llvm-6502/include/llvm/ADT/DenseMap.h
Jakob Stoklund Olesen 414fdbdb01 Prevent infinite growth of the DenseMap.
When the hash function uses object pointers all free entries eventually
become tombstones as they are used at least once, regardless of the size.

DenseMap cannot function with zero empty keys, so it double size to get
get ridof the tombstones.

However DenseMap never shrinks automatically unless it is cleared, so
the net result is that certain tables grow infinitely.

The solution is to make a fresh copy of the table without tombstones
instead of doubling size, by simply calling grow with the current size.

Patch by José Fonseca!

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@128564 91177308-0d34-0410-b5e6-96231b3b80d8
2011-03-30 18:32:41 +00:00

538 lines
17 KiB
C++

//===- llvm/ADT/DenseMap.h - Dense probed hash table ------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the DenseMap class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_DENSEMAP_H
#define LLVM_ADT_DENSEMAP_H
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/PointerLikeTypeTraits.h"
#include "llvm/Support/type_traits.h"
#include "llvm/ADT/DenseMapInfo.h"
#include <algorithm>
#include <iterator>
#include <new>
#include <utility>
#include <cassert>
#include <cstddef>
#include <cstring>
namespace llvm {
template<typename KeyT, typename ValueT,
typename KeyInfoT = DenseMapInfo<KeyT>,
typename ValueInfoT = DenseMapInfo<ValueT>, bool IsConst = false>
class DenseMapIterator;
template<typename KeyT, typename ValueT,
typename KeyInfoT = DenseMapInfo<KeyT>,
typename ValueInfoT = DenseMapInfo<ValueT> >
class DenseMap {
typedef std::pair<KeyT, ValueT> BucketT;
unsigned NumBuckets;
BucketT *Buckets;
unsigned NumEntries;
unsigned NumTombstones;
public:
typedef KeyT key_type;
typedef ValueT mapped_type;
typedef BucketT value_type;
DenseMap(const DenseMap &other) {
NumBuckets = 0;
CopyFrom(other);
}
explicit DenseMap(unsigned NumInitBuckets = 0) {
init(NumInitBuckets);
}
template<typename InputIt>
DenseMap(const InputIt &I, const InputIt &E) {
init(NextPowerOf2(std::distance(I, E)));
insert(I, E);
}
~DenseMap() {
const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
for (BucketT *P = Buckets, *E = Buckets+NumBuckets; P != E; ++P) {
if (!KeyInfoT::isEqual(P->first, EmptyKey) &&
!KeyInfoT::isEqual(P->first, TombstoneKey))
P->second.~ValueT();
P->first.~KeyT();
}
#ifndef NDEBUG
if (NumBuckets)
memset(Buckets, 0x5a, sizeof(BucketT)*NumBuckets);
#endif
operator delete(Buckets);
}
typedef DenseMapIterator<KeyT, ValueT, KeyInfoT> iterator;
typedef DenseMapIterator<KeyT, ValueT,
KeyInfoT, ValueInfoT, true> const_iterator;
inline iterator begin() {
// When the map is empty, avoid the overhead of AdvancePastEmptyBuckets().
return empty() ? end() : iterator(Buckets, Buckets+NumBuckets);
}
inline iterator end() {
return iterator(Buckets+NumBuckets, Buckets+NumBuckets);
}
inline const_iterator begin() const {
return empty() ? end() : const_iterator(Buckets, Buckets+NumBuckets);
}
inline const_iterator end() const {
return const_iterator(Buckets+NumBuckets, Buckets+NumBuckets);
}
bool empty() const { return NumEntries == 0; }
unsigned size() const { return NumEntries; }
/// Grow the densemap so that it has at least Size buckets. Does not shrink
void resize(size_t Size) {
if (Size > NumBuckets)
grow(Size);
}
void clear() {
if (NumEntries == 0 && NumTombstones == 0) return;
// If the capacity of the array is huge, and the # elements used is small,
// shrink the array.
if (NumEntries * 4 < NumBuckets && NumBuckets > 64) {
shrink_and_clear();
return;
}
const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
for (BucketT *P = Buckets, *E = Buckets+NumBuckets; P != E; ++P) {
if (!KeyInfoT::isEqual(P->first, EmptyKey)) {
if (!KeyInfoT::isEqual(P->first, TombstoneKey)) {
P->second.~ValueT();
--NumEntries;
}
P->first = EmptyKey;
