llvm-6502/lib/Transforms/Utils/LoopUnrollRuntime.cpp
Sanjoy Das 888e8e3a66 [LoopUnrollRuntime] Avoid high-cost trip count computation.
Summary:
Runtime unrolling of loops needs to emit an expression to compute the
loop's runtime trip-count.  Avoid runtime unrolling if this computation
will be expensive.

Depends on D8993.

Reviewers: atrick

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D8994

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234846 91177308-0d34-0410-b5e6-96231b3b80d8
2015-04-14 03:20:38 +00:00

423 lines
17 KiB
C++

//===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements some loop unrolling utilities for loops with run-time
// trip counts. See LoopUnroll.cpp for unrolling loops with compile-time
// trip counts.
//
// The functions in this file are used to generate extra code when the
// run-time trip count modulo the unroll factor is not 0. When this is the
// case, we need to generate code to execute these 'left over' iterations.
//
// The current strategy generates an if-then-else sequence prior to the
// unrolled loop to execute the 'left over' iterations. Other strategies
// include generate a loop before or after the unrolled loop.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/UnrollLoop.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/LoopIterator.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include <algorithm>
using namespace llvm;
#define DEBUG_TYPE "loop-unroll"
STATISTIC(NumRuntimeUnrolled,
"Number of loops unrolled with run-time trip counts");
/// Connect the unrolling prolog code to the original loop.
/// The unrolling prolog code contains code to execute the
/// 'extra' iterations if the run-time trip count modulo the
/// unroll count is non-zero.
///
/// This function performs the following:
/// - Create PHI nodes at prolog end block to combine values
/// that exit the prolog code and jump around the prolog.
/// - Add a PHI operand to a PHI node at the loop exit block
/// for values that exit the prolog and go around the loop.
/// - Branch around the original loop if the trip count is less
/// than the unroll factor.
///
static void ConnectProlog(Loop *L, Value *BECount, unsigned Count,
BasicBlock *LastPrologBB, BasicBlock *PrologEnd,
BasicBlock *OrigPH, BasicBlock *NewPH,
ValueToValueMapTy &VMap, AliasAnalysis *AA,
DominatorTree *DT, LoopInfo *LI, Pass *P) {
BasicBlock *Latch = L->getLoopLatch();
assert(Latch && "Loop must have a latch");
// Create a PHI node for each outgoing value from the original loop
// (which means it is an outgoing value from the prolog code too).
// The new PHI node is inserted in the prolog end basic block.
// The new PHI name is added as an operand of a PHI node in either
// the loop header or the loop exit block.
for (succ_iterator SBI = succ_begin(Latch), SBE = succ_end(Latch);
SBI != SBE; ++SBI) {
for (BasicBlock::iterator BBI = (*SBI)->begin();
PHINode *PN = dyn_cast<PHINode>(BBI); ++BBI) {
// Add a new PHI node to the prolog end block and add the
// appropriate incoming values.
PHINode *NewPN = PHINode::Create(PN->getType(), 2, PN->getName()+".unr",
PrologEnd->getTerminator());
// Adding a value to the new PHI node from the original loop preheader.
// This is the value that skips all the prolog code.
if (L->contains(PN)) {
NewPN->addIncoming(PN->getIncomingValueForBlock(NewPH), OrigPH);
} else {
NewPN->addIncoming(Constant::getNullValue(PN->getType()), OrigPH);
}
Value *V = PN->getIncomingValueForBlock(Latch);
if (Instruction *I = dyn_cast<Instruction>(V)) {
if (L->contains(I)) {
V = VMap[I];
}
}
// Adding a value to the new PHI node from the last prolog block
// that was created.
NewPN->addIncoming(V, LastPrologBB);
// Update the existing PHI node operand with the value from the
// new PHI node. How this is done depends on if the existing
// PHI node is in the original loop block, or the exit block.
if (L->contains(PN)) {
PN->setIncomingValue(PN->getBasicBlockIndex(NewPH), NewPN);
} else {
PN->addIncoming(NewPN, PrologEnd);
}
}
}
// Create a branch around the orignal loop, which is taken if there are no
// iterations remaining to be executed after running the prologue.
Instruction *InsertPt = PrologEnd->getTerminator();
assert(Count != 0 && "nonsensical Count!");
// If BECount <u (Count - 1) then (BECount + 1) & (Count - 1) == (BECount + 1)
// (since Count is a power of 2). This means %xtraiter is (BECount + 1) and
// and all of the iterations of this loop were executed by the prologue. Note
// that if BECount <u (Count - 1) then (BECount + 1) cannot unsigned-overflow.
Instruction *BrLoopExit =
new ICmpInst(InsertPt, ICmpInst::ICMP_ULT, BECount,
ConstantInt::get(BECount->getType(), Count - 1));
BasicBlock *Exit = L->getUniqueExitBlock();
assert(Exit && "Loop must have a single exit block only");
// Split the exit to maintain loop canonicalization guarantees
SmallVector<BasicBlock*, 4> Preds(pred_begin(Exit), pred_end(Exit));
SplitBlockPredecessors(Exit, Preds, ".unr-lcssa", AA, DT, LI,
P->mustPreserveAnalysisID(LCSSAID));
// Add the branch to the exit block (around the unrolled loop)
BranchInst::Create(Exit, NewPH, BrLoopExit, InsertPt);
InsertPt->eraseFromParent();
}
/// Create a clone of the blocks in a loop and connect them together.
/// If UnrollProlog is true, loop structure will not be cloned, otherwise a new
/// loop will be created including all cloned blocks, and the iterator of it
/// switches to count NewIter down to 0.
///
static void CloneLoopBlocks(Loop *L, Value *NewIter, const bool UnrollProlog,
BasicBlock *InsertTop, BasicBlock *InsertBot,
std::vector<BasicBlock *> &NewBlocks,
LoopBlocksDFS &LoopBlocks, ValueToValueMapTy &VMap,
LoopInfo *LI) {
BasicBlock *Preheader = L->getLoopPreheader();
BasicBlock *Header = L->getHeader();
BasicBlock *Latch = L->getLoopLatch();
Function *F = Header->getParent();
LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
Loop *NewLoop = 0;
Loop *ParentLoop = L->getParentLoop();
if (!UnrollProlog) {
NewLoop = new Loop();
if (ParentLoop)
ParentLoop->addChildLoop(NewLoop);
else
LI->addTopLevelLoop(NewLoop);
}
// For each block in the original loop, create a new copy,
// and update the value map with the newly created values.
for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".prol", F);
NewBlocks.push_back(NewBB);
if (NewLoop)
NewLoop->addBasicBlockToLoop(NewBB, *LI);
else if (ParentLoop)
ParentLoop->addBasicBlockToLoop(NewBB, *LI);
VMap[*BB] = NewBB;
if (Header == *BB) {
// For the first block, add a CFG connection to this newly
// created block.
InsertTop->getTerminator()->setSuccessor(0