > -1) -> (X|Y > -1)
if (Opcode == ISD::AND && Op2 == ISD::SETGT)
return getSetCC(VT, getNode(ISD::OR, LR.getValueType(), LL, RL),
LR, Op2);
}
}
// (X op1 Y) | (Y op2 X) -> (X op1 Y) | (X swapop2 Y)
if (LL == RR && LR == RL) {
Op2 = ISD::getSetCCSwappedOperands(Op2);
goto MatchedBackwards;
}
if (LL == RL && LR == RR) {
MatchedBackwards:
ISD::CondCode Result;
bool isInteger = MVT::isInteger(LL.getValueType());
if (Opcode == ISD::OR)
Result = ISD::getSetCCOrOperation(Op1, Op2, isInteger);
else
Result = ISD::getSetCCAndOperation(Op1, Op2, isInteger);
if (Result != ISD::SETCC_INVALID)
return getSetCC(LHS->getValueType(0), LL, LR, Result);
}
}
// and/or zext(a), zext(b) -> zext(and/or a, b)
if (N1.getOpcode() == ISD::ZERO_EXTEND &&
N2.getOpcode() == ISD::ZERO_EXTEND &&
N1.getOperand(0).getValueType() == N2.getOperand(0).getValueType())
return getNode(ISD::ZERO_EXTEND, VT,
getNode(Opcode, N1.getOperand(0).getValueType(),
N1.getOperand(0), N2.getOperand(0)));
}
break;
case ISD::XOR:
if (!CombinerEnabled) {
if (N1 == N2) return getConstant(0, VT); // xor X, Y -> 0
}
break;
case ISD::ADD:
if (!CombinerEnabled) {
if (N1.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N1.getOperand(0)) &&
cast<ConstantSDNode>(N1.getOperand(0))->getValue() == 0)
return getNode(ISD::SUB, VT, N2, N1.getOperand(1)); // (0-A)+B -> B-A
if (N2.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N2.getOperand(0)) &&
cast<ConstantSDNode>(N2.getOperand(0))->getValue() == 0)
return getNode(ISD::SUB, VT, N1, N2.getOperand(1)); // A+(0-B) -> A-B
if (N2.getOpcode() == ISD::SUB && N1 == N2.Val->getOperand(1))
return N2.Val->getOperand(0); // A+(B-A) -> B
}
break;
case ISD::FADD:
if (!CombinerEnabled) {
if (N2.getOpcode() == ISD::FNEG) // (A+ (-B) -> A-B
return getNode(ISD::FSUB, VT, N1, N2.getOperand(0));
if (N1.getOpcode() == ISD::FNEG) // ((-A)+B) -> B-A
return getNode(ISD::FSUB, VT, N2, N1.getOperand(0));
}
break;
case ISD::SUB:
if (!CombinerEnabled) {
if (N1.getOpcode() == ISD::ADD) {
if (N1.Val->getOperand(0) == N2)
return N1.Val->getOperand(1); // (A+B)-A == B
if (N1.Val->getOperand(1) == N2)
return N1.Val->getOperand(0); // (A+B)-B == A
}
}
break;
case ISD::FSUB:
if (!CombinerEnabled) {
if (N2.getOpcode() == ISD::FNEG) // (A- (-B) -> A+B
return getNode(ISD::FADD, VT, N1, N2.getOperand(0));
}
break;
case ISD::FP_ROUND_INREG:
if (cast<VTSDNode>(N2)->getVT() == VT) return N1; // Not actually rounding.
break;
case ISD::SIGN_EXTEND_INREG: {
MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
if (EVT == VT) return N1; // Not actually extending
if (!CombinerEnabled) {
// If we are sign extending an extension, use the original source.
if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG ||
N1.getOpcode() == ISD::AssertSext)
if (cast<VTSDNode>(N1.getOperand(1))->getVT() <= EVT)
return N1;
// If we are sign extending a sextload, return just the load.
if (N1.getOpcode() == ISD::SEXTLOAD)
if (cast<VTSDNode>(N1.getOperand(3))->getVT() <= EVT)
return N1;
// If we are extending the result of a setcc, and we already know the
// contents of the top bits, eliminate the extension.
