llvm-6502/lib/Target/PowerPC/PPCRegisterInfo.cpp

695 lines
26 KiB
C++

//===- PPCRegisterInfo.cpp - PowerPC Register Information -------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the PowerPC implementation of the TargetRegisterInfo
// class.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "reginfo"
#include "PPC.h"
#include "PPCInstrBuilder.h"
#include "PPCMachineFunctionInfo.h"
#include "PPCRegisterInfo.h"
#include "PPCFrameLowering.h"
#include "PPCSubtarget.h"
#include "llvm/CallingConv.h"
#include "llvm/Constants.h"
#include "llvm/Function.h"
#include "llvm/Type.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineLocation.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/Target/TargetFrameLowering.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/STLExtras.h"
#include <cstdlib>
// FIXME (64-bit): Eventually enable by default.
namespace llvm {
cl::opt<bool> EnablePPC32RS("enable-ppc32-regscavenger",
cl::init(false),
cl::desc("Enable PPC32 register scavenger"),
cl::Hidden);
cl::opt<bool> EnablePPC64RS("enable-ppc64-regscavenger",
cl::init(false),
cl::desc("Enable PPC64 register scavenger"),
cl::Hidden);
}
using namespace llvm;
// FIXME (64-bit): Should be inlined.
bool
PPCRegisterInfo::requiresRegisterScavenging(const MachineFunction &) const {
return ((EnablePPC32RS && !Subtarget.isPPC64()) ||
(EnablePPC64RS && Subtarget.isPPC64()));
}
/// getRegisterNumbering - Given the enum value for some register, e.g.
/// PPC::F14, return the number that it corresponds to (e.g. 14).
unsigned PPCRegisterInfo::getRegisterNumbering(unsigned RegEnum) {
using namespace PPC;
switch (RegEnum) {
case 0: return 0;
case R0 : case X0 : case F0 : case V0 : case CR0: case CR0LT: return 0;
case R1 : case X1 : case F1 : case V1 : case CR1: case CR0GT: return 1;
case R2 : case X2 : case F2 : case V2 : case CR2: case CR0EQ: return 2;
case R3 : case X3 : case F3 : case V3 : case CR3: case CR0UN: return 3;
case R4 : case X4 : case F4 : case V4 : case CR4: case CR1LT: return 4;
case R5 : case X5 : case F5 : case V5 : case CR5: case CR1GT: return 5;
case R6 : case X6 : case F6 : case V6 : case CR6: case CR1EQ: return 6;
case R7 : case X7 : case F7 : case V7 : case CR7: case CR1UN: return 7;
case R8 : case X8 : case F8 : case V8 : case CR2LT: return 8;
case R9 : case X9 : case F9 : case V9 : case CR2GT: return 9;
case R10: case X10: case F10: case V10: case CR2EQ: return 10;
case R11: case X11: case F11: case V11: case CR2UN: return 11;
case R12: case X12: case F12: case V12: case CR3LT: return 12;
case R13: case X13: case F13: case V13: case CR3GT: return 13;
case R14: case X14: case F14: case V14: case CR3EQ: return 14;
case R15: case X15: case F15: case V15: case CR3UN: return 15;
case R16: case X16: case F16: case V16: case CR4LT: return 16;
case R17: case X17: case F17: case V17: case CR4GT: return 17;
case R18: case X18: case F18: case V18: case CR4EQ: return 18;
case R19: case X19: case F19: case V19: case CR4UN: return 19;
case R20: case X20: case F20: case V20: case CR5LT: return 20;
