llvm-6502/lib/CodeGen
Bill Wendling a583c55864 Attempt to comment this code more.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@79567 91177308-0d34-0410-b5e6-96231b3b80d8
2009-08-20 22:02:24 +00:00
..
AsmPrinter Attempt to comment this code more. 2009-08-20 22:02:24 +00:00
PBQP Remove <iostream>. 2009-08-15 22:28:08 +00:00
SelectionDAG Add an x86 peep that narrows TEST instructions to forms that use 2009-08-19 18:16:17 +00:00
BranchFolding.cpp Make tail merging handle blocks with repeated predecessors correctly, and 2009-08-18 15:18:18 +00:00
CMakeLists.txt Update CMakeLists. 2009-08-17 18:47:11 +00:00
CodePlacementOpt.cpp
DeadMachineInstructionElim.cpp Add const qualifiers. 2009-08-11 15:13:43 +00:00
Dump.cpp Re-apply LiveInterval index dumping patch, with fixes suggested by Bill 2009-08-03 21:55:09 +00:00
DwarfEHPrepare.cpp Push LLVMContexts through the IntegerType APIs. 2009-08-13 21:58:54 +00:00
ELF.h Remove hack used to strip unwanted chars from section name 2009-08-13 21:25:27 +00:00
ELFCodeEmitter.cpp Add missing includes. 2009-08-19 22:02:07 +00:00
ELFCodeEmitter.h
ELFWriter.cpp *try* to use a better name to describe how common symbols are marked on the elf object file. 2009-08-14 19:45:38 +00:00
ELFWriter.h Remove hack used to strip unwanted chars from section name 2009-08-13 21:25:27 +00:00
ExactHazardRecognizer.cpp Extend the instruction itinerary model to include the ability to indicate the def and use cycle for each operand. This additional information is optional, so existing itineraries do not need to be changed. 2009-08-17 16:02:57 +00:00
ExactHazardRecognizer.h Post RA scheduler changes. Introduce a hazard recognizer that uses the target schedule information to accurately model the pipeline. Update the scheduler to correctly handle multi-issue targets. 2009-08-10 15:55:25 +00:00
GCMetadata.cpp Remove Value::getName{Start,End}, the last of the old Name APIs. 2009-07-26 09:48:23 +00:00
GCMetadataPrinter.cpp
GCStrategy.cpp
IfConversion.cpp
IntrinsicLowering.cpp Push LLVMContexts through the IntegerType APIs. 2009-08-13 21:58:54 +00:00
LatencyPriorityQueue.cpp
LazyLiveness.cpp Add missing includes. 2009-08-19 22:05:21 +00:00
LiveInterval.cpp Modified VNInfo. The "copy" member is now a union which holds the copy for a register interval, or the defining register for a stack interval. Access is via getCopy/setCopy and getReg/setReg. 2009-08-10 23:43:28 +00:00
LiveIntervalAnalysis.cpp Modified VNInfo. The "copy" member is now a union which holds the copy for a register interval, or the defining register for a stack interval. Access is via getCopy/setCopy and getReg/setReg. 2009-08-10 23:43:28 +00:00
LiveStackAnalysis.cpp
LiveVariables.cpp Reapply r77654 with a fix: MachineFunctionPass's getAnalysisUsage 2009-07-31 18:16:33 +00:00
LLVMTargetMachine.cpp Move the sjlj exception handling conversions to a back-end pass where they 2009-08-17 16:41:22 +00:00
LowerSubregs.cpp Remove RegisterScavenger::isSuperRegUsed(). This completely reverses the mistaken commit r77904. 2009-08-08 13:19:10 +00:00
MachineBasicBlock.cpp fix another bozo bug 2009-08-18 04:34:36 +00:00
MachineDominators.cpp
MachineFunction.cpp Add missing includes. 2009-08-19 22:16:11 +00:00
MachineFunctionAnalysis.cpp Give MachineFunctionAnalysis a destructor so it can verify that 2009-08-01 04:19:43 +00:00
MachineFunctionPass.cpp Reapply r77654 with a fix: MachineFunctionPass's getAnalysisUsage 2009-07-31 18:16:33 +00:00
MachineInstr.cpp Push LLVMContexts through the IntegerType APIs. 2009-08-13 21:58:54 +00:00
MachineLICM.cpp Tidy #includes. 2009-08-11 16:02:12 +00:00
MachineLoopInfo.cpp Reapply r77654 with a fix: MachineFunctionPass's getAnalysisUsage 2009-07-31 18:16:33 +00:00
MachineModuleInfo.cpp Use setPreservesAll and setPreservesCFG in CodeGen passes. 2009-07-31 23:37:33 +00:00