if (N1.getOpcode() == ISD::SETCC &&
TLI.getSetCCResultContents() ==
TargetLowering::ZeroOrNegativeOneSetCCResult)
return N1;
// If we are sign extending the result of an (and X, C) operation, and we
// know the extended bits are zeros already, don't do the extend.
if (N1.getOpcode() == ISD::AND)
if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
uint64_t Mask = N1C->getValue();
unsigned NumBits = MVT::getSizeInBits(EVT);
if ((Mask & (~0ULL << (NumBits-1))) == 0)
return N1;
}
}
break;
}
// FIXME: figure out how to safely handle things like
// int foo(int x) { return 1 << (x & 255); }
// int bar() { return foo(256); }
#if 0
case ISD::SHL:
case ISD::SRL:
case ISD::SRA:
if (N2.getOpcode() == ISD::SIGN_EXTEND_INREG &&
cast<VTSDNode>(N2.getOperand(1))->getVT() != MVT::i1)
return getNode(Opcode, VT, N1, N2.getOperand(0));
else if (N2.getOpcode() == ISD::AND)
if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N2.getOperand(1))) {
// If the and is only masking out bits that cannot effect the shift,
// eliminate the and.
unsigned NumBits = MVT::getSizeInBits(VT);
if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
return getNode(Opcode, VT, N1, N2.getOperand(0));
}
break;
#endif
}
// Memoize this node if possible.
SDNode *N;
if (Opcode != ISD::CALLSEQ_START && Opcode != ISD::CALLSEQ_END &&
VT != MVT::Flag) {
SDNode *&BON = BinaryOps[std::make_pair(Opcode, std::make_pair(N1, N2))];
if (BON) return SDOperand(BON, 0);
BON = N = new SDNode(Opcode, N1, N2);
} else {
N = new SDNode(Opcode, N1, N2);
}
N->setValueTypes(VT);
AllNodes.push_back(N);
return SDOperand(N, 0);
}
// setAdjCallChain - This method changes the token chain of an
// CALLSEQ_START/END node to be the specified operand.
void SDNode::setAdjCallChain(SDOperand N) {
assert(N.getValueType() == MVT::Other);
assert((getOpcode() == ISD::CALLSEQ_START ||
getOpcode() == ISD::CALLSEQ_END) && "Cannot adjust this node!");
Operands[0].Val->removeUser(this);
Operands[0] = N;
N.Val->Uses.push_back(this);
}
SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
SDOperand Chain, SDOperand Ptr,
SDOperand SV) {
SDNode *&N = Loads[std::make_pair(Ptr, std::make_pair(Chain, VT))];
if (N) return SDOperand(N, 0);
N = new SDNode(ISD::LOAD, Chain, Ptr, SV);
// Loads have a token chain.
N->setValueTypes(VT, MVT::Other);
AllNodes.push_back(N);
return SDOperand(N, 0);
}
SDOperand SelectionDAG::getExtLoad(unsigned Opcode, MVT::ValueType VT,
SDOperand Chain, SDOperand Ptr, SDOperand SV,
MVT::ValueType EVT) {
std::vector<SDOperand> Ops;
Ops.reserve(4);
Ops.push_back(Chain);
Ops.push_back(Ptr);
Ops.push_back(SV);
Ops.push_back(getValueType(EVT));
std::vector<MVT::ValueType> VTs;
VTs.reserve(2);
VTs.push_back(VT); VTs.push_back(MVT::Other); // Add token chain.
return getNode(Opcode, VTs, Ops);
}
SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
SDOperand N1, SDOperand N2, SDOperand N3) {
// Perform various simplifications.
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.Val);
switch (Opcode) {
case ISD::SETCC: {
// Use SimplifySetCC to simplify SETCC's.