case R21: case X21: case F21: case V21: case CR5GT: return 21;
case R22: case X22: case F22: case V22: case CR5EQ: return 22;
case R23: case X23: case F23: case V23: case CR5UN: return 23;
case R24: case X24: case F24: case V24: case CR6LT: return 24;
case R25: case X25: case F25: case V25: case CR6GT: return 25;
case R26: case X26: case F26: case V26: case CR6EQ: return 26;
case R27: case X27: case F27: case V27: case CR6UN: return 27;
case R28: case X28: case F28: case V28: case CR7LT: return 28;
case R29: case X29: case F29: case V29: case CR7GT: return 29;
case R30: case X30: case F30: case V30: case CR7EQ: return 30;
case R31: case X31: case F31: case V31: case CR7UN: return 31;
default:
llvm_unreachable("Unhandled reg in PPCRegisterInfo::getRegisterNumbering!");
}
}
PPCRegisterInfo::PPCRegisterInfo(const PPCSubtarget &ST,
const TargetInstrInfo &tii)
: PPCGenRegisterInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP),
Subtarget(ST), TII(tii) {
ImmToIdxMap[PPC::LD] = PPC::LDX; ImmToIdxMap[PPC::STD] = PPC::STDX;
ImmToIdxMap[PPC::LBZ] = PPC::LBZX; ImmToIdxMap[PPC::STB] = PPC::STBX;
ImmToIdxMap[PPC::LHZ] = PPC::LHZX; ImmToIdxMap[PPC::LHA] = PPC::LHAX;
ImmToIdxMap[PPC::LWZ] = PPC::LWZX; ImmToIdxMap[PPC::LWA] = PPC::LWAX;
ImmToIdxMap[PPC::LFS] = PPC::LFSX; ImmToIdxMap[PPC::LFD] = PPC::LFDX;
ImmToIdxMap[PPC::STH] = PPC::STHX; ImmToIdxMap[PPC::STW] = PPC::STWX;
ImmToIdxMap[PPC::STFS] = PPC::STFSX; ImmToIdxMap[PPC::STFD] = PPC::STFDX;
ImmToIdxMap[PPC::ADDI] = PPC::ADD4;
// 64-bit
ImmToIdxMap[PPC::LHA8] = PPC::LHAX8; ImmToIdxMap[PPC::LBZ8] = PPC::LBZX8;
ImmToIdxMap[PPC::LHZ8] = PPC::LHZX8; ImmToIdxMap[PPC::LWZ8] = PPC::LWZX8;
ImmToIdxMap[PPC::STB8] = PPC::STBX8; ImmToIdxMap[PPC::STH8] = PPC::STHX8;
ImmToIdxMap[PPC::STW8] = PPC::STWX8; ImmToIdxMap[PPC::STDU] = PPC::STDUX;
ImmToIdxMap[PPC::ADDI8] = PPC::ADD8; ImmToIdxMap[PPC::STD_32] = PPC::STDX_32;
}
/// getPointerRegClass - Return the register class to use to hold pointers.
/// This is used for addressing modes.
const TargetRegisterClass *
PPCRegisterInfo::getPointerRegClass(unsigned Kind) const {
if (Subtarget.isPPC64())
return &PPC::G8RCRegClass;
return &PPC::GPRCRegClass;
}
const unsigned*
PPCRegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
// 32-bit Darwin calling convention.
static const unsigned Darwin32_CalleeSavedRegs[] = {
PPC::R13, PPC::R14, PPC::R15,
PPC::R16, PPC::R17, PPC::R18, PPC::R19,
PPC::R20, PPC::R21, PPC::R22, PPC::R23,
PPC::R24, PPC::R25, PPC::R26, PPC::R27,
PPC::R28, PPC::R29, PPC::R30, PPC::R31,
PPC::F14, PPC::F15, PPC::F16, PPC::F17,
PPC::F18, PPC::F19, PPC::F20, PPC::F21,
PPC::F22, PPC::F23, PPC::F24, PPC::F25,
PPC::F26, PPC::F27, PPC::F28, PPC::F29,
PPC::F30, PPC::F31,
PPC::CR2, PPC::CR3, PPC::CR4,
PPC::V20, PPC::V21, PPC::V22, PPC::V23,
PPC::V24, PPC::V25, PPC::V26, PPC::V27,
PPC::V28, PPC::V29, PPC::V30, PPC::V31,
PPC::CR2LT, PPC::CR2GT, PPC::CR2EQ, PPC::CR2UN,
PPC::CR3LT, PPC::CR3GT, PPC::CR3EQ, PPC::CR3UN,
PPC::CR4LT, PPC::CR4GT, PPC::CR4EQ, PPC::CR4UN,
PPC::LR, 0
};
// 32-bit SVR4 calling convention.
