llvm-6502/lib/ExecutionEngine/Interpreter/Execution.cpp
2003-05-10 21:22:39 +00:00

1323 lines
44 KiB
C++

//===-- Execution.cpp - Implement code to simulate the program ------------===//
//
// This file contains the actual instruction interpreter.
//
//===----------------------------------------------------------------------===//
#include "Interpreter.h"
#include "ExecutionAnnotations.h"
#include "llvm/Module.h"
#include "llvm/Instructions.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Constants.h"
#include "llvm/Assembly/Writer.h"
#include "Support/CommandLine.h"
#include "Support/Statistic.h"
#include <math.h> // For fmod
#include <signal.h>
#include <setjmp.h>
Interpreter *TheEE = 0;
namespace {
Statistic<> NumDynamicInsts("lli", "Number of dynamic instructions executed");
cl::opt<bool>
QuietMode("quiet", cl::desc("Do not emit any non-program output"),
cl::init(true));
cl::alias
QuietModeA("q", cl::desc("Alias for -quiet"), cl::aliasopt(QuietMode));
cl::opt<bool>
ArrayChecksEnabled("array-checks", cl::desc("Enable array bound checks"));
cl::opt<bool>
AbortOnExceptions("abort-on-exception",
cl::desc("Halt execution on a machine exception"));
}
// Create a TargetData structure to handle memory addressing and size/alignment
// computations
//
CachedWriter CW; // Object to accelerate printing of LLVM
#ifdef PROFILE_STRUCTURE_FIELDS
static cl::opt<bool>
ProfileStructureFields("profilestructfields",
cl::desc("Profile Structure Field Accesses"));
#include <map>
static std::map<const StructType *, std::vector<unsigned> > FieldAccessCounts;
#endif
sigjmp_buf SignalRecoverBuffer;
static bool InInstruction = false;
extern "C" {
static void SigHandler(int Signal) {
if (InInstruction)
siglongjmp(SignalRecoverBuffer, Signal);
}
}
static void initializeSignalHandlers() {
struct sigaction Action;
Action.sa_handler = SigHandler;
Action.sa_flags = SA_SIGINFO;
sigemptyset(&Action.sa_mask);
sigaction(SIGSEGV, &Action, 0);
sigaction(SIGBUS, &Action, 0);
sigaction(SIGINT, &Action, 0);
sigaction(SIGFPE, &Action, 0);
}
//===----------------------------------------------------------------------===//
// Value Manipulation code
//===----------------------------------------------------------------------===//
static unsigned getOperandSlot(Value *V) {
SlotNumber *SN = (SlotNumber*)V->getAnnotation(SlotNumberAID);
assert(SN && "Operand does not have a slot number annotation!");
return SN->SlotNum;
}
// Operations used by constant expr implementations...
static GenericValue executeCastOperation(Value *Src, const Type *DestTy,
ExecutionContext &SF);
static GenericValue executeAddInst(GenericValue Src1, GenericValue Src2,
const Type *Ty);
static GenericValue getOperandValue(Value *V, ExecutionContext &SF) {
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
switch (CE->getOpcode()) {
case Instruction::Cast:
return executeCastOperation(CE->getOperand(0), CE->getType(), SF);
case Instruction::GetElementPtr:
return TheEE->executeGEPOperation(CE->getOperand(0), CE->op_begin()+1,
CE->op_end(), SF);
case Instruction::Add:
return executeAddInst(getOperandValue(CE->getOperand(0), SF),
getOperandValue(CE->getOperand(1), SF),
CE->getType());
default:
std::cerr << "Unhandled ConstantExpr: " << CE << "\n";
abort();
return GenericValue();
}
} else if (Constant *CPV = dyn_cast<Constant>(V)) {
return TheEE->getConstantValue(CPV);
} else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
return PTOGV(TheEE->getPointerToGlobal(GV));
} else {
unsigned TyP = V->getType()->getUniqueID(); // TypePlane for value
unsigned OpSlot = getOperandSlot(V);
assert(TyP < SF.Values.size() &&
OpSlot < SF.Values[TyP].size() && "Value out of range!");
return SF.Values[TyP][getOperandSlot(V)];
}
}
static void printOperandInfo(Value *V, ExecutionContext &SF) {
if (isa<Constant>(V)) {
std::cout << "Constant Pool Value\n";
} else if (isa<GlobalValue>(V)) {
std::cout << "Global Value\n";
} else {
unsigned TyP = V->getType()->getUniqueID(); // TypePlane for value
unsigned Slot = getOperandSlot(V);
std::cout << "Value=" << (void*)V << " TypeID=" << TyP << " Slot=" << Slot
<< " Addr=" << &SF.Values[TyP][Slot] << " SF=" << &SF
<< " Contents=0x";
const unsigned char *Buf = (const unsigned char*)&SF.Values[TyP][Slot];
for (unsigned i = 0; i < sizeof(GenericValue); ++i) {
unsigned char Cur = Buf[i];
std::cout << ( Cur >= 160?char((Cur>>4)+'A'-10):char((Cur>>4) + '0'))
<< ((Cur&15) >= 10?char((Cur&15)+'A'-10):char((Cur&15) + '0'));
}
std::cout << "\n";
}
}
static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF) {
unsigned TyP = V->getType()->getUniqueID(); // TypePlane for value
//std::cout << "Setting value: " << &SF.Values[TyP][getOperandSlot(V)]<< "\n";
SF.Values[TyP][getOperandSlot(V)] = Val;
}
//===----------------------------------------------------------------------===//
// Annotation Wrangling code
//===----------------------------------------------------------------------===//
void Interpreter::initializeExecutionEngine() {
TheEE = this;
AnnotationManager::registerAnnotationFactory(FunctionInfoAID,
&FunctionInfo::Create);
initializeSignalHandlers();
}
//===----------------------------------------------------------------------===//
// Binary Instruction Implementations
//===----------------------------------------------------------------------===//
#define IMPLEMENT_BINARY_OPERATOR(OP, TY) \