SDOperand Simp = SimplifySetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
if (Simp.Val) return Simp;
break;
}
case ISD::SELECT:
if (N1C)
if (N1C->getValue())
return N2; // select true, X, Y -> X
else
return N3; // select false, X, Y -> Y
if (N2 == N3) return N2; // select C, X, X -> X
if (VT == MVT::i1) { // Boolean SELECT
if (N2C) {
if (N2C->getValue()) // select C, 1, X -> C | X
return getNode(ISD::OR, VT, N1, N3);
else // select C, 0, X -> ~C & X
return getNode(ISD::AND, VT,
getNode(ISD::XOR, N1.getValueType(), N1,
getConstant(1, N1.getValueType())), N3);
} else if (N3C) {
if (N3C->getValue()) // select C, X, 1 -> ~C | X
return getNode(ISD::OR, VT,
getNode(ISD::XOR, N1.getValueType(), N1,
getConstant(1, N1.getValueType())), N2);
else // select C, X, 0 -> C & X
return getNode(ISD::AND, VT, N1, N2);
}
if (N1 == N2) // X ? X : Y --> X ? 1 : Y --> X | Y
return getNode(ISD::OR, VT, N1, N3);
if (N1 == N3) // X ? Y : X --> X ? Y : 0 --> X & Y
return getNode(ISD::AND, VT, N1, N2);
}
if (N1.getOpcode() == ISD::SETCC) {
SDOperand Simp = SimplifySelectCC(N1.getOperand(0), N1.getOperand(1), N2,
N3, cast<CondCodeSDNode>(N1.getOperand(2))->get());
if (Simp.Val) return Simp;
}
break;
case ISD::BRCOND:
if (N2C)
if (N2C->getValue()) // Unconditional branch
return getNode(ISD::BR, MVT::Other, N1, N3);
else
return N1; // Never-taken branch
break;
}
std::vector<SDOperand> Ops;
Ops.reserve(3);
Ops.push_back(N1);
Ops.push_back(N2);
Ops.push_back(N3);
// Memoize node if it doesn't produce a flag.
SDNode *N;
if (VT != MVT::Flag) {
SDNode *&E = OneResultNodes[std::make_pair(Opcode,std::make_pair(VT, Ops))];
if (E) return SDOperand(E, 0);
E = N = new SDNode(Opcode, N1, N2, N3);
} else {
N = new SDNode(Opcode, N1, N2, N3);
}
N->setValueTypes(VT);
AllNodes.push_back(N);
return SDOperand(N, 0);
}
SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
SDOperand N1, SDOperand N2, SDOperand N3,
SDOperand N4) {
std::vector<SDOperand> Ops;
Ops.reserve(4);
Ops.push_back(N1);
Ops.push_back(N2);
Ops.push_back(N3);
Ops.push_back(N4);
return getNode(Opcode, VT, Ops);
}
SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
SDOperand N1, SDOperand N2, SDOperand N3,
SDOperand N4, SDOperand N5) {
std::vector<SDOperand> Ops;
Ops.reserve(5);
Ops.push_back(N1);
Ops.push_back(N2);
Ops.push_back(N3);
Ops.push_back(N4);
Ops.push_back(N5);
return getNode(Opcode, VT, Ops);
}
SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) {
assert((!V || isa<PointerType>(V->getType())) &&
"SrcValue is not a pointer?");
SDNode *&N = ValueNodes[std::make_pair(V, Offset)];
if (N) return SDOperand(N, 0);
N = new SrcValueSDNode(V, Offset);
AllNodes.push_back(N);
return SDOperand(N, 0);
}
SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
std::vector<SDOperand> &Ops) {
switch (Ops.size()) {
case 0: return getNode(Opcode, VT);
case 1: return getNode(Opcode, VT, Ops[0]);
case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
default: break;
}
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Ops[1].Val);
switch (Opcode) {
default: break;
case ISD::BRCONDTWOWAY:
if (N1C)
if (N1C->getValue()) // Unconditional branch to true dest.
return getNode(ISD::BR, MVT::Other, Ops[0], Ops[2]);
else // Unconditional branch to false dest.
return getNode(ISD::BR, MVT::Other, Ops[0], Ops[3]);
break;
case ISD::BRTWOWAY_CC:
assert(Ops.size() == 6 && "BRTWOWAY_CC takes 6 operands!");
assert(Ops[2].getValueType() == Ops[3].getValueType() &&
"LHS and RHS of comparison must have same type!");
break;
case ISD::TRUNCSTORE: {
assert(Ops.size() == 5 && "TRUNCSTORE takes 5 operands!");
MVT::ValueType EVT = cast<VTSDNode>(Ops[4])->getVT();
#if 0 // FIXME: If the target supports EVT natively, convert to a truncate/store
// If this is a truncating store of a constant, convert to the desired type
// and store it instead.
if (isa<Constant>(Ops[0])) {
SDOperand Op = getNode(ISD::TRUNCATE, EVT, N1);
if (isa<Constant>(Op))
N1 = Op;
}
// Also for ConstantFP?