static const unsigned SVR4_CalleeSavedRegs[] = {
PPC::R14, PPC::R15,
PPC::R16, PPC::R17, PPC::R18, PPC::R19,
PPC::R20, PPC::R21, PPC::R22, PPC::R23,
PPC::R24, PPC::R25, PPC::R26, PPC::R27,
PPC::R28, PPC::R29, PPC::R30, PPC::R31,
PPC::F14, PPC::F15, PPC::F16, PPC::F17,
PPC::F18, PPC::F19, PPC::F20, PPC::F21,
PPC::F22, PPC::F23, PPC::F24, PPC::F25,
PPC::F26, PPC::F27, PPC::F28, PPC::F29,
PPC::F30, PPC::F31,
PPC::CR2, PPC::CR3, PPC::CR4,
PPC::VRSAVE,
PPC::V20, PPC::V21, PPC::V22, PPC::V23,
PPC::V24, PPC::V25, PPC::V26, PPC::V27,
PPC::V28, PPC::V29, PPC::V30, PPC::V31,
PPC::CR2LT, PPC::CR2GT, PPC::CR2EQ, PPC::CR2UN,
PPC::CR3LT, PPC::CR3GT, PPC::CR3EQ, PPC::CR3UN,
PPC::CR4LT, PPC::CR4GT, PPC::CR4EQ, PPC::CR4UN,
0
};
// 64-bit Darwin calling convention.
static const unsigned Darwin64_CalleeSavedRegs[] = {
PPC::X14, PPC::X15,
PPC::X16, PPC::X17, PPC::X18, PPC::X19,
PPC::X20, PPC::X21, PPC::X22, PPC::X23,
PPC::X24, PPC::X25, PPC::X26, PPC::X27,
PPC::X28, PPC::X29, PPC::X30, PPC::X31,
PPC::F14, PPC::F15, PPC::F16, PPC::F17,
PPC::F18, PPC::F19, PPC::F20, PPC::F21,
PPC::F22, PPC::F23, PPC::F24, PPC::F25,
PPC::F26, PPC::F27, PPC::F28, PPC::F29,
PPC::F30, PPC::F31,
PPC::CR2, PPC::CR3, PPC::CR4,
PPC::V20, PPC::V21, PPC::V22, PPC::V23,
PPC::V24, PPC::V25, PPC::V26, PPC::V27,
PPC::V28, PPC::V29, PPC::V30, PPC::V31,
PPC::CR2LT, PPC::CR2GT, PPC::CR2EQ, PPC::CR2UN,
PPC::CR3LT, PPC::CR3GT, PPC::CR3EQ, PPC::CR3UN,
PPC::CR4LT, PPC::CR4GT, PPC::CR4EQ, PPC::CR4UN,
PPC::LR8, 0
};
// 64-bit SVR4 calling convention.
static const unsigned SVR4_64_CalleeSavedRegs[] = {
PPC::X14, PPC::X15,
PPC::X16, PPC::X17, PPC::X18, PPC::X19,
PPC::X20, PPC::X21, PPC::X22, PPC::X23,
PPC::X24, PPC::X25, PPC::X26, PPC::X27,
PPC::X28, PPC::X29, PPC::X30, PPC::X31,
PPC::F14, PPC::F15, PPC::F16, PPC::F17,
PPC::F18, PPC::F19, PPC::F20, PPC::F21,
PPC::F22, PPC::F23, PPC::F24, PPC::F25,
PPC::F26, PPC::F27, PPC::F28, PPC::F29,
PPC::F30, PPC::F31,
PPC::CR2, PPC::CR3, PPC::CR4,
PPC::VRSAVE,
PPC::V20, PPC::V21, PPC::V22, PPC::V23,
PPC::V24, PPC::V25, PPC::V26, PPC::V27,
PPC::V28, PPC::V29, PPC::V30, PPC::V31,
PPC::CR2LT, PPC::CR2GT, PPC::CR2EQ, PPC::CR2UN,
PPC::CR3LT, PPC::CR3GT, PPC::CR3EQ, PPC::CR3UN,
PPC::CR4LT, PPC::CR4GT, PPC::CR4EQ, PPC::CR4UN,
0
};
if (Subtarget.isDarwinABI())
return Subtarget.isPPC64() ? Darwin64_CalleeSavedRegs :
Darwin32_CalleeSavedRegs;
return Subtarget.isPPC64() ? SVR4_64_CalleeSavedRegs : SVR4_CalleeSavedRegs;
}
BitVector PPCRegisterInfo::getReservedRegs(const MachineFunction &MF) const {
BitVector Reserved(getNumRegs());
const PPCFrameLowering *PPCFI =
static_cast<const PPCFrameLowering*>(MF.getTarget().getFrameLowering());
Reserved.set(PPC::R0);
Reserved.set(PPC::R1);
Reserved.set(PPC::LR);
Reserved.set(PPC::LR8);
Reserved.set(PPC::RM);
// The SVR4 ABI reserves r2 and r13
if (Subtarget.isSVR4ABI()) {
Reserved.set(PPC::R2); // System-reserved register
Reserved.set(PPC::R13); // Small Data Area pointer register
}
// Reserve R2 on Darwin to hack around the problem of save/restore of CR
// when the stack frame is too big to address directly; we need two regs.