MachinePassRegistry.cpp
MachineRegisterInfo.cpp
MachineSink.cpp Various comment fixes. 2009-08-05 01:19:01 +00:00
MachineVerifier.cpp Use pristine register info in machine code verifier. 2009-08-13 16:19:51 +00:00
MachO.h
MachOCodeEmitter.cpp Add missing includes. 2009-08-19 22:08:26 +00:00
MachOCodeEmitter.h
MachOWriter.cpp
MachOWriter.h Add missing forward declaration. 2009-08-19 22:19:44 +00:00
Makefile
ObjectCodeEmitter.cpp Remove accidental commited comment 2009-08-05 07:00:43 +00:00
OcamlGC.cpp
Passes.cpp
PHIElimination.cpp Use setPreservesAll and setPreservesCFG in CodeGen passes. 2009-07-31 23:37:33 +00:00
PHIElimination.h
PostRASchedulerList.cpp Fix counting of Post-RA scheduling stalls. Improve debug output. 2009-08-12 21:47:46 +00:00
PreAllocSplitting.cpp Modified VNInfo. The "copy" member is now a union which holds the copy for a register interval, or the defining register for a stack interval. Access is via getCopy/setCopy and getReg/setReg. 2009-08-10 23:43:28 +00:00
PrologEpilogInserter.cpp Don't setCalleeSavedInfoValid() until spills are interted. 2009-08-15 13:10:46 +00:00
PrologEpilogInserter.h
PseudoSourceValue.cpp Push LLVMContexts through the IntegerType APIs. 2009-08-13 21:58:54 +00:00
README.txt
RegAllocLinearScan.cpp Use setPreservesAll and setPreservesCFG in CodeGen passes. 2009-07-31 23:37:33 +00:00
RegAllocLocal.cpp Use setPreservesAll and setPreservesCFG in CodeGen passes. 2009-07-31 23:37:33 +00:00
RegAllocPBQP.cpp Suppress build warning in -Asserts 2009-08-20 20:01:34 +00:00
RegAllocSimple.cpp Use setPreservesAll and setPreservesCFG in CodeGen passes. 2009-07-31 23:37:33 +00:00
RegisterCoalescer.cpp
RegisterScavenging.cpp Simplify RegScavenger::FindUnusedReg. 2009-08-18 21:14:54 +00:00
ScheduleDAG.cpp Add some debug output. 2009-08-11 17:35:23 +00:00
ScheduleDAGEmit.cpp
ScheduleDAGInstrs.cpp Use the schedule itinerary operand use/def cycle information to adjust dependence edge latency for post-RA scheduling. 2009-08-19 16:08:58 +00:00
ScheduleDAGInstrs.h Use the schedule itinerary operand use/def cycle information to adjust dependence edge latency for post-RA scheduling. 2009-08-19 16:08:58 +00:00
ScheduleDAGPrinter.cpp
ShadowStackGC.cpp Actually privatize a IntegerTypes, and fix a few bugs exposed by this. 2009-08-13 23:27:32 +00:00
ShrinkWrapping.cpp
SimpleHazardRecognizer.h Post RA scheduler changes. Introduce a hazard recognizer that uses the target schedule information to accurately model the pipeline. Update the scheduler to correctly handle multi-issue targets. 2009-08-10 15:55:25 +00:00
SimpleRegisterCoalescing.cpp Modified VNInfo. The "copy" member is now a union which holds the copy for a register interval, or the defining register for a stack interval. Access is via getCopy/setCopy and getReg/setReg. 2009-08-10 23:43:28 +00:00
SimpleRegisterCoalescing.h
SjLjEHPrepare.cpp Check for shared landing pads when assigning call site values. Invokes which 2009-08-20 01:03:48 +00:00
Spiller.cpp
Spiller.h
StackProtector.cpp Push LLVMContexts through the IntegerType APIs. 2009-08-13 21:58:54 +00:00
StackSlotColoring.cpp Use setPreservesAll and setPreservesCFG in CodeGen passes. 2009-07-31 23:37:33 +00:00
StrongPHIElimination.cpp Modified VNInfo. The "copy" member is now a union which holds the copy for a register interval, or the defining register for a stack interval. Access is via getCopy/setCopy and getReg/setReg. 2009-08-10 23:43:28 +00:00
TargetInstrInfoImpl.cpp
TwoAddressInstructionPass.cpp Code clean up. 2009-08-07 00:28:58 +00:00
UnreachableBlockElim.cpp Make UnreachableMachineBlockElim preserve MachineDominatorTree and 2009-08-01 00:34:30 +00:00
VirtRegMap.cpp
VirtRegMap.h
VirtRegRewriter.cpp Update LocalRewriter::DistanceMap when inserting stack loads. 2009-08-15 11:03:03 +00:00
VirtRegRewriter.h