#endif
if (Ops[0].getValueType() == EVT) // Normal store?
return getNode(ISD::STORE, VT, Ops[0], Ops[1], Ops[2], Ops[3]);
assert(Ops[1].getValueType() > EVT && "Not a truncation?");
assert(MVT::isInteger(Ops[1].getValueType()) == MVT::isInteger(EVT) &&
"Can't do FP-INT conversion!");
break;
}
case ISD::SELECT_CC: {
assert(Ops.size() == 5 && "TRUNCSTORE takes 5 operands!");
assert(Ops[0].getValueType() == Ops[1].getValueType() &&
"LHS and RHS of condition must have same type!");
assert(Ops[2].getValueType() == Ops[3].getValueType() &&
"True and False arms of SelectCC must have same type!");
assert(Ops[2].getValueType() == VT &&
"select_cc node must be of same type as true and false value!");
SDOperand Simp = SimplifySelectCC(Ops[0], Ops[1], Ops[2], Ops[3],
cast<CondCodeSDNode>(Ops[4])->get());
if (Simp.Val) return Simp;
break;
}
case ISD::BR_CC: {
assert(Ops.size() == 5 && "TRUNCSTORE takes 5 operands!");
assert(Ops[2].getValueType() == Ops[3].getValueType() &&
"LHS/RHS of comparison should match types!");
// Use SimplifySetCC to simplify SETCC's.
SDOperand Simp = SimplifySetCC(MVT::i1, Ops[2], Ops[3],
cast<CondCodeSDNode>(Ops[1])->get());
if (Simp.Val) {
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Simp)) {
if (C->getValue() & 1) // Unconditional branch
return getNode(ISD::BR, MVT::Other, Ops[0], Ops[4]);
else
return Ops[0]; // Unconditional Fall through
} else if (Simp.Val->getOpcode() == ISD::SETCC) {
Ops[2] = Simp.getOperand(0);
Ops[3] = Simp.getOperand(1);
Ops[1] = Simp.getOperand(2);
}
}
break;
}
}
// Memoize nodes.
SDNode *N;
if (VT != MVT::Flag) {
SDNode *&E =
OneResultNodes[std::make_pair(Opcode, std::make_pair(VT, Ops))];
if (E) return SDOperand(E, 0);
E = N = new SDNode(Opcode, Ops);
} else {
N = new SDNode(Opcode, Ops);
}
N->setValueTypes(VT);
AllNodes.push_back(N);
return SDOperand(N, 0);
}
SDOperand SelectionDAG::getNode(unsigned Opcode,
std::vector<MVT::ValueType> &ResultTys,
std::vector<SDOperand> &Ops) {
if (ResultTys.size() == 1)
return getNode(Opcode, ResultTys[0], Ops);
switch (Opcode) {
case ISD::EXTLOAD:
case ISD::SEXTLOAD:
case ISD::ZEXTLOAD: {
MVT::ValueType EVT = cast<VTSDNode>(Ops[3])->getVT();
assert(Ops.size() == 4 && ResultTys.size() == 2 && "Bad *EXTLOAD!");
// If they are asking for an extending load from/to the same thing, return a
// normal load.
if (ResultTys[0] == EVT)
return getLoad(ResultTys[0], Ops[0], Ops[1], Ops[2]);
assert(EVT < ResultTys[0] &&
"Should only be an extending load, not truncating!");
assert((Opcode == ISD::EXTLOAD || MVT::isInteger(ResultTys[0])) &&
"Cannot sign/zero extend a FP load!");
assert(MVT::isInteger(ResultTys[0]) == MVT::isInteger(EVT) &&
"Cannot convert from FP to Int or Int -> FP!");
break;
}
// FIXME: figure out how to safely handle things like
// int foo(int x) { return 1 << (x & 255); }
// int bar() { return foo(256); }
#if 0
case ISD::SRA_PARTS:
case ISD::SRL_PARTS:
case ISD::SHL_PARTS:
if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
else if (N3.getOpcode() == ISD::AND)
if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
// If the and is only masking out bits that cannot effect the shift,
// eliminate the and.
unsigned NumBits = MVT::getSizeInBits(VT)*2;
if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
}
break;
#endif
}
// Memoize the node unless it returns a flag.