// This is a hack.
if (Subtarget.isDarwinABI()) {
Reserved.set(PPC::R2);
}
// On PPC64, r13 is the thread pointer. Never allocate this register.
// Note that this is over conservative, as it also prevents allocation of R31
// when the FP is not needed.
if (Subtarget.isPPC64()) {
Reserved.set(PPC::R13);
Reserved.set(PPC::R31);
if (!requiresRegisterScavenging(MF))
Reserved.set(PPC::R0); // FIXME (64-bit): Remove
Reserved.set(PPC::X0);
Reserved.set(PPC::X1);
Reserved.set(PPC::X13);
Reserved.set(PPC::X31);
// The 64-bit SVR4 ABI reserves r2 for the TOC pointer.
if (Subtarget.isSVR4ABI()) {
Reserved.set(PPC::X2);
}
// Reserve R2 on Darwin to hack around the problem of save/restore of CR
// when the stack frame is too big to address directly; we need two regs.
// This is a hack.
if (Subtarget.isDarwinABI()) {
Reserved.set(PPC::X2);
}
}
if (PPCFI->needsFP(MF))
Reserved.set(PPC::R31);
return Reserved;
}
//===----------------------------------------------------------------------===//
// Stack Frame Processing methods
//===----------------------------------------------------------------------===//
void PPCRegisterInfo::
eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
MachineBasicBlock::iterator I) const {
if (GuaranteedTailCallOpt && I->getOpcode() == PPC::ADJCALLSTACKUP) {
// Add (actually subtract) back the amount the callee popped on return.
if (int CalleeAmt = I->getOperand(1).getImm()) {
bool is64Bit = Subtarget.isPPC64();
CalleeAmt *= -1;
unsigned StackReg = is64Bit ? PPC::X1 : PPC::R1;
unsigned TmpReg = is64Bit ? PPC::X0 : PPC::R0;
unsigned ADDIInstr = is64Bit ? PPC::ADDI8 : PPC::ADDI;
unsigned ADDInstr = is64Bit ? PPC::ADD8 : PPC::ADD4;
unsigned LISInstr = is64Bit ? PPC::LIS8 : PPC::LIS;
unsigned ORIInstr = is64Bit ? PPC::ORI8 : PPC::ORI;
MachineInstr *MI = I;
DebugLoc dl = MI->getDebugLoc();
if (isInt<16>(CalleeAmt)) {
BuildMI(MBB, I, dl, TII.get(ADDIInstr), StackReg).addReg(StackReg).
addImm(CalleeAmt);
} else {
MachineBasicBlock::iterator MBBI = I;
BuildMI(MBB, MBBI, dl, TII.get(LISInstr), TmpReg)
.addImm(CalleeAmt >> 16);
BuildMI(MBB, MBBI, dl, TII.get(ORIInstr), TmpReg)
.addReg(TmpReg, RegState::Kill)
.addImm(CalleeAmt & 0xFFFF);
BuildMI(MBB, MBBI, dl, TII.get(ADDInstr))
.addReg(StackReg)
.addReg(StackReg)
.addReg(TmpReg);
}
}
}
// Simply discard ADJCALLSTACKDOWN, ADJCALLSTACKUP instructions.
MBB.erase(I);
}
/// findScratchRegister - Find a 'free' PPC register. Try for a call-clobbered
/// register first and then a spilled callee-saved register if that fails.
static
unsigned findScratchRegister(MachineBasicBlock::iterator II, RegScavenger *RS,
const TargetRegisterClass *RC, int SPAdj) {
assert(RS && "Register scavenging must be on");
unsigned Reg = RS->FindUnusedReg(RC);
// FIXME: move ARM callee-saved reg scan to target independent code, then
// search for already spilled CS register here.
if (Reg == 0)
Reg = RS->scavengeRegister(RC, II, SPAdj);
return Reg;
}
/// lowerDynamicAlloc - Generate the code for allocating an object in the
/// current frame. The sequence of code with be in the general form
///
/// addi R0, SP, \#frameSize ; get the address of the previous frame
/// stwxu R0, SP, Rnegsize ; add and update the SP with the negated size
/// addi Rnew, SP, \#maxCalFrameSize ; get the top of the allocation
///
void PPCRegisterInfo::lowerDynamicAlloc(MachineBasicBlock::iterator II,
int SPAdj, RegScavenger *RS) const {
// Get the instruction.