case Type::TY##TyID: Dest.TY##Val = Src1.TY##Val OP Src2.TY##Val; break
static GenericValue executeAddInst(GenericValue Src1, GenericValue Src2,
const Type *Ty) {
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
IMPLEMENT_BINARY_OPERATOR(+, UByte);
IMPLEMENT_BINARY_OPERATOR(+, SByte);
IMPLEMENT_BINARY_OPERATOR(+, UShort);
IMPLEMENT_BINARY_OPERATOR(+, Short);
IMPLEMENT_BINARY_OPERATOR(+, UInt);
IMPLEMENT_BINARY_OPERATOR(+, Int);
IMPLEMENT_BINARY_OPERATOR(+, ULong);
IMPLEMENT_BINARY_OPERATOR(+, Long);
IMPLEMENT_BINARY_OPERATOR(+, Float);
IMPLEMENT_BINARY_OPERATOR(+, Double);
default:
std::cout << "Unhandled type for Add instruction: " << *Ty << "\n";
abort();
}
return Dest;
}
static GenericValue executeSubInst(GenericValue Src1, GenericValue Src2,
const Type *Ty) {
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
IMPLEMENT_BINARY_OPERATOR(-, UByte);
IMPLEMENT_BINARY_OPERATOR(-, SByte);
IMPLEMENT_BINARY_OPERATOR(-, UShort);
IMPLEMENT_BINARY_OPERATOR(-, Short);
IMPLEMENT_BINARY_OPERATOR(-, UInt);
IMPLEMENT_BINARY_OPERATOR(-, Int);
IMPLEMENT_BINARY_OPERATOR(-, ULong);
IMPLEMENT_BINARY_OPERATOR(-, Long);
IMPLEMENT_BINARY_OPERATOR(-, Float);
IMPLEMENT_BINARY_OPERATOR(-, Double);
default:
std::cout << "Unhandled type for Sub instruction: " << *Ty << "\n";
abort();
}
return Dest;
}
static GenericValue executeMulInst(GenericValue Src1, GenericValue Src2,
const Type *Ty) {
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
IMPLEMENT_BINARY_OPERATOR(*, UByte);
IMPLEMENT_BINARY_OPERATOR(*, SByte);
IMPLEMENT_BINARY_OPERATOR(*, UShort);
IMPLEMENT_BINARY_OPERATOR(*, Short);
IMPLEMENT_BINARY_OPERATOR(*, UInt);
IMPLEMENT_BINARY_OPERATOR(*, Int);
IMPLEMENT_BINARY_OPERATOR(*, ULong);
IMPLEMENT_BINARY_OPERATOR(*, Long);
IMPLEMENT_BINARY_OPERATOR(*, Float);
IMPLEMENT_BINARY_OPERATOR(*, Double);
default:
std::cout << "Unhandled type for Mul instruction: " << Ty << "\n";
abort();
}
return Dest;
}
static GenericValue executeDivInst(GenericValue Src1, GenericValue Src2,
const Type *Ty) {
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
IMPLEMENT_BINARY_OPERATOR(/, UByte);
IMPLEMENT_BINARY_OPERATOR(/, SByte);
IMPLEMENT_BINARY_OPERATOR(/, UShort);
IMPLEMENT_BINARY_OPERATOR(/, Short);
IMPLEMENT_BINARY_OPERATOR(/, UInt);
IMPLEMENT_BINARY_OPERATOR(/, Int);
IMPLEMENT_BINARY_OPERATOR(/, ULong);
IMPLEMENT_BINARY_OPERATOR(/, Long);
IMPLEMENT_BINARY_OPERATOR(/, Float);
IMPLEMENT_BINARY_OPERATOR(/, Double);
default:
std::cout << "Unhandled type for Div instruction: " << *Ty << "\n";
abort();
}
return Dest;
}
static GenericValue executeRemInst(GenericValue Src1, GenericValue Src2,
const Type *Ty) {
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
IMPLEMENT_BINARY_OPERATOR(%, UByte);
IMPLEMENT_BINARY_OPERATOR(%, SByte);
IMPLEMENT_BINARY_OPERATOR(%, UShort);
IMPLEMENT_BINARY_OPERATOR(%, Short);
IMPLEMENT_BINARY_OPERATOR(%, UInt);
IMPLEMENT_BINARY_OPERATOR(%, Int);
IMPLEMENT_BINARY_OPERATOR(%, ULong);
IMPLEMENT_BINARY_OPERATOR(%, Long);
case Type::FloatTyID:
Dest.FloatVal = fmod(Src1.FloatVal, Src2.FloatVal);
break;
case Type::DoubleTyID:
Dest.DoubleVal = fmod(Src1.DoubleVal, Src2.DoubleVal);
break;
default:
std::cout << "Unhandled type for Rem instruction: " << *Ty << "\n";
abort();
}
return Dest;
}
static GenericValue executeAndInst(GenericValue Src1, GenericValue Src2,
const Type *Ty) {
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
IMPLEMENT_BINARY_OPERATOR(&, Bool);
IMPLEMENT_BINARY_OPERATOR(&, UByte);
IMPLEMENT_BINARY_OPERATOR(&, SByte);
IMPLEMENT_BINARY_OPERATOR(&, UShort);
IMPLEMENT_BINARY_OPERATOR(&, Short);
IMPLEMENT_BINARY_OPERATOR(&, UInt);
IMPLEMENT_BINARY_OPERATOR(&, Int);
IMPLEMENT_BINARY_OPERATOR(&, ULong);
IMPLEMENT_BINARY_OPERATOR(&, Long);
default:
std::cout << "Unhandled type for And instruction: " << *Ty << "\n";
abort();
}
return Dest;
}
static GenericValue executeOrInst(GenericValue Src1, GenericValue Src2,
const Type *Ty) {
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
IMPLEMENT_BINARY_OPERATOR(|, Bool);
IMPLEMENT_BINARY_OPERATOR(|, UByte);
IMPLEMENT_BINARY_OPERATOR(|, SByte);
IMPLEMENT_BINARY_OPERATOR(|, UShort);
IMPLEMENT_BINARY_OPERATOR(|, Short);
IMPLEMENT_BINARY_OPERATOR(|, UInt);
IMPLEMENT_BINARY_OPERATOR(|, Int);
IMPLEMENT_BINARY_OPERATOR(|, ULong);
IMPLEMENT_BINARY_OPERATOR(|, Long);
default:
std::cout << "Unhandled type for Or instruction: " << *Ty << "\n";
abort();
}
return Dest;
}
static GenericValue executeXorInst(GenericValue Src1, GenericValue Src2,
const Type *Ty) {
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
IMPLEMENT_BINARY_OPERATOR(^, Bool);
IMPLEMENT_BINARY_OPERATOR(^, UByte);
IMPLEMENT_BINARY_OPERATOR(^, SByte);
IMPLEMENT_BINARY_OPERATOR(^, UShort);
IMPLEMENT_BINARY_OPERATOR(^, Short);
IMPLEMENT_BINARY_OPERATOR(^, UInt);
IMPLEMENT_BINARY_OPERATOR(^, Int);
IMPLEMENT_BINARY_OPERATOR(^, ULong);
IMPLEMENT_BINARY_OPERATOR(^, Long);
default:
std::cout << "Unhandled type for Xor instruction: " << *Ty << "\n";
abort();
}
return Dest;
}
#define IMPLEMENT_SETCC(OP, TY) \
case Type::TY##TyID: Dest.BoolVal = Src1.TY##Val OP Src2.TY##Val; break
// Handle pointers specially because they must be compared with only as much
// width as the host has. We _do not_ want to be comparing 64 bit values when
// running on a 32-bit target, otherwise the upper 32 bits might mess up
// comparisons if they contain garbage.