SDNode *N;
if (ResultTys.back() != MVT::Flag) {
SDNode *&E =
ArbitraryNodes[std::make_pair(Opcode, std::make_pair(ResultTys, Ops))];
if (E) return SDOperand(E, 0);
E = N = new SDNode(Opcode, Ops);
} else {
N = new SDNode(Opcode, Ops);
}
N->setValueTypes(ResultTys);
AllNodes.push_back(N);
return SDOperand(N, 0);
}
/// SelectNodeTo - These are used for target selectors to *mutate* the
/// specified node to have the specified return type, Target opcode, and
/// operands. Note that target opcodes are stored as
/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
MVT::ValueType VT) {
RemoveNodeFromCSEMaps(N);
N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
N->setValueTypes(VT);
}
void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
MVT::ValueType VT, SDOperand Op1) {
RemoveNodeFromCSEMaps(N);
N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
N->setValueTypes(VT);
N->setOperands(Op1);
}
void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
MVT::ValueType VT, SDOperand Op1,
SDOperand Op2) {
RemoveNodeFromCSEMaps(N);
N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
N->setValueTypes(VT);
N->setOperands(Op1, Op2);
}
void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
MVT::ValueType VT1, MVT::ValueType VT2,
SDOperand Op1, SDOperand Op2) {
RemoveNodeFromCSEMaps(N);
N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
N->setValueTypes(VT1, VT2);
N->setOperands(Op1, Op2);
}
void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
MVT::ValueType VT, SDOperand Op1,
SDOperand Op2, SDOperand Op3) {
RemoveNodeFromCSEMaps(N);
N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
N->setValueTypes(VT);
N->setOperands(Op1, Op2, Op3);
}
void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
MVT::ValueType VT1, MVT::ValueType VT2,
SDOperand Op1, SDOperand Op2, SDOperand Op3) {
RemoveNodeFromCSEMaps(N);
N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
N->setValueTypes(VT1, VT2);
N->setOperands(Op1, Op2, Op3);
}
void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
MVT::ValueType VT, SDOperand Op1,
SDOperand Op2, SDOperand Op3, SDOperand Op4) {
RemoveNodeFromCSEMaps(N);
N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
N->setValueTypes(VT);
N->setOperands(Op1, Op2, Op3, Op4);
}
void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
MVT::ValueType VT, SDOperand Op1,
SDOperand Op2, SDOperand Op3, SDOperand Op4,
SDOperand Op5) {
RemoveNodeFromCSEMaps(N);
N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
N->setValueTypes(VT);
N->setOperands(Op1, Op2, Op3, Op4, Op5);
}
/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
/// This can cause recursive merging of nodes in the DAG.
///
/// This version assumes From/To have a single result value.
///
void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand ToN,
std::vector<SDNode*> *Deleted) {
SDNode *From = FromN.Val, *To = ToN.Val;
assert(From->getNumValues() == 1 && To->getNumValues() == 1 &&
"Cannot replace with this method!");
assert(From != To && "Cannot replace uses of with self");
while (!From->use_empty()) {
// Process users until they are all gone.
SDNode *U = *From->use_begin();
// This node is about to morph, remove its old self from the CSE maps.
RemoveNodeFromCSEMaps(U);
for (unsigned i = 0, e = U->getNumOperands(); i != e; ++i)
if (U->getOperand(i).Val == From) {
From->removeUser(U);
U->Operands[i].Val = To;
To->addUser(U);
}
// Now that we have modified U, add it back to the CSE maps. If it already
// exists there, recursively merge the results together.
if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
ReplaceAllUsesWith(U, Existing, Deleted);
// U is now dead.
if (Deleted) Deleted->push_back(U);
DeleteNodeNotInCSEMaps(U);
}
}
}
/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
/// This can cause recursive merging of nodes in the DAG.