MachineInstr &MI = *II;
// Get the instruction's basic block.
MachineBasicBlock &MBB = *MI.getParent();
// Get the basic block's function.
MachineFunction &MF = *MBB.getParent();
// Get the frame info.
MachineFrameInfo *MFI = MF.getFrameInfo();
// Determine whether 64-bit pointers are used.
bool LP64 = Subtarget.isPPC64();
DebugLoc dl = MI.getDebugLoc();
// Get the maximum call stack size.
unsigned maxCallFrameSize = MFI->getMaxCallFrameSize();
// Get the total frame size.
unsigned FrameSize = MFI->getStackSize();
// Get stack alignments.
unsigned TargetAlign = MF.getTarget().getFrameLowering()->getStackAlignment();
unsigned MaxAlign = MFI->getMaxAlignment();
if (MaxAlign > TargetAlign)
report_fatal_error("Dynamic alloca with large aligns not supported");
// Determine the previous frame's address. If FrameSize can't be
// represented as 16 bits or we need special alignment, then we load the
// previous frame's address from 0(SP). Why not do an addis of the hi?
// Because R0 is our only safe tmp register and addi/addis treat R0 as zero.
// Constructing the constant and adding would take 3 instructions.
// Fortunately, a frame greater than 32K is rare.
const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
const TargetRegisterClass *RC = LP64 ? G8RC : GPRC;
// FIXME (64-bit): Use "findScratchRegister"
unsigned Reg;
if (requiresRegisterScavenging(MF))
Reg = findScratchRegister(II, RS, RC, SPAdj);
else
Reg = PPC::R0;
if (MaxAlign < TargetAlign && isInt<16>(FrameSize)) {
BuildMI(MBB, II, dl, TII.get(PPC::ADDI), Reg)
.addReg(PPC::R31)
.addImm(FrameSize);
} else if (LP64) {
if (requiresRegisterScavenging(MF)) // FIXME (64-bit): Use "true" part.
BuildMI(MBB, II, dl, TII.get(PPC::LD), Reg)
.addImm(0)
.addReg(PPC::X1);
else
BuildMI(MBB, II, dl, TII.get(PPC::LD), PPC::X0)
.addImm(0)
.addReg(PPC::X1);
} else {
BuildMI(MBB, II, dl, TII.get(PPC::LWZ), Reg)
.addImm(0)
.addReg(PPC::R1);
}
// Grow the stack and update the stack pointer link, then determine the
// address of new allocated space.
if (LP64) {
if (requiresRegisterScavenging(MF)) // FIXME (64-bit): Use "true" part.
BuildMI(MBB, II, dl, TII.get(PPC::STDUX))
.addReg(Reg, RegState::Kill)
.addReg(PPC::X1)
.addReg(MI.getOperand(1).getReg());
else
BuildMI(MBB, II, dl, TII.get(PPC::STDUX))
.addReg(PPC::X0, RegState::Kill)
.addReg(PPC::X1)
.addReg(MI.getOperand(1).getReg());
if (!MI.getOperand(1).isKill())
BuildMI(MBB, II, dl, TII.get(PPC::ADDI8), MI.getOperand(0).getReg())
.addReg(PPC::X1)
.addImm(maxCallFrameSize);
else
// Implicitly kill the register.
BuildMI(MBB, II, dl, TII.get(PPC::ADDI8), MI.getOperand(0).getReg())
.addReg(PPC::X1)
.addImm(maxCallFrameSize)
.addReg(MI.getOperand(1).getReg(), RegState::ImplicitKill);
} else {
BuildMI(MBB, II, dl, TII.get(PPC::STWUX))
.addReg(Reg, RegState::Kill)
.addReg(PPC::R1)
.addReg(MI.getOperand(1).getReg());
if (!MI.getOperand(1).isKill())
BuildMI(MBB, II, dl, TII.get(PPC::ADDI), MI.getOperand(0).getReg())
.addReg(PPC::R1)
.addImm(maxCallFrameSize);
else
// Implicitly kill the register.