#define IMPLEMENT_POINTERSETCC(OP) \
case Type::PointerTyID: \
Dest.BoolVal = (void*)(intptr_t)Src1.PointerVal OP \
(void*)(intptr_t)Src2.PointerVal; break
static GenericValue executeSetEQInst(GenericValue Src1, GenericValue Src2,
const Type *Ty) {
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
IMPLEMENT_SETCC(==, UByte);
IMPLEMENT_SETCC(==, SByte);
IMPLEMENT_SETCC(==, UShort);
IMPLEMENT_SETCC(==, Short);
IMPLEMENT_SETCC(==, UInt);
IMPLEMENT_SETCC(==, Int);
IMPLEMENT_SETCC(==, ULong);
IMPLEMENT_SETCC(==, Long);
IMPLEMENT_SETCC(==, Float);
IMPLEMENT_SETCC(==, Double);
IMPLEMENT_POINTERSETCC(==);
default:
std::cout << "Unhandled type for SetEQ instruction: " << *Ty << "\n";
abort();
}
return Dest;
}
static GenericValue executeSetNEInst(GenericValue Src1, GenericValue Src2,
const Type *Ty) {
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
IMPLEMENT_SETCC(!=, UByte);
IMPLEMENT_SETCC(!=, SByte);
IMPLEMENT_SETCC(!=, UShort);
IMPLEMENT_SETCC(!=, Short);
IMPLEMENT_SETCC(!=, UInt);
IMPLEMENT_SETCC(!=, Int);
IMPLEMENT_SETCC(!=, ULong);
IMPLEMENT_SETCC(!=, Long);
IMPLEMENT_SETCC(!=, Float);
IMPLEMENT_SETCC(!=, Double);
IMPLEMENT_POINTERSETCC(!=);
default:
std::cout << "Unhandled type for SetNE instruction: " << *Ty << "\n";
abort();
}
return Dest;
}
static GenericValue executeSetLEInst(GenericValue Src1, GenericValue Src2,
const Type *Ty) {
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
IMPLEMENT_SETCC(<=, UByte);
IMPLEMENT_SETCC(<=, SByte);
IMPLEMENT_SETCC(<=, UShort);
IMPLEMENT_SETCC(<=, Short);
IMPLEMENT_SETCC(<=, UInt);
IMPLEMENT_SETCC(<=, Int);
IMPLEMENT_SETCC(<=, ULong);
IMPLEMENT_SETCC(<=, Long);
IMPLEMENT_SETCC(<=, Float);
IMPLEMENT_SETCC(<=, Double);
IMPLEMENT_POINTERSETCC(<=);
default:
std::cout << "Unhandled type for SetLE instruction: " << Ty << "\n";
abort();
}
return Dest;
}
static GenericValue executeSetGEInst(GenericValue Src1, GenericValue Src2,
const Type *Ty) {
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
IMPLEMENT_SETCC(>=, UByte);
IMPLEMENT_SETCC(>=, SByte);
IMPLEMENT_SETCC(>=, UShort);
IMPLEMENT_SETCC(>=, Short);
IMPLEMENT_SETCC(>=, UInt);
IMPLEMENT_SETCC(>=, Int);
IMPLEMENT_SETCC(>=, ULong);
IMPLEMENT_SETCC(>=, Long);
IMPLEMENT_SETCC(>=, Float);
IMPLEMENT_SETCC(>=, Double);
IMPLEMENT_POINTERSETCC(>=);
default:
std::cout << "Unhandled type for SetGE instruction: " << *Ty << "\n";
abort();
}
return Dest;
}
static GenericValue executeSetLTInst(GenericValue Src1, GenericValue Src2,
const Type *Ty) {
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
IMPLEMENT_SETCC(<, UByte);
IMPLEMENT_SETCC(<, SByte);
IMPLEMENT_SETCC(<, UShort);
IMPLEMENT_SETCC(<, Short);
IMPLEMENT_SETCC(<, UInt);
IMPLEMENT_SETCC(<, Int);
IMPLEMENT_SETCC(<, ULong);
IMPLEMENT_SETCC(<, Long);
IMPLEMENT_SETCC(<, Float);
IMPLEMENT_SETCC(<, Double);
IMPLEMENT_POINTERSETCC(<);
default:
std::cout << "Unhandled type for SetLT instruction: " << *Ty << "\n";
abort();
}
return Dest;
}
static GenericValue executeSetGTInst(GenericValue Src1, GenericValue Src2,
const Type *Ty) {
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
IMPLEMENT_SETCC(>, UByte);
IMPLEMENT_SETCC(>, SByte);
IMPLEMENT_SETCC(>, UShort);
IMPLEMENT_SETCC(>, Short);
IMPLEMENT_SETCC(>, UInt);
IMPLEMENT_SETCC(>, Int);
IMPLEMENT_SETCC(>, ULong);
IMPLEMENT_SETCC(>, Long);
IMPLEMENT_SETCC(>, Float);
IMPLEMENT_SETCC(>, Double);
IMPLEMENT_POINTERSETCC(>);
default:
std::cout << "Unhandled type for SetGT instruction: " << *Ty << "\n";
abort();
}
return Dest;
}
void Interpreter::visitBinaryOperator(BinaryOperator &I) {
ExecutionContext &SF = ECStack.back();
const Type *Ty = I.getOperand(0)->getType();
GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
GenericValue R; // Result
switch (I.getOpcode()) {
case Instruction::Add: R = executeAddInst (Src1, Src2, Ty); break;
case Instruction::Sub: R = executeSubInst (Src1, Src2, Ty); break;
case Instruction::Mul: R = executeMulInst (Src1, Src2, Ty); break;
case Instruction::Div: R = executeDivInst (Src1, Src2, Ty); break;
case Instruction::Rem: R = executeRemInst (Src1, Src2, Ty); break;
case Instruction::And: R = executeAndInst (Src1, Src2, Ty); break;
case Instruction::Or: R = executeOrInst (Src1, Src2, Ty); break;
case Instruction::Xor: R = executeXorInst (Src1, Src2, Ty); break;
case Instruction::SetEQ: R = executeSetEQInst(Src1, Src2, Ty); break;