///
/// This version assumes From/To have matching types and numbers of result
/// values.
///
void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
std::vector<SDNode*> *Deleted) {
assert(From != To && "Cannot replace uses of with self");
assert(From->getNumValues() == To->getNumValues() &&
"Cannot use this version of ReplaceAllUsesWith!");
if (From->getNumValues() == 1) { // If possible, use the faster version.
ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0), Deleted);
return;
}
while (!From->use_empty()) {
// Process users until they are all gone.
SDNode *U = *From->use_begin();
// This node is about to morph, remove its old self from the CSE maps.
RemoveNodeFromCSEMaps(U);
for (unsigned i = 0, e = U->getNumOperands(); i != e; ++i)
if (U->getOperand(i).Val == From) {
From->removeUser(U);
U->Operands[i].Val = To;
To->addUser(U);
}
// Now that we have modified U, add it back to the CSE maps. If it already
// exists there, recursively merge the results together.
if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
ReplaceAllUsesWith(U, Existing, Deleted);
// U is now dead.
if (Deleted) Deleted->push_back(U);
DeleteNodeNotInCSEMaps(U);
}
}
}
/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
/// This can cause recursive merging of nodes in the DAG.
///
/// This version can replace From with any result values. To must match the
/// number and types of values returned by From.
void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
const std::vector<SDOperand> &To,
std::vector<SDNode*> *Deleted) {
assert(From->getNumValues() == To.size() &&
"Incorrect number of values to replace with!");
if (To.size() == 1 && To[0].Val->getNumValues() == 1) {
// Degenerate case handled above.
ReplaceAllUsesWith(SDOperand(From, 0), To[0], Deleted);
return;
}
while (!From->use_empty()) {
// Process users until they are all gone.
SDNode *U = *From->use_begin();
// This node is about to morph, remove its old self from the CSE maps.
RemoveNodeFromCSEMaps(U);
for (unsigned i = 0, e = U->getNumOperands(); i != e; ++i)
if (U->getOperand(i).Val == From) {
const SDOperand &ToOp = To[U->getOperand(i).ResNo];
From->removeUser(U);
U->Operands[i] = ToOp;
ToOp.Val->addUser(U);
}
// Now that we have modified U, add it back to the CSE maps. If it already
// exists there, recursively merge the results together.
if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
ReplaceAllUsesWith(U, Existing, Deleted);
// U is now dead.
if (Deleted) Deleted->push_back(U);
DeleteNodeNotInCSEMaps(U);
}
}
}
//===----------------------------------------------------------------------===//
// SDNode Class
//===----------------------------------------------------------------------===//
/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
/// indicated value. This method ignores uses of other values defined by this
/// operation.
bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) {
assert(Value < getNumValues() && "Bad value!");
// If there is only one value, this is easy.
if (getNumValues() == 1)
return use_size() == NUses;
if (Uses.size() < NUses) return false;
SDOperand TheValue(this, Value);
std::set<SDNode*> UsersHandled;
for (std::vector<SDNode*>::iterator UI = Uses.begin(), E = Uses.end();
UI != E; ++UI) {
SDNode *User = *UI;
if (User->getNumOperands() == 1 ||
UsersHandled.insert(User).second) // First time we've seen this?
for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
if (User->getOperand(i) == TheValue) {
if (NUses == 0)
return false; // too many uses
--NUses;
}
}
// Found exactly the right number of uses?