//===---------------------------------------------------------------------===//

Common register allocation / spilling problem:

        mul lr, r4, lr
        str lr, [sp, #+52]
        ldr lr, [r1, #+32]
        sxth r3, r3
        ldr r4, [sp, #+52]
        mla r4, r3, lr, r4

can be:

        mul lr, r4, lr
        mov r4, lr
        str lr, [sp, #+52]
        ldr lr, [r1, #+32]
        sxth r3, r3
        mla r4, r3, lr, r4

and then "merge" mul and mov:

        mul r4, r4, lr
        str lr, [sp, #+52]
        ldr lr, [r1, #+32]
        sxth r3, r3
        mla r4, r3, lr, r4

It also increase the likelyhood the store may become dead.

//===---------------------------------------------------------------------===//

I think we should have a "hasSideEffects" flag (which is automatically set for
stuff that "isLoad" "isCall" etc), and the remat pass should eventually be able
to remat any instruction that has no side effects, if it can handle it and if
profitable.

For now, I'd suggest having the remat stuff work like this:

1. I need to spill/reload this thing.
2. Check to see if it has side effects.
3. Check to see if it is simple enough: e.g. it only has one register
destination and no register input.
4. If so, clone the instruction, do the xform, etc.

Advantages of this are:

1. the .td file describes the behavior of the instructions, not the way the
   algorithm should work.
2. as remat gets smarter in the future, we shouldn't have to be changing the .td
   files.
3. it is easier to explain what the flag means in the .td file, because you
   don't have to pull in the explanation of how the current remat algo works.

Some potential added complexities:

1. Some instructions have to be glued to it's predecessor or successor. All of
   the PC relative instructions and condition code setting instruction. We could
   mark them as hasSideEffects, but that's not quite right. PC relative loads
   from constantpools can be remat'ed, for example. But it requires more than
   just cloning the instruction. Some instructions can be remat'ed but it
   expands to more than one instruction. But allocator will have to make a
   decision.

4. As stated in 3, not as simple as cloning in some cases. The target will have
   to decide how to remat it. For example, an ARM 2-piece constant generation
   instruction is remat'ed as a load from constantpool.

//===---------------------------------------------------------------------===//

bb27 ...
        ...
        %reg1037 = ADDri %reg1039, 1
        %reg1038 = ADDrs %reg1032, %reg1039, %NOREG, 10
    Successors according to CFG: 0x8b03bf0 (#5)

bb76 (0x8b03bf0, LLVM BB @0x8b032d0, ID#5):
    Predecessors according to CFG: 0x8b0c5f0 (#3) 0x8b0a7c0 (#4)
        %reg1039 = PHI %reg1070, mbb<bb76.outer,0x8b0c5f0>, %reg1037, mbb<bb27,0x8b0a7c0>

Note ADDri is not a two-address instruction. However, its result %reg1037 is an
operand of the PHI node in bb76 and its operand %reg1039 is the result of the
PHI node. We should treat it as a two-address code and make sure the ADDri is
scheduled after any node that reads %reg1039.