}
}
assert(NumEntries == 0 && "Node count imbalance!");
NumTombstones = 0;
}
/// count - Return true if the specified key is in the map.
bool count(const KeyT &Val) const {
BucketT *TheBucket;
return LookupBucketFor(Val, TheBucket);
}
iterator find(const KeyT &Val) {
BucketT *TheBucket;
if (LookupBucketFor(Val, TheBucket))
return iterator(TheBucket, Buckets+NumBuckets);
return end();
}
const_iterator find(const KeyT &Val) const {
BucketT *TheBucket;
if (LookupBucketFor(Val, TheBucket))
return const_iterator(TheBucket, Buckets+NumBuckets);
return end();
}
/// lookup - Return the entry for the specified key, or a default
/// constructed value if no such entry exists.
ValueT lookup(const KeyT &Val) const {
BucketT *TheBucket;
if (LookupBucketFor(Val, TheBucket))
return TheBucket->second;
return ValueT();
}
// Inserts key,value pair into the map if the key isn't already in the map.
// If the key is already in the map, it returns false and doesn't update the
// value.
std::pair<iterator, bool> insert(const std::pair<KeyT, ValueT> &KV) {
BucketT *TheBucket;
if (LookupBucketFor(KV.first, TheBucket))
return std::make_pair(iterator(TheBucket, Buckets+NumBuckets),
false); // Already in map.
// Otherwise, insert the new element.
TheBucket = InsertIntoBucket(KV.first, KV.second, TheBucket);
return std::make_pair(iterator(TheBucket, Buckets+NumBuckets),
true);
}
/// insert - Range insertion of pairs.
template<typename InputIt>
void insert(InputIt I, InputIt E) {
for (; I != E; ++I)
insert(*I);
}
bool erase(const KeyT &Val) {
BucketT *TheBucket;
if (!LookupBucketFor(Val, TheBucket))
return false; // not in map.
TheBucket->second.~ValueT();
TheBucket->first = getTombstoneKey();
--NumEntries;
++NumTombstones;
return true;
}
void erase(iterator I) {
BucketT *TheBucket = &*I;
TheBucket->second.~ValueT();
TheBucket->first = getTombstoneKey();
--NumEntries;
++NumTombstones;
}
void swap(DenseMap& RHS) {
std::swap(NumBuckets, RHS.NumBuckets);
std::swap(Buckets, RHS.Buckets);
std::swap(NumEntries, RHS.NumEntries);
std::swap(NumTombstones, RHS.NumTombstones);
}
value_type& FindAndConstruct(const KeyT &Key) {
BucketT *TheBucket;
if (LookupBucketFor(Key, TheBucket))
return *TheBucket;
return *InsertIntoBucket(Key, ValueT(), TheBucket);
}
ValueT &operator[](const KeyT &Key) {
return FindAndConstruct(Key).second;
}
DenseMap& operator=(const DenseMap& other) {
CopyFrom(other);
return *this;
}
/// isPointerIntoBucketsArray - Return true if the specified pointer points
/// somewhere into the DenseMap's array of buckets (i.e. either to a key or
/// value in the DenseMap).
bool isPointerIntoBucketsArray(const void *Ptr) const {
return Ptr >= Buckets && Ptr < Buckets+NumBuckets;
}
/// getPointerIntoBucketsArray() - Return an opaque pointer into the buckets
/// array. In conjunction with the previous method, this can be used to
/// determine whether an insertion caused the DenseMap to reallocate.
const void *getPointerIntoBucketsArray() const { return Buckets; }
private:
void CopyFrom(const DenseMap& other) {
if (NumBuckets != 0 &&
(!isPodLike<KeyInfoT>::value || !isPodLike<ValueInfoT>::value)) {
const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
for (BucketT *P = Buckets, *E = Buckets+NumBuckets; P != E; ++P) {
if (!KeyInfoT::isEqual(P->first, EmptyKey) &&
!KeyInfoT::isEqual(P->first, TombstoneKey))
P->second.~ValueT();
P->first.~KeyT();
}
}
NumEntries = other.NumEntries;
NumTombstones = other.NumTombstones;
if (NumBuckets) {
#ifndef NDEBUG
memset(Buckets, 0x5a, sizeof(BucketT)*NumBuckets);
#endif
operator delete(Buckets);
}
NumBuckets = other.NumBuckets;
if (NumBuckets == 0) {
Buckets = 0;
return;
}
Buckets = static_cast<BucketT*>(operator new(sizeof(BucketT) * NumBuckets));
if (isPodLike<KeyInfoT>::value && isPodLike<ValueInfoT>::value)
memcpy(Buckets, other.Buckets, NumBuckets * sizeof(BucketT));
else