BuildMI(MBB, II, dl, TII.get(PPC::ADDI), MI.getOperand(0).getReg())
.addReg(PPC::R1)
.addImm(maxCallFrameSize)
.addReg(MI.getOperand(1).getReg(), RegState::ImplicitKill);
}
// Discard the DYNALLOC instruction.
MBB.erase(II);
}
/// lowerCRSpilling - Generate the code for spilling a CR register. Instead of
/// reserving a whole register (R0), we scrounge for one here. This generates
/// code like this:
///
/// mfcr rA ; Move the conditional register into GPR rA.
/// rlwinm rA, rA, SB, 0, 31 ; Shift the bits left so they are in CR0's slot.
/// stw rA, FI ; Store rA to the frame.
///
void PPCRegisterInfo::lowerCRSpilling(MachineBasicBlock::iterator II,
unsigned FrameIndex, int SPAdj,
RegScavenger *RS) const {
// Get the instruction.
MachineInstr &MI = *II; // ; SPILL_CR <SrcReg>, <offset>, <FI>
// Get the instruction's basic block.
MachineBasicBlock &MBB = *MI.getParent();
DebugLoc dl = MI.getDebugLoc();
const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
const TargetRegisterClass *RC = Subtarget.isPPC64() ? G8RC : GPRC;
unsigned Reg = findScratchRegister(II, RS, RC, SPAdj);
unsigned SrcReg = MI.getOperand(0).getReg();
// We need to store the CR in the low 4-bits of the saved value. First, issue
// an MFCRpsued to save all of the CRBits and, if needed, kill the SrcReg.
BuildMI(MBB, II, dl, TII.get(PPC::MFCRpseud), Reg)
.addReg(SrcReg, getKillRegState(MI.getOperand(0).isKill()));
// If the saved register wasn't CR0, shift the bits left so that they are in
// CR0's slot.
if (SrcReg != PPC::CR0)
// rlwinm rA, rA, ShiftBits, 0, 31.
BuildMI(MBB, II, dl, TII.get(PPC::RLWINM), Reg)
.addReg(Reg, RegState::Kill)
.addImm(PPCRegisterInfo::getRegisterNumbering(SrcReg) * 4)
.addImm(0)
.addImm(31);
addFrameReference(BuildMI(MBB, II, dl, TII.get(PPC::STW))
.addReg(Reg, getKillRegState(MI.getOperand(1).getImm())),
FrameIndex);
// Discard the pseudo instruction.
MBB.erase(II);
}
void
PPCRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
int SPAdj, RegScavenger *RS) const {
assert(SPAdj == 0 && "Unexpected");
// Get the instruction.
MachineInstr &MI = *II;
// Get the instruction's basic block.
MachineBasicBlock &MBB = *MI.getParent();
// Get the basic block's function.
MachineFunction &MF = *MBB.getParent();
// Get the frame info.
MachineFrameInfo *MFI = MF.getFrameInfo();
const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
DebugLoc dl = MI.getDebugLoc();
// Find out which operand is the frame index.
unsigned FIOperandNo = 0;
while (!MI.getOperand(FIOperandNo).isFI()) {
++FIOperandNo;
assert(FIOperandNo != MI.getNumOperands() &&
"Instr doesn't have FrameIndex operand!");
}
// Take into account whether it's an add or mem instruction
unsigned OffsetOperandNo = (FIOperandNo == 2) ? 1 : 2;
if (MI.isInlineAsm())
OffsetOperandNo = FIOperandNo-1;
// Get the frame index.
int FrameIndex = MI.getOperand(FIOperandNo).getIndex();
// Get the frame pointer save index. Users of this index are primarily
// DYNALLOC instructions.
PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
int FPSI = FI->getFramePointerSaveIndex();
// Get the instruction opcode.
unsigned OpC = MI.getOpcode();
// Special case for dynamic alloca.
if (FPSI && FrameIndex == FPSI &&
(OpC == PPC::DYNALLOC || OpC == PPC::DYNALLOC8)) {
lowerDynamicAlloc(II, SPAdj, RS);
return;
}
// Special case for pseudo-op SPILL_CR.
if (requiresRegisterScavenging(MF)) // FIXME (64-bit): Enable by default.
if (OpC == PPC::SPILL_CR) {
lowerCRSpilling(II, FrameIndex, SPAdj, RS);
return;
}
// Replace the FrameIndex with base register with GPR1 (SP) or GPR31 (FP).
MI.getOperand(FIOperandNo).ChangeToRegister(TFI->hasFP(MF) ?
