llvm-6502/lib/Target/X86/X86TargetMachine.cpp
2005-07-27 06:12:32 +00:00

237 lines
8.3 KiB
C++

//===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the X86 specific subclass of TargetMachine.
//
//===----------------------------------------------------------------------===//
#include "X86TargetMachine.h"
#include "X86.h"
#include "llvm/Module.h"
#include "llvm/PassManager.h"
#include "llvm/CodeGen/IntrinsicLowering.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Target/TargetMachineRegistry.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/ADT/Statistic.h"
using namespace llvm;
X86VectorEnum llvm::X86Vector = NoSSE;
bool llvm::X86ScalarSSE = false;
/// X86TargetMachineModule - Note that this is used on hosts that cannot link
/// in a library unless there are references into the library. In particular,
/// it seems that it is not possible to get things to work on Win32 without
/// this. Though it is unused, do not remove it.
extern "C" int X86TargetMachineModule;
int X86TargetMachineModule = 0;
namespace {
cl::opt<bool> NoSSAPeephole("disable-ssa-peephole", cl::init(true),
cl::desc("Disable the ssa-based peephole optimizer "
"(defaults to disabled)"));
cl::opt<bool> DisableOutput("disable-x86-llc-output", cl::Hidden,
cl::desc("Disable the X86 asm printer, for use "
"when profiling the code generator."));
cl::opt<bool, true> EnableSSEFP("enable-sse-scalar-fp",
cl::desc("Perform FP math in SSE regs instead of the FP stack"),
cl::location(X86ScalarSSE),
cl::init(false));
// FIXME: This should eventually be handled with target triples and
// subtarget support!
cl::opt<X86VectorEnum, true>
SSEArg(
cl::desc("Enable SSE support in the X86 target:"),
cl::values(
clEnumValN(SSE, "sse", " Enable SSE support"),
clEnumValN(SSE2, "sse2", " Enable SSE and SSE2 support"),
clEnumValN(SSE3, "sse3", " Enable SSE, SSE2, and SSE3 support"),
clEnumValEnd),
cl::location(X86Vector), cl::init(NoSSE));
// Register the target.
RegisterTarget<X86TargetMachine> X("x86", " IA-32 (Pentium and above)");
}
unsigned X86TargetMachine::getJITMatchQuality() {
#if defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)
return 10;
#else
return 0;
#endif
}
unsigned X86TargetMachine::getModuleMatchQuality(const Module &M) {
// We strongly match "i[3-9]86-*".
std::string TT = M.getTargetTriple();
if (TT.size() >= 5 && TT[0] == 'i' && TT[2] == '8' && TT[3] == '6' &&
TT[4] == '-' && TT[1] - '3' < 6)
return 20;
if (M.getEndianness() == Module::LittleEndian &&
M.getPointerSize() == Module::Pointer32)
return 10; // Weak match
else if (M.getEndianness() != Module::AnyEndianness ||
M.getPointerSize() != Module::AnyPointerSize)
return 0; // Match for some other target
return getJITMatchQuality()/2;
}
/// X86TargetMachine ctor - Create an ILP32 architecture model
///
X86TargetMachine::X86TargetMachine(const Module &M, IntrinsicLowering *IL)
: TargetMachine("X86", IL, true, 4, 4, 4, 4, 4),
Subtarget(M),
FrameInfo(TargetFrameInfo::StackGrowsDown,
Subtarget.getStackAlignment(), -4),
JITInfo(*this) {
// Scalar SSE FP requires at least SSE2
X86ScalarSSE &= X86Vector >= SSE2;
}
// addPassesToEmitFile - We currently use all of the same passes as the JIT
// does to emit statically compiled machine code.
bool X86TargetMachine::addPassesToEmitFile(PassManager &PM, std::ostream &Out,
CodeGenFileType FileType) {
if (FileType != TargetMachine::AssemblyFile &&
FileType != TargetMachine::ObjectFile) return true;
// FIXME: Implement efficient support for garbage collection intrinsics.
PM.add(createLowerGCPass());
// FIXME: Implement the invoke/unwind instructions!