for (size_t i = 0; i < NumBuckets; ++i) {
new (&Buckets[i].first) KeyT(other.Buckets[i].first);
if (!KeyInfoT::isEqual(Buckets[i].first, getEmptyKey()) &&
!KeyInfoT::isEqual(Buckets[i].first, getTombstoneKey()))
new (&Buckets[i].second) ValueT(other.Buckets[i].second);
}
}
BucketT *InsertIntoBucket(const KeyT &Key, const ValueT &Value,
BucketT *TheBucket) {
// If the load of the hash table is more than 3/4, or if fewer than 1/8 of
// the buckets are empty (meaning that many are filled with tombstones),
// grow the table.
//
// The later case is tricky. For example, if we had one empty bucket with
// tons of tombstones, failing lookups (e.g. for insertion) would have to
// probe almost the entire table until it found the empty bucket. If the
// table completely filled with tombstones, no lookup would ever succeed,
// causing infinite loops in lookup.
++NumEntries;
if (NumEntries*4 >= NumBuckets*3) {
this->grow(NumBuckets * 2);
LookupBucketFor(Key, TheBucket);
}
if (NumBuckets-(NumEntries+NumTombstones) < NumBuckets/8) {
this->grow(NumBuckets);
LookupBucketFor(Key, TheBucket);
}
// If we are writing over a tombstone, remember this.
if (!KeyInfoT::isEqual(TheBucket->first, getEmptyKey()))
--NumTombstones;
TheBucket->first = Key;
new (&TheBucket->second) ValueT(Value);
return TheBucket;
}
static unsigned getHashValue(const KeyT &Val) {
return KeyInfoT::getHashValue(Val);
}
static const KeyT getEmptyKey() {
return KeyInfoT::getEmptyKey();
}
static const KeyT getTombstoneKey() {
return KeyInfoT::getTombstoneKey();
}
/// LookupBucketFor - Lookup the appropriate bucket for Val, returning it in
/// FoundBucket. If the bucket contains the key and a value, this returns
/// true, otherwise it returns a bucket with an empty marker or tombstone and
/// returns false.
bool LookupBucketFor(const KeyT &Val, BucketT *&FoundBucket) const {
unsigned BucketNo = getHashValue(Val);
unsigned ProbeAmt = 1;
BucketT *BucketsPtr = Buckets;
if (NumBuckets == 0) {
FoundBucket = 0;
return false;
}
// FoundTombstone - Keep track of whether we find a tombstone while probing.
BucketT *FoundTombstone = 0;
const KeyT EmptyKey = getEmptyKey();
const KeyT TombstoneKey = getTombstoneKey();
assert(!KeyInfoT::isEqual(Val, EmptyKey) &&
!KeyInfoT::isEqual(Val, TombstoneKey) &&
"Empty/Tombstone value shouldn't be inserted into map!");
while (1) {
BucketT *ThisBucket = BucketsPtr + (BucketNo & (NumBuckets-1));
// Found Val's bucket? If so, return it.
if (KeyInfoT::isEqual(ThisBucket->first, Val)) {
FoundBucket = ThisBucket;
return true;
}
// If we found an empty bucket, the key doesn't exist in the set.
// Insert it and return the default value.
if (KeyInfoT::isEqual(ThisBucket->first, EmptyKey)) {
// If we've already seen a tombstone while probing, fill it in instead
// of the empty bucket we eventually probed to.
if (FoundTombstone) ThisBucket = FoundTombstone;
FoundBucket = FoundTombstone ? FoundTombstone : ThisBucket;
return false;
}
// If this is a tombstone, remember it. If Val ends up not in the map, we
// prefer to return it than something that would require more probing.
if (KeyInfoT::isEqual(ThisBucket->first, TombstoneKey) && !FoundTombstone)
FoundTombstone = ThisBucket; // Remember the first tombstone found.
// Otherwise, it's a hash collision or a tombstone, continue quadratic
// probing.
BucketNo += ProbeAmt++;
}
}
void init(unsigned InitBuckets) {
NumEntries = 0;
NumTombstones = 0;
NumBuckets = InitBuckets;
if (InitBuckets == 0) {
Buckets = 0;
return;
}
assert(InitBuckets && (InitBuckets & (InitBuckets-1)) == 0 &&
"# initial buckets must be a power of two!");
Buckets = static_cast<BucketT*>(operator new(sizeof(BucketT)*InitBuckets));
// Initialize all the keys to EmptyKey.
const KeyT EmptyKey = getEmptyKey();
for (unsigned i = 0; i != InitBuckets; ++i)
new (&Buckets[i].first) KeyT(EmptyKey);
}
void grow(unsigned AtLeast) {