case Instruction::SetNE: R = executeSetNEInst(Src1, Src2, Ty); break;
case Instruction::SetLE: R = executeSetLEInst(Src1, Src2, Ty); break;
case Instruction::SetGE: R = executeSetGEInst(Src1, Src2, Ty); break;
case Instruction::SetLT: R = executeSetLTInst(Src1, Src2, Ty); break;
case Instruction::SetGT: R = executeSetGTInst(Src1, Src2, Ty); break;
default:
std::cout << "Don't know how to handle this binary operator!\n-->" << I;
abort();
}
SetValue(&I, R, SF);
}
//===----------------------------------------------------------------------===//
// Terminator Instruction Implementations
//===----------------------------------------------------------------------===//
static void PerformExitStuff() {
#ifdef PROFILE_STRUCTURE_FIELDS
// Print out structure field accounting information...
if (!FieldAccessCounts.empty()) {
CW << "Profile Field Access Counts:\n";
std::map<const StructType *, std::vector<unsigned> >::iterator
I = FieldAccessCounts.begin(), E = FieldAccessCounts.end();
for (; I != E; ++I) {
std::vector<unsigned> &OfC = I->second;
CW << " '" << (Value*)I->first << "'\t- Sum=";
unsigned Sum = 0;
for (unsigned i = 0; i < OfC.size(); ++i)
Sum += OfC[i];
CW << Sum << " - ";
for (unsigned i = 0; i < OfC.size(); ++i) {
if (i) CW << ", ";
CW << OfC[i];
}
CW << "\n";
}
CW << "\n";
CW << "Profile Field Access Percentages:\n";
std::cout.precision(3);
for (I = FieldAccessCounts.begin(); I != E; ++I) {
std::vector<unsigned> &OfC = I->second;
unsigned Sum = 0;
for (unsigned i = 0; i < OfC.size(); ++i)
Sum += OfC[i];
CW << " '" << (Value*)I->first << "'\t- ";
for (unsigned i = 0; i < OfC.size(); ++i) {
if (i) CW << ", ";
CW << double(OfC[i])/Sum;
}
CW << "\n";
}
CW << "\n";
FieldAccessCounts.clear();
}
#endif
}
void Interpreter::exitCalled(GenericValue GV) {
if (!QuietMode) {
std::cout << "Program returned ";
print(Type::IntTy, GV);
std::cout << " via 'void exit(int)'\n";
}
ExitCode = GV.SByteVal;
ECStack.clear();
PerformExitStuff();
}
void Interpreter::visitReturnInst(ReturnInst &I) {
ExecutionContext &SF = ECStack.back();
const Type *RetTy = 0;
GenericValue Result;
// Save away the return value... (if we are not 'ret void')
if (I.getNumOperands()) {
RetTy = I.getReturnValue()->getType();
Result = getOperandValue(I.getReturnValue(), SF);
}
// Save previously executing meth
const Function *M = ECStack.back().CurFunction;
// Pop the current stack frame... this invalidates SF
ECStack.pop_back();
if (ECStack.empty()) { // Finished main. Put result into exit code...
if (RetTy) { // Nonvoid return type?
if (!QuietMode) {
CW << "Function " << M->getType() << " \"" << M->getName()
<< "\" returned ";
print(RetTy, Result);
std::cout << "\n";
}
if (RetTy->isIntegral())
ExitCode = Result.IntVal; // Capture the exit code of the program
} else {
ExitCode = 0;
}
PerformExitStuff();
return;
}
// If we have a previous stack frame, and we have a previous call, fill in
// the return value...
//
ExecutionContext &NewSF = ECStack.back();
if (NewSF.Caller) {
if (NewSF.Caller->getType() != Type::VoidTy) // Save result...
SetValue(NewSF.Caller, Result, NewSF);
NewSF.Caller = 0; // We returned from the call...
} else if (!QuietMode) {
// This must be a function that is executing because of a user 'call'
// instruction.
CW << "Function " << M->getType() << " \"" << M->getName()
<< "\" returned ";
print(RetTy, Result);
std::cout << "\n";
}
}
void Interpreter::visitBranchInst(BranchInst &I) {
ExecutionContext &SF = ECStack.back();
BasicBlock *Dest;
Dest = I.getSuccessor(0); // Uncond branches have a fixed dest...
if (!I.isUnconditional()) {
Value *Cond = I.getCondition();
if (getOperandValue(Cond, SF).BoolVal == 0) // If false cond...
Dest = I.getSuccessor(1);
}
SwitchToNewBasicBlock(Dest, SF);
}
void Interpreter::visitSwitchInst(SwitchInst &I) {
ExecutionContext &SF = ECStack.back();
GenericValue CondVal = getOperandValue(I.getOperand(0), SF);
const Type *ElTy = I.getOperand(0)->getType();
// Check to see if any of the cases match...
BasicBlock *Dest = 0;
for (unsigned i = 2, e = I.getNumOperands(); i != e; i += 2)
if (executeSetEQInst(CondVal,
getOperandValue(I.getOperand(i), SF), ElTy).BoolVal) {
Dest = cast<BasicBlock>(I.getOperand(i+1));
break;
}
if (!Dest) Dest = I.getDefaultDest(); // No cases matched: use default
SwitchToNewBasicBlock(Dest, SF);
}
// SwitchToNewBasicBlock - This method is used to jump to a new basic block.