//===---------------------------------------------------------------------===//

Use local info (i.e. register scavenger) to assign it a free register to allow
reuse:
        ldr r3, [sp, #+4]
        add r3, r3, #3
        ldr r2, [sp, #+8]
        add r2, r2, #2
        ldr r1, [sp, #+4]  <==
        add r1, r1, #1
        ldr r0, [sp, #+4]
        add r0, r0, #2

//===---------------------------------------------------------------------===//

LLVM aggressively lift CSE out of loop. Sometimes this can be negative side-
effects:

R1 = X + 4
R2 = X + 7
R3 = X + 15

loop:
load [i + R1]
...
load [i + R2]
...
load [i + R3]

Suppose there is high register pressure, R1, R2, R3, can be spilled. We need
to implement proper re-materialization to handle this:

R1 = X + 4
R2 = X + 7
R3 = X + 15

loop:
R1 = X + 4  @ re-materialized
load [i + R1]
...
R2 = X + 7 @ re-materialized
load [i + R2]
...
R3 = X + 15 @ re-materialized
load [i + R3]

Furthermore, with re-association, we can enable sharing:

R1 = X + 4
R2 = X + 7
R3 = X + 15

loop:
T = i + X
load [T + 4]
...
load [T + 7]
...
load [T + 15]
//===---------------------------------------------------------------------===//

It's not always a good idea to choose rematerialization over spilling. If all
the load / store instructions would be folded then spilling is cheaper because
it won't require new live intervals / registers. See 2003-05-31-LongShifts for
an example.

//===---------------------------------------------------------------------===//

With a copying garbage collector, derived pointers must not be retained across
collector safe points; the collector could move the objects and invalidate the
derived pointer. This is bad enough in the first place, but safe points can
crop up unpredictably. Consider:

        %array = load { i32, [0 x %obj] }** %array_addr
        %nth_el = getelementptr { i32, [0 x %obj] }* %array, i32 0, i32 %n
        %old = load %obj** %nth_el
        %z = div i64 %x, %y
        store %obj* %new, %obj** %nth_el

If the i64 division is lowered to a libcall, then a safe point will (must)
appear for the call site. If a collection occurs, %array and %nth_el no longer
point into the correct object.

The fix for this is to copy address calculations so that dependent pointers
are never live across safe point boundaries. But the loads cannot be copied
like this if there was an intervening store, so may be hard to get right.

Only a concurrent mutator can trigger a collection at the libcall safe point.
So single-threaded programs do not have this requirement, even with a copying
collector. Still, LLVM optimizations would probably undo a front-end's careful
work.

//===---------------------------------------------------------------------===//

The ocaml frametable structure supports liveness information. It would be good
to support it.

//===---------------------------------------------------------------------===//

The FIXME in ComputeCommonTailLength in BranchFolding.cpp needs to be
revisited. The check is there to work around a misuse of directives in inline
assembly.

//===---------------------------------------------------------------------===//

It would be good to detect collector/target compatibility instead of silently
doing the wrong thing.

//===---------------------------------------------------------------------===//

It would be really nice to be able to write patterns in .td files for copies,
which would eliminate a bunch of explicit predicates on them (e.g. no side 
effects).  Once this is in place, it would be even better to have tblgen 
synthesize the various copy insertion/inspection methods in TargetInstrInfo.

//===---------------------------------------------------------------------===//

Stack coloring improvments:

1. Do proper LiveStackAnalysis on all stack objects including those which are
   not spill slots.
2. Reorder objects to fill in gaps between objects.
   e.g. 4, 1, <gap>, 4, 1, 1, 1, <gap>, 4 => 4, 1, 1, 1, 1, 4, 4