PM.add(createLowerInvokePass());
// FIXME: Implement the switch instruction in the instruction selector!
PM.add(createLowerSwitchPass());
// Make sure that no unreachable blocks are instruction selected.
PM.add(createUnreachableBlockEliminationPass());
// Default to pattern ISel
if (PatternISelTriState == 0)
PM.add(createX86SimpleInstructionSelector(*this));
else
PM.add(createX86PatternInstructionSelector(*this));
// Run optional SSA-based machine code optimizations next...
if (!NoSSAPeephole)
PM.add(createX86SSAPeepholeOptimizerPass());
// Print the instruction selected machine code...
if (PrintMachineCode)
PM.add(createMachineFunctionPrinterPass(&std::cerr));
// Perform register allocation to convert to a concrete x86 representation
PM.add(createRegisterAllocator());
if (PrintMachineCode)
PM.add(createMachineFunctionPrinterPass(&std::cerr));
PM.add(createX86FloatingPointStackifierPass());
if (PrintMachineCode)
PM.add(createMachineFunctionPrinterPass(&std::cerr));
// Insert prolog/epilog code. Eliminate abstract frame index references...
PM.add(createPrologEpilogCodeInserter());
PM.add(createX86PeepholeOptimizerPass());
if (PrintMachineCode) // Print the register-allocated code
PM.add(createX86CodePrinterPass(std::cerr, *this));
if (!DisableOutput)
switch (FileType) {
default:
assert(0 && "Unexpected filetype here!");
case TargetMachine::AssemblyFile:
PM.add(createX86CodePrinterPass(Out, *this));
break;
case TargetMachine::ObjectFile:
// FIXME: We only support emission of ELF files for now, this should check
// the target triple and decide on the format to write (e.g. COFF on
// win32).
addX86ELFObjectWriterPass(PM, Out, *this);
break;
}
// Delete machine code for this function
PM.add(createMachineCodeDeleter());
return false; // success!
}
/// addPassesToJITCompile - Add passes to the specified pass manager to
/// implement a fast dynamic compiler for this target. Return true if this is
/// not supported for this target.
///
void X86JITInfo::addPassesToJITCompile(FunctionPassManager &PM) {
// FIXME: Implement efficient support for garbage collection intrinsics.
PM.add(createLowerGCPass());
// FIXME: Implement the invoke/unwind instructions!
PM.add(createLowerInvokePass());
// FIXME: Implement the switch instruction in the instruction selector!
PM.add(createLowerSwitchPass());
// Make sure that no unreachable blocks are instruction selected.
PM.add(createUnreachableBlockEliminationPass());
// Default to pattern ISel
if (PatternISelTriState == 0)
PM.add(createX86SimpleInstructionSelector(TM));
else
PM.add(createX86PatternInstructionSelector(TM));
// Run optional SSA-based machine code optimizations next...
if (!NoSSAPeephole)
PM.add(createX86SSAPeepholeOptimizerPass());
// FIXME: Add SSA based peephole optimizer here.
// Print the instruction selected machine code...
if (PrintMachineCode)
PM.add(createMachineFunctionPrinterPass(&std::cerr));
// Perform register allocation to convert to a concrete x86 representation
PM.add(createRegisterAllocator());
if (PrintMachineCode)
PM.add(createMachineFunctionPrinterPass(&std::cerr));
PM.add(createX86FloatingPointStackifierPass());
if (PrintMachineCode)
PM.add(createMachineFunctionPrinterPass(&std::cerr));
// Insert prolog/epilog code. Eliminate abstract frame index references...
PM.add(createPrologEpilogCodeInserter());
PM.add(createX86PeepholeOptimizerPass());
if (PrintMachineCode) // Print the register-allocated code
PM.add(createX86CodePrinterPass(std::cerr, TM));
}
bool X86TargetMachine::addPassesToEmitMachineCode(FunctionPassManager &PM,
MachineCodeEmitter &MCE) {
PM.add(createX86CodeEmitterPass(MCE));
// Delete machine code for this function
PM.add(createMachineCodeDeleter());
return false;
}