PPC::R31 : PPC::R1,
false);
// Figure out if the offset in the instruction is shifted right two bits. This
// is true for instructions like "STD", which the machine implicitly adds two
// low zeros to.
bool isIXAddr = false;
switch (OpC) {
case PPC::LWA:
case PPC::LD:
case PPC::STD:
case PPC::STD_32:
isIXAddr = true;
break;
}
// Now add the frame object offset to the offset from r1.
int Offset = MFI->getObjectOffset(FrameIndex);
if (!isIXAddr)
Offset += MI.getOperand(OffsetOperandNo).getImm();
else
Offset += MI.getOperand(OffsetOperandNo).getImm() << 2;
// If we're not using a Frame Pointer that has been set to the value of the
// SP before having the stack size subtracted from it, then add the stack size
// to Offset to get the correct offset.
// Naked functions have stack size 0, although getStackSize may not reflect that
// because we didn't call all the pieces that compute it for naked functions.
if (!MF.getFunction()->hasFnAttr(Attribute::Naked))
Offset += MFI->getStackSize();
// If we can, encode the offset directly into the instruction. If this is a
// normal PPC "ri" instruction, any 16-bit value can be safely encoded. If
// this is a PPC64 "ix" instruction, only a 16-bit value with the low two bits
// clear can be encoded. This is extremely uncommon, because normally you
// only "std" to a stack slot that is at least 4-byte aligned, but it can
// happen in invalid code.
if (isInt<16>(Offset) && (!isIXAddr || (Offset & 3) == 0)) {
if (isIXAddr)
Offset >>= 2; // The actual encoded value has the low two bits zero.
MI.getOperand(OffsetOperandNo).ChangeToImmediate(Offset);
return;
}
// The offset doesn't fit into a single register, scavenge one to build the
// offset in.
// FIXME: figure out what SPAdj is doing here.
// FIXME (64-bit): Use "findScratchRegister".
unsigned SReg;
if (requiresRegisterScavenging(MF))
SReg = findScratchRegister(II, RS, &PPC::GPRCRegClass, SPAdj);
else
SReg = PPC::R0;
// Insert a set of rA with the full offset value before the ld, st, or add
BuildMI(MBB, II, dl, TII.get(PPC::LIS), SReg)
.addImm(Offset >> 16);
BuildMI(MBB, II, dl, TII.get(PPC::ORI), SReg)
.addReg(SReg, RegState::Kill)
.addImm(Offset);
// Convert into indexed form of the instruction:
//
// sth 0:rA, 1:imm 2:(rB) ==> sthx 0:rA, 2:rB, 1:r0
// addi 0:rA 1:rB, 2, imm ==> add 0:rA, 1:rB, 2:r0
unsigned OperandBase;
if (OpC != TargetOpcode::INLINEASM) {
assert(ImmToIdxMap.count(OpC) &&
"No indexed form of load or store available!");
unsigned NewOpcode = ImmToIdxMap.find(OpC)->second;
MI.setDesc(TII.get(NewOpcode));
OperandBase = 1;
} else {
OperandBase = OffsetOperandNo;
}
unsigned StackReg = MI.getOperand(FIOperandNo).getReg();
MI.getOperand(OperandBase).ChangeToRegister(StackReg, false);
MI.getOperand(OperandBase + 1).ChangeToRegister(SReg, false);
}
unsigned PPCRegisterInfo::getRARegister() const {
return !Subtarget.isPPC64() ? PPC::LR : PPC::LR8;
}
unsigned PPCRegisterInfo::getFrameRegister(const MachineFunction &MF) const {
const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
if (!Subtarget.isPPC64())
return TFI->hasFP(MF) ? PPC::R31 : PPC::R1;
else
return TFI->hasFP(MF) ? PPC::X31 : PPC::X1;
}
unsigned PPCRegisterInfo::getEHExceptionRegister() const {
return !Subtarget.isPPC64() ? PPC::R3 : PPC::X3;
}
unsigned PPCRegisterInfo::getEHHandlerRegister() const {
return !Subtarget.isPPC64() ? PPC::R4 : PPC::X4;
}
int PPCRegisterInfo::getDwarfRegNum(unsigned RegNum, bool isEH) const {
// FIXME: Most probably dwarf numbers differs for Linux and Darwin
return PPCGenRegisterInfo::getDwarfRegNumFull(RegNum, 0);
}
#include "PPCGenRegisterInfo.inc"