// This function handles the actual updating of block and instruction iterators
// as well as execution of all of the PHI nodes in the destination block.
//
// This method does this because all of the PHI nodes must be executed
// atomically, reading their inputs before any of the results are updated. Not
// doing this can cause problems if the PHI nodes depend on other PHI nodes for
// their inputs. If the input PHI node is updated before it is read, incorrect
// results can happen. Thus we use a two phase approach.
//
void Interpreter::SwitchToNewBasicBlock(BasicBlock *Dest, ExecutionContext &SF){
BasicBlock *PrevBB = SF.CurBB; // Remember where we came from...
SF.CurBB = Dest; // Update CurBB to branch destination
SF.CurInst = SF.CurBB->begin(); // Update new instruction ptr...
if (!isa<PHINode>(SF.CurInst)) return; // Nothing fancy to do
// Loop over all of the PHI nodes in the current block, reading their inputs.
std::vector<GenericValue> ResultValues;
for (; PHINode *PN = dyn_cast<PHINode>(SF.CurInst); ++SF.CurInst) {
if (Trace) CW << "Run:" << PN;
// Search for the value corresponding to this previous bb...
int i = PN->getBasicBlockIndex(PrevBB);
assert(i != -1 && "PHINode doesn't contain entry for predecessor??");
Value *IncomingValue = PN->getIncomingValue(i);
// Save the incoming value for this PHI node...
ResultValues.push_back(getOperandValue(IncomingValue, SF));
}
// Now loop over all of the PHI nodes setting their values...
SF.CurInst = SF.CurBB->begin();
for (unsigned i = 0; PHINode *PN = dyn_cast<PHINode>(SF.CurInst);
++SF.CurInst, ++i)
SetValue(PN, ResultValues[i], SF);
}
//===----------------------------------------------------------------------===//
// Memory Instruction Implementations
//===----------------------------------------------------------------------===//
void Interpreter::visitAllocationInst(AllocationInst &I) {
ExecutionContext &SF = ECStack.back();
const Type *Ty = I.getType()->getElementType(); // Type to be allocated
// Get the number of elements being allocated by the array...
unsigned NumElements = getOperandValue(I.getOperand(0), SF).UIntVal;
// Allocate enough memory to hold the type...
// FIXME: Don't use CALLOC, use a tainted malloc.
void *Memory = calloc(NumElements, TD.getTypeSize(Ty));
GenericValue Result = PTOGV(Memory);
assert(Result.PointerVal != 0 && "Null pointer returned by malloc!");
SetValue(&I, Result, SF);
if (I.getOpcode() == Instruction::Alloca)
ECStack.back().Allocas.add(Memory);
}
void Interpreter::visitFreeInst(FreeInst &I) {
ExecutionContext &SF = ECStack.back();
assert(isa<PointerType>(I.getOperand(0)->getType()) && "Freeing nonptr?");
GenericValue Value = getOperandValue(I.getOperand(0), SF);
// TODO: Check to make sure memory is allocated
free(GVTOP(Value)); // Free memory
}
// getElementOffset - The workhorse for getelementptr.
//
GenericValue Interpreter::executeGEPOperation(Value *Ptr, User::op_iterator I,
User::op_iterator E,
ExecutionContext &SF) {
assert(isa<PointerType>(Ptr->getType()) &&
"Cannot getElementOffset of a nonpointer type!");
PointerTy Total = 0;
const Type *Ty = Ptr->getType();
for (; I != E; ++I) {
if (const StructType *STy = dyn_cast<StructType>(Ty)) {
const StructLayout *SLO = TD.getStructLayout(STy);
// Indicies must be ubyte constants...
const ConstantUInt *CPU = cast<ConstantUInt>(*I);
assert(CPU->getType() == Type::UByteTy);
unsigned Index = CPU->getValue();
#ifdef PROFILE_STRUCTURE_FIELDS
if (ProfileStructureFields) {
// Do accounting for this field...
std::vector<unsigned> &OfC = FieldAccessCounts[STy];
if (OfC.size() == 0) OfC.resize(STy->getElementTypes().size());
OfC[Index]++;
}
#endif
Total += SLO->MemberOffsets[Index];
Ty = STy->getElementTypes()[Index];
} else if (const SequentialType *ST = cast<SequentialType>(Ty)) {
// Get the index number for the array... which must be long type...
assert((*I)->getType() == Type::LongTy);
unsigned Idx = getOperandValue(*I, SF).LongVal;
if (const ArrayType *AT = dyn_cast<ArrayType>(ST))
if (Idx >= AT->getNumElements() && ArrayChecksEnabled) {
std::cerr << "Out of range memory access to element #" << Idx
<< " of a " << AT->getNumElements() << " element array."
<< " Subscript #" << *I << "\n";
// Get outta here!!!
siglongjmp(SignalRecoverBuffer, SIGTRAP);
}
Ty = ST->getElementType();
unsigned Size = TD.getTypeSize(Ty);
Total += Size*Idx;
}
}
GenericValue Result;
Result.PointerVal = getOperandValue(Ptr, SF).PointerVal + Total;
return Result;
}
void Interpreter::visitGetElementPtrInst(GetElementPtrInst &I) {
ExecutionContext &SF = ECStack.back();
SetValue(&I, TheEE->executeGEPOperation(I.getPointerOperand(),
I.idx_begin(), I.idx_end(), SF), SF);
}
void Interpreter::visitLoadInst(LoadInst &I) {
ExecutionContext &SF = ECStack.back();
GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
GenericValue *Ptr = (GenericValue*)GVTOP(SRC);
GenericValue Result = LoadValueFromMemory(Ptr, I.getType());
SetValue(&I, Result, SF);
}
void Interpreter::visitStoreInst(StoreInst &I) {
ExecutionContext &SF = ECStack.back();
GenericValue Val = getOperandValue(I.getOperand(0), SF);
GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
StoreValueToMemory(Val, (GenericValue *)GVTOP(SRC),
I.getOperand(0)->getType());
}
//===----------------------------------------------------------------------===//
// Miscellaneous Instruction Implementations
//===----------------------------------------------------------------------===//
void Interpreter::visitCallInst(CallInst &I) {
ExecutionContext &SF = ECStack.back();
SF.Caller = &I;
std::vector<GenericValue> ArgVals;
ArgVals.reserve(I.getNumOperands()-1);
for (unsigned i = 1; i < I.getNumOperands(); ++i) {
ArgVals.push_back(getOperandValue(I.getOperand(i), SF));
// Promote all integral types whose size is < sizeof(int) into ints. We do
// this by zero or sign extending the value as appropriate according to the
// source type.