unsigned OldNumBuckets = NumBuckets;
BucketT *OldBuckets = Buckets;
if (NumBuckets < 64)
NumBuckets = 64;
// Double the number of buckets.
while (NumBuckets < AtLeast)
NumBuckets <<= 1;
NumTombstones = 0;
Buckets = static_cast<BucketT*>(operator new(sizeof(BucketT)*NumBuckets));
// Initialize all the keys to EmptyKey.
const KeyT EmptyKey = getEmptyKey();
for (unsigned i = 0, e = NumBuckets; i != e; ++i)
new (&Buckets[i].first) KeyT(EmptyKey);
// Insert all the old elements.
const KeyT TombstoneKey = getTombstoneKey();
for (BucketT *B = OldBuckets, *E = OldBuckets+OldNumBuckets; B != E; ++B) {
if (!KeyInfoT::isEqual(B->first, EmptyKey) &&
!KeyInfoT::isEqual(B->first, TombstoneKey)) {
// Insert the key/value into the new table.
BucketT *DestBucket;
bool FoundVal = LookupBucketFor(B->first, DestBucket);
(void)FoundVal; // silence warning.
assert(!FoundVal && "Key already in new map?");
DestBucket->first = B->first;
new (&DestBucket->second) ValueT(B->second);
// Free the value.
B->second.~ValueT();
}
B->first.~KeyT();
}
#ifndef NDEBUG
if (OldNumBuckets)
memset(OldBuckets, 0x5a, sizeof(BucketT)*OldNumBuckets);
#endif
// Free the old table.
operator delete(OldBuckets);
}
void shrink_and_clear() {
unsigned OldNumBuckets = NumBuckets;
BucketT *OldBuckets = Buckets;
// Reduce the number of buckets.
NumBuckets = NumEntries > 32 ? 1 << (Log2_32_Ceil(NumEntries) + 1)
: 64;
NumTombstones = 0;
Buckets = static_cast<BucketT*>(operator new(sizeof(BucketT)*NumBuckets));
// Initialize all the keys to EmptyKey.
const KeyT EmptyKey = getEmptyKey();
for (unsigned i = 0, e = NumBuckets; i != e; ++i)
new (&Buckets[i].first) KeyT(EmptyKey);
// Free the old buckets.
const KeyT TombstoneKey = getTombstoneKey();
for (BucketT *B = OldBuckets, *E = OldBuckets+OldNumBuckets; B != E; ++B) {
if (!KeyInfoT::isEqual(B->first, EmptyKey) &&
!KeyInfoT::isEqual(B->first, TombstoneKey)) {
// Free the value.
B->second.~ValueT();
}
B->first.~KeyT();
}
#ifndef NDEBUG
memset(OldBuckets, 0x5a, sizeof(BucketT)*OldNumBuckets);
#endif
// Free the old table.
operator delete(OldBuckets);
NumEntries = 0;
}
};
template<typename KeyT, typename ValueT,
typename KeyInfoT, typename ValueInfoT, bool IsConst>
class DenseMapIterator {
typedef std::pair<KeyT, ValueT> Bucket;
typedef DenseMapIterator<KeyT, ValueT,
KeyInfoT, ValueInfoT, true> ConstIterator;
friend class DenseMapIterator<KeyT, ValueT, KeyInfoT, ValueInfoT, true>;
public:
typedef ptrdiff_t difference_type;
typedef typename conditional<IsConst, const Bucket, Bucket>::type value_type;
typedef value_type *pointer;
typedef value_type &reference;
typedef std::forward_iterator_tag iterator_category;
private:
pointer Ptr, End;
public:
DenseMapIterator() : Ptr(0), End(0) {}
DenseMapIterator(pointer Pos, pointer E) : Ptr(Pos), End(E) {
AdvancePastEmptyBuckets();
}
// If IsConst is true this is a converting constructor from iterator to
// const_iterator and the default copy constructor is used.
// Otherwise this is a copy constructor for iterator.
DenseMapIterator(const DenseMapIterator<KeyT, ValueT,
KeyInfoT, ValueInfoT, false>& I)
: Ptr(I.Ptr), End(I.End) {}
reference operator*() const {
return *Ptr;
}
pointer operator->() const {
return Ptr;
}
bool operator==(const ConstIterator &RHS) const {
return Ptr == RHS.operator->();
}
bool operator!=(const ConstIterator &RHS) const {
return Ptr != RHS.operator->();
}
inline DenseMapIterator& operator++() { // Preincrement
++Ptr;
AdvancePastEmptyBuckets();
return *this;
}
DenseMapIterator operator++(int) { // Postincrement
DenseMapIterator tmp = *this; ++*this; return tmp;
}
private:
void AdvancePastEmptyBuckets() {
const KeyT Empty = KeyInfoT::getEmptyKey();
const KeyT Tombstone = KeyInfoT::getTombstoneKey();
while (Ptr != End &&
(KeyInfoT::isEqual(Ptr->first, Empty) ||
KeyInfoT::isEqual(Ptr->first, Tombstone)))
++Ptr;
}
};
} // end namespace llvm
#endif