return NUses == 0;
}
const char *SDNode::getOperationName(const SelectionDAG *G) const {
switch (getOpcode()) {
default:
if (getOpcode() < ISD::BUILTIN_OP_END)
return "<<Unknown DAG Node>>";
else {
if (G)
if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
return TII->getName(getOpcode()-ISD::BUILTIN_OP_END);
return "<<Unknown Target Node>>";
}
case ISD::PCMARKER: return "PCMarker";
case ISD::SRCVALUE: return "SrcValue";
case ISD::VALUETYPE: return "ValueType";
case ISD::EntryToken: return "EntryToken";
case ISD::TokenFactor: return "TokenFactor";
case ISD::AssertSext: return "AssertSext";
case ISD::AssertZext: return "AssertZext";
case ISD::Constant: return "Constant";
case ISD::TargetConstant: return "TargetConstant";
case ISD::ConstantFP: return "ConstantFP";
case ISD::GlobalAddress: return "GlobalAddress";
case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
case ISD::FrameIndex: return "FrameIndex";
case ISD::TargetFrameIndex: return "TargetFrameIndex";
case ISD::BasicBlock: return "BasicBlock";
case ISD::Register: return "Register";
case ISD::ExternalSymbol: return "ExternalSymbol";
case ISD::ConstantPool: return "ConstantPool";
case ISD::TargetConstantPool: return "TargetConstantPool";
case ISD::CopyToReg: return "CopyToReg";
case ISD::CopyFromReg: return "CopyFromReg";
case ISD::ImplicitDef: return "ImplicitDef";
case ISD::UNDEF: return "undef";
// Unary operators
case ISD::FABS: return "fabs";
case ISD::FNEG: return "fneg";
case ISD::FSQRT: return "fsqrt";
case ISD::FSIN: return "fsin";
case ISD::FCOS: return "fcos";
// Binary operators
case ISD::ADD: return "add";
case ISD::SUB: return "sub";
case ISD::MUL: return "mul";
case ISD::MULHU: return "mulhu";
case ISD::MULHS: return "mulhs";
case ISD::SDIV: return "sdiv";
case ISD::UDIV: return "udiv";
case ISD::SREM: return "srem";
case ISD::UREM: return "urem";
case ISD::AND: return "and";
case ISD::OR: return "or";
case ISD::XOR: return "xor";
case ISD::SHL: return "shl";
case ISD::SRA: return "sra";
case ISD::SRL: return "srl";
case ISD::FADD: return "fadd";
case ISD::FSUB: return "fsub";
case ISD::FMUL: return "fmul";
case ISD::FDIV: return "fdiv";
case ISD::FREM: return "frem";
case ISD::SETCC: return "setcc";
case ISD::SELECT: return "select";
case ISD::SELECT_CC: return "select_cc";
case ISD::ADD_PARTS: return "add_parts";
case ISD::SUB_PARTS: return "sub_parts";
case ISD::SHL_PARTS: return "shl_parts";
case ISD::SRA_PARTS: return "sra_parts";
case ISD::SRL_PARTS: return "srl_parts";
// Conversion operators.
case ISD::SIGN_EXTEND: return "sign_extend";
case ISD::ZERO_EXTEND: return "zero_extend";
case ISD::ANY_EXTEND: return "any_extend";
case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
case ISD::TRUNCATE: return "truncate";
case ISD::FP_ROUND: return "fp_round";
case ISD::FP_ROUND_INREG: return "fp_round_inreg";
case ISD::FP_EXTEND: return "fp_extend";
case ISD::SINT_TO_FP: return "sint_to_fp";
case ISD::UINT_TO_FP: return "uint_to_fp";
case ISD::FP_TO_SINT: return "fp_to_sint";
case ISD::FP_TO_UINT: return "fp_to_uint";
// Control flow instructions
case ISD::BR: return "br";
case ISD::BRCOND: return "brcond";
case ISD::BRCONDTWOWAY: return "brcondtwoway";
case ISD::BR_CC: return "br_cc";
case ISD::BRTWOWAY_CC: return "brtwoway_cc";
case ISD::RET: return "ret";
case ISD::CALL: return "call";
case ISD::TAILCALL:return "tailcall";
case ISD::CALLSEQ_START: return "callseq_start";
case ISD::CALLSEQ_END: return "callseq_end";
// Other operators
case ISD::LOAD: return "load";
case ISD::STORE: return "store";
case ISD::EXTLOAD: return "extload";
case ISD::SEXTLOAD: return "sextload";
case ISD::ZEXTLOAD: return "zextload";
case ISD::TRUNCSTORE: return "truncstore";
case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
case ISD::EXTRACT_ELEMENT: return "extract_element";
case ISD::BUILD_PAIR: return "build_pair";
case ISD::MEMSET: return "memset";