if (I.getOperand(i)->getType()->isIntegral() &&
I.getOperand(i)->getType()->getPrimitiveSize() < 4) {
const Type *Ty = I.getOperand(i)->getType();
if (Ty == Type::ShortTy)
ArgVals.back().IntVal = ArgVals.back().ShortVal;
else if (Ty == Type::UShortTy)
ArgVals.back().UIntVal = ArgVals.back().UShortVal;
else if (Ty == Type::SByteTy)
ArgVals.back().IntVal = ArgVals.back().SByteVal;
else if (Ty == Type::UByteTy)
ArgVals.back().UIntVal = ArgVals.back().UByteVal;
else if (Ty == Type::BoolTy)
ArgVals.back().UIntVal = ArgVals.back().BoolVal;
else
assert(0 && "Unknown type!");
}
}
// To handle indirect calls, we must get the pointer value from the argument
// and treat it as a function pointer.
GenericValue SRC = getOperandValue(I.getCalledValue(), SF);
callFunction((Function*)GVTOP(SRC), ArgVals);
}
#define IMPLEMENT_SHIFT(OP, TY) \
case Type::TY##TyID: Dest.TY##Val = Src1.TY##Val OP Src2.UByteVal; break
void Interpreter::visitShl(ShiftInst &I) {
ExecutionContext &SF = ECStack.back();
const Type *Ty = I.getOperand(0)->getType();
GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
IMPLEMENT_SHIFT(<<, UByte);
IMPLEMENT_SHIFT(<<, SByte);
IMPLEMENT_SHIFT(<<, UShort);
IMPLEMENT_SHIFT(<<, Short);
IMPLEMENT_SHIFT(<<, UInt);
IMPLEMENT_SHIFT(<<, Int);
IMPLEMENT_SHIFT(<<, ULong);
IMPLEMENT_SHIFT(<<, Long);
default:
std::cout << "Unhandled type for Shl instruction: " << *Ty << "\n";
}
SetValue(&I, Dest, SF);
}
void Interpreter::visitShr(ShiftInst &I) {
ExecutionContext &SF = ECStack.back();
const Type *Ty = I.getOperand(0)->getType();
GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
IMPLEMENT_SHIFT(>>, UByte);
IMPLEMENT_SHIFT(>>, SByte);
IMPLEMENT_SHIFT(>>, UShort);
IMPLEMENT_SHIFT(>>, Short);
IMPLEMENT_SHIFT(>>, UInt);
IMPLEMENT_SHIFT(>>, Int);
IMPLEMENT_SHIFT(>>, ULong);
IMPLEMENT_SHIFT(>>, Long);
default:
std::cout << "Unhandled type for Shr instruction: " << *Ty << "\n";
abort();
}
SetValue(&I, Dest, SF);
}
#define IMPLEMENT_CAST(DTY, DCTY, STY) \
case Type::STY##TyID: Dest.DTY##Val = DCTY Src.STY##Val; break;
#define IMPLEMENT_CAST_CASE_START(DESTTY, DESTCTY) \
case Type::DESTTY##TyID: \
switch (SrcTy->getPrimitiveID()) { \
IMPLEMENT_CAST(DESTTY, DESTCTY, Bool); \
IMPLEMENT_CAST(DESTTY, DESTCTY, UByte); \
IMPLEMENT_CAST(DESTTY, DESTCTY, SByte); \
IMPLEMENT_CAST(DESTTY, DESTCTY, UShort); \
IMPLEMENT_CAST(DESTTY, DESTCTY, Short); \
IMPLEMENT_CAST(DESTTY, DESTCTY, UInt); \
IMPLEMENT_CAST(DESTTY, DESTCTY, Int); \
IMPLEMENT_CAST(DESTTY, DESTCTY, ULong); \
IMPLEMENT_CAST(DESTTY, DESTCTY, Long); \
IMPLEMENT_CAST(DESTTY, DESTCTY, Pointer);
#define IMPLEMENT_CAST_CASE_FP_IMP(DESTTY, DESTCTY) \
IMPLEMENT_CAST(DESTTY, DESTCTY, Float); \
IMPLEMENT_CAST(DESTTY, DESTCTY, Double)
#define IMPLEMENT_CAST_CASE_END() \
default: std::cout << "Unhandled cast: " << SrcTy << " to " << Ty << "\n"; \
abort(); \
} \
break
#define IMPLEMENT_CAST_CASE(DESTTY, DESTCTY) \
IMPLEMENT_CAST_CASE_START(DESTTY, DESTCTY); \
IMPLEMENT_CAST_CASE_FP_IMP(DESTTY, DESTCTY); \
IMPLEMENT_CAST_CASE_END()
static GenericValue executeCastOperation(Value *SrcVal, const Type *Ty,
ExecutionContext &SF) {
const Type *SrcTy = SrcVal->getType();
GenericValue Dest, Src = getOperandValue(SrcVal, SF);
switch (Ty->getPrimitiveID()) {
IMPLEMENT_CAST_CASE(UByte , (unsigned char));
IMPLEMENT_CAST_CASE(SByte , ( signed char));
IMPLEMENT_CAST_CASE(UShort , (unsigned short));
IMPLEMENT_CAST_CASE(Short , ( signed short));
IMPLEMENT_CAST_CASE(UInt , (unsigned int ));
IMPLEMENT_CAST_CASE(Int , ( signed int ));
IMPLEMENT_CAST_CASE(ULong , (uint64_t));
IMPLEMENT_CAST_CASE(Long , ( int64_t));
IMPLEMENT_CAST_CASE(Pointer, (PointerTy));
IMPLEMENT_CAST_CASE(Float , (float));
IMPLEMENT_CAST_CASE(Double , (double));
IMPLEMENT_CAST_CASE(Bool , (bool));
default:
std::cout << "Unhandled dest type for cast instruction: " << *Ty << "\n";
abort();
}
return Dest;
}
void Interpreter::visitCastInst(CastInst &I) {
ExecutionContext &SF = ECStack.back();
SetValue(&I, executeCastOperation(I.getOperand(0), I.getType(), SF), SF);
}
void Interpreter::visitVarArgInst(VarArgInst &I) {
ExecutionContext &SF = ECStack.back();
// Get the pointer to the valist element. LLI treats the valist in memory as
// an integer.
GenericValue VAListPtr = getOperandValue(I.getOperand(0), SF);
// Load the pointer
GenericValue VAList =
TheEE->LoadValueFromMemory((GenericValue *)GVTOP(VAListPtr), Type::UIntTy);
unsigned Argument = VAList.IntVal++;
// Update the valist to point to the next argument...
TheEE->StoreValueToMemory(VAList, (GenericValue *)GVTOP(VAListPtr),
Type::UIntTy);
// Set the value...
assert(Argument < SF.VarArgs.size() &&
"Accessing past the last vararg argument!");
SetValue(&I, SF.VarArgs[Argument], SF);
}
//===----------------------------------------------------------------------===//
// Dispatch and Execution Code
//===----------------------------------------------------------------------===//
FunctionInfo::FunctionInfo(Function *F) : Annotation(FunctionInfoAID) {
// Assign slot numbers to the function arguments...
for (Function::const_aiterator AI = F->abegin(), E = F->aend(); AI != E; ++AI)
AI->addAnnotation(new SlotNumber(getValueSlot(AI)));
// Iterate over all of the instructions...
unsigned InstNum = 0;
for (Function::iterator BB = F->begin(), BBE = F->end(); BB != BBE; ++BB)
for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE; ++II)
// For each instruction... Add Annote
II->addAnnotation(new InstNumber(++InstNum, getValueSlot(II)));
}
unsigned FunctionInfo::getValueSlot(const Value *V) {
unsigned Plane = V->getType()->getUniqueID();
if (Plane >= NumPlaneElements.size())
NumPlaneElements.resize(Plane+1, 0);
return NumPlaneElements[Plane]++;
}
//===----------------------------------------------------------------------===//
// callFunction - Execute the specified function...
//
void Interpreter::callFunction(Function *F,
const std::vector<GenericValue> &ArgVals) {
assert((ECStack.empty() || ECStack.back().Caller == 0 ||
ECStack.back().Caller->getNumOperands()-1 == ArgVals.size()) &&
"Incorrect number of arguments passed into function call!");
if (F->isExternal()) {
GenericValue Result = callExternalFunction(F, ArgVals);
const Type *RetTy = F->getReturnType();
// Copy the result back into the result variable if we are not returning
// void.
if (RetTy != Type::VoidTy) {
if (!ECStack.empty() && ECStack.back().Caller) {
ExecutionContext &SF = ECStack.back();
SetValue(SF.Caller, Result, SF);
SF.Caller = 0; // We returned from the call...
} else if (!QuietMode) {
// print it.
CW << "Function " << F->getType() << " \"" << F->getName()
<< "\" returned ";
print(RetTy, Result);
std::cout << "\n";
if (RetTy->isIntegral())
ExitCode = Result.IntVal; // Capture the exit code of the program
}
}
return;
}
// Process the function, assigning instruction numbers to the instructions in
// the function. Also calculate the number of values for each type slot
// active.
//
FunctionInfo *FuncInfo =
(FunctionInfo*)F->getOrCreateAnnotation(FunctionInfoAID);
ECStack.push_back(ExecutionContext()); // Make a new stack frame...
ExecutionContext &StackFrame = ECStack.back(); // Fill it in...
StackFrame.CurFunction = F;
StackFrame.CurBB = F->begin();
StackFrame.CurInst = StackFrame.CurBB->begin();
StackFrame.FuncInfo = FuncInfo;
// Initialize the values to nothing...
StackFrame.Values.resize(FuncInfo->NumPlaneElements.size());
for (unsigned i = 0; i < FuncInfo->NumPlaneElements.size(); ++i) {
StackFrame.Values[i].resize(FuncInfo->NumPlaneElements[i]);
// Taint the initial values of stuff
memset(&StackFrame.Values[i][0], 42,
FuncInfo->NumPlaneElements[i]*sizeof(GenericValue));
}
// Run through the function arguments and initialize their values...
assert((ArgVals.size() == F->asize() ||
(ArgVals.size() > F->asize() && F->getFunctionType()->isVarArg())) &&
"Invalid number of values passed to function invocation!");
// Handle non-varargs arguments...
unsigned i = 0;
for (Function::aiterator AI = F->abegin(), E = F->aend(); AI != E; ++AI, ++i)
SetValue(AI, ArgVals[i], StackFrame);
// Handle varargs arguments...
StackFrame.VarArgs.assign(ArgVals.begin()+i, ArgVals.end());
}
// executeInstruction - Interpret a single instruction, increment the "PC", and
// return true if the next instruction is a breakpoint...
//
bool Interpreter::executeInstruction() {
assert(!ECStack.empty() && "No program running, cannot execute inst!");
ExecutionContext &SF = ECStack.back(); // Current stack frame
Instruction &I = *SF.CurInst++; // Increment before execute
if (Trace) CW << "Run:" << I;
// Track the number of dynamic instructions executed.
++NumDynamicInsts;
// Set a sigsetjmp buffer so that we can recover if an error happens during
// instruction execution...
//
if (int SigNo = sigsetjmp(SignalRecoverBuffer, 1)) {
--SF.CurInst; // Back up to erroring instruction
if (SigNo != SIGINT) {
std::cout << "EXCEPTION OCCURRED [" << strsignal(SigNo) << "]:\n";
printStackTrace();
// If -abort-on-exception was specified, terminate LLI instead of trying
// to debug it.
//
if (AbortOnExceptions) exit(1);
} else if (SigNo == SIGINT) {
std::cout << "CTRL-C Detected, execution halted.\n";
}
InInstruction = false;
return true;
}
InInstruction = true;
visit(I); // Dispatch to one of the visit* methods...