case ISD::MEMCPY: return "memcpy";
case ISD::MEMMOVE: return "memmove";
// Bit counting
case ISD::CTPOP: return "ctpop";
case ISD::CTTZ: return "cttz";
case ISD::CTLZ: return "ctlz";
// IO Intrinsics
case ISD::READPORT: return "readport";
case ISD::WRITEPORT: return "writeport";
case ISD::READIO: return "readio";
case ISD::WRITEIO: return "writeio";
case ISD::CONDCODE:
switch (cast<CondCodeSDNode>(this)->get()) {
default: assert(0 && "Unknown setcc condition!");
case ISD::SETOEQ: return "setoeq";
case ISD::SETOGT: return "setogt";
case ISD::SETOGE: return "setoge";
case ISD::SETOLT: return "setolt";
case ISD::SETOLE: return "setole";
case ISD::SETONE: return "setone";
case ISD::SETO: return "seto";
case ISD::SETUO: return "setuo";
case ISD::SETUEQ: return "setue";
case ISD::SETUGT: return "setugt";
case ISD::SETUGE: return "setuge";
case ISD::SETULT: return "setult";
case ISD::SETULE: return "setule";
case ISD::SETUNE: return "setune";
case ISD::SETEQ: return "seteq";
case ISD::SETGT: return "setgt";
case ISD::SETGE: return "setge";
case ISD::SETLT: return "setlt";
case ISD::SETLE: return "setle";
case ISD::SETNE: return "setne";
}
}
}
void SDNode::dump() const { dump(0); }
void SDNode::dump(const SelectionDAG *G) const {
std::cerr << (void*)this << ": ";
for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
if (i) std::cerr << ",";
if (getValueType(i) == MVT::Other)
std::cerr << "ch";
else
std::cerr << MVT::getValueTypeString(getValueType(i));
}
std::cerr << " = " << getOperationName(G);
std::cerr << " ";
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
if (i) std::cerr << ", ";
std::cerr << (void*)getOperand(i).Val;
if (unsigned RN = getOperand(i).ResNo)
std::cerr << ":" << RN;
}
if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
std::cerr << "<" << CSDN->getValue() << ">";
} else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
std::cerr << "<" << CSDN->getValue() << ">";
} else if (const GlobalAddressSDNode *GADN =
dyn_cast<GlobalAddressSDNode>(this)) {
std::cerr << "<";
WriteAsOperand(std::cerr, GADN->getGlobal()) << ">";
} else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
std::cerr << "<" << FIDN->getIndex() << ">";
} else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
std::cerr << "<" << *CP->get() << ">";
} else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
std::cerr << "<";
const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
if (LBB)
std::cerr << LBB->getName() << " ";
std::cerr << (const void*)BBDN->getBasicBlock() << ">";
} else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
if (G && MRegisterInfo::isPhysicalRegister(R->getReg())) {
std::cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
} else {
std::cerr << " #" << R->getReg();
}
} else if (const ExternalSymbolSDNode *ES =
dyn_cast<ExternalSymbolSDNode>(this)) {
std::cerr << "'" << ES->getSymbol() << "'";
} else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
if (M->getValue())
std::cerr << "<" << M->getValue() << ":" << M->getOffset() << ">";
else
std::cerr << "<null:" << M->getOffset() << ">";
} else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
std::cerr << ":" << getValueTypeString(N->getVT());
}
}
static void DumpNodes(SDNode *N, unsigned indent, const SelectionDAG *G) {
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
if (N->getOperand(i).Val->hasOneUse())
DumpNodes(N->getOperand(i).Val, indent+2, G);
else
std::cerr << "\n" << std::string(indent+2, ' ')
<< (void*)N->getOperand(i).Val << ": <multiple use>";
std::cerr << "\n" << std::string(indent, ' ');
N->dump(G);
}
void SelectionDAG::dump() const {
std::cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
std::vector<SDNode*> Nodes(AllNodes);
std::sort(Nodes.begin(), Nodes.end());
for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
DumpNodes(Nodes[i], 2, this);
}
DumpNodes(getRoot().Val, 2, this);
std::cerr << "\n\n";
}