InInstruction = false;
// Reset the current frame location to the top of stack
CurFrame = ECStack.size()-1;
if (CurFrame == -1) return false; // No breakpoint if no code
// Return true if there is a breakpoint annotation on the instruction...
return ECStack[CurFrame].CurInst->getAnnotation(BreakpointAID) != 0;
}
void Interpreter::stepInstruction() { // Do the 'step' command
if (ECStack.empty()) {
std::cout << "Error: no program running, cannot step!\n";
return;
}
// Run an instruction...
executeInstruction();
// Print the next instruction to execute...
printCurrentInstruction();
}
// --- UI Stuff...
void Interpreter::nextInstruction() { // Do the 'next' command
if (ECStack.empty()) {
std::cout << "Error: no program running, cannot 'next'!\n";
return;
}
// If this is a call instruction, step over the call instruction...
// TODO: ICALL, CALL WITH, ...
if (ECStack.back().CurInst->getOpcode() == Instruction::Call) {
unsigned StackSize = ECStack.size();
// Step into the function...
if (executeInstruction()) {
// Hit a breakpoint, print current instruction, then return to user...
std::cout << "Breakpoint hit!\n";
printCurrentInstruction();
return;
}
// If we we able to step into the function, finish it now. We might not be
// able the step into a function, if it's external for example.
if (ECStack.size() != StackSize)
finish(); // Finish executing the function...
else
printCurrentInstruction();
} else {
// Normal instruction, just step...
stepInstruction();
}
}
void Interpreter::run() {
if (ECStack.empty()) {
std::cout << "Error: no program running, cannot run!\n";
return;
}
bool HitBreakpoint = false;
while (!ECStack.empty() && !HitBreakpoint) {
// Run an instruction...
HitBreakpoint = executeInstruction();
}
if (HitBreakpoint)
std::cout << "Breakpoint hit!\n";
// Print the next instruction to execute...
printCurrentInstruction();
}
void Interpreter::finish() {
if (ECStack.empty()) {
std::cout << "Error: no program running, cannot run!\n";
return;
}
unsigned StackSize = ECStack.size();
bool HitBreakpoint = false;
while (ECStack.size() >= StackSize && !HitBreakpoint) {
// Run an instruction...
HitBreakpoint = executeInstruction();
}
if (HitBreakpoint)
std::cout << "Breakpoint hit!\n";
// Print the next instruction to execute...
printCurrentInstruction();
}
// printCurrentInstruction - Print out the instruction that the virtual PC is
// at, or fail silently if no program is running.
//
void Interpreter::printCurrentInstruction() {
if (!ECStack.empty()) {
if (ECStack.back().CurBB->begin() == ECStack.back().CurInst) // print label
WriteAsOperand(std::cout, ECStack.back().CurBB) << ":\n";
Instruction &I = *ECStack.back().CurInst;
InstNumber *IN = (InstNumber*)I.getAnnotation(SlotNumberAID);
assert(IN && "Instruction has no numbering annotation!");
std::cout << "#" << IN->InstNum << I;
}
}
void Interpreter::printValue(const Type *Ty, GenericValue V) {
switch (Ty->getPrimitiveID()) {
case Type::BoolTyID: std::cout << (V.BoolVal?"true":"false"); break;
case Type::SByteTyID:
std::cout << (int)V.SByteVal << " '" << V.SByteVal << "'"; break;
case Type::UByteTyID:
std::cout << (unsigned)V.UByteVal << " '" << V.UByteVal << "'"; break;
case Type::ShortTyID: std::cout << V.ShortVal; break;
case Type::UShortTyID: std::cout << V.UShortVal; break;
case Type::IntTyID: std::cout << V.IntVal; break;
case Type::UIntTyID: std::cout << V.UIntVal; break;
case Type::LongTyID: std::cout << (long)V.LongVal; break;
case Type::ULongTyID: std::cout << (unsigned long)V.ULongVal; break;
case Type::FloatTyID: std::cout << V.FloatVal; break;
case Type::DoubleTyID: std::cout << V.DoubleVal; break;
case Type::PointerTyID:std::cout << (void*)GVTOP(V); break;
default:
std::cout << "- Don't know how to print value of this type!";
break;
}
}
void Interpreter::print(const Type *Ty, GenericValue V) {
CW << Ty << " ";
printValue(Ty, V);
}
void Interpreter::print(const std::string &Name) {
Value *PickedVal = ChooseOneOption(Name, LookupMatchingNames(Name));
if (!PickedVal) return;
if (const Function *F = dyn_cast<const Function>(PickedVal)) {
CW << F; // Print the function
} else if (const Type *Ty = dyn_cast<const Type>(PickedVal)) {
CW << "type %" << Name << " = " << Ty->getDescription() << "\n";
} else if (const BasicBlock *BB = dyn_cast<const BasicBlock>(PickedVal)) {
CW << BB; // Print the basic block
} else { // Otherwise there should be an annotation for the slot#
print(PickedVal->getType(),
getOperandValue(PickedVal, ECStack[CurFrame]));
std::cout << "\n";
}
}
void Interpreter::infoValue(const std::string &Name) {
Value *PickedVal = ChooseOneOption(Name, LookupMatchingNames(Name));
if (!PickedVal) return;
std::cout << "Value: ";
print(PickedVal->getType(),
getOperandValue(PickedVal, ECStack[CurFrame]));
std::cout << "\n";
printOperandInfo(PickedVal, ECStack[CurFrame]);
}
// printStackFrame - Print information about the specified stack frame, or -1
// for the default one.
//
void Interpreter::printStackFrame(int FrameNo) {
if (FrameNo == -1) FrameNo = CurFrame;
Function *F = ECStack[FrameNo].CurFunction;
const Type *RetTy = F->getReturnType();
CW << ((FrameNo == CurFrame) ? '>' : '-') << "#" << FrameNo << ". "
<< (Value*)RetTy << " \"" << F->getName() << "\"(";
unsigned i = 0;
for (Function::aiterator I = F->abegin(), E = F->aend(); I != E; ++I, ++i) {
if (i != 0) std::cout << ", ";
CW << *I << "=";
printValue(I->getType(), getOperandValue(I, ECStack[FrameNo]));
}
std::cout << ")\n";
if (FrameNo != int(ECStack.size()-1)) {
BasicBlock::iterator I = ECStack[FrameNo].CurInst;
CW << --I;
} else {
CW << *ECStack[FrameNo].CurInst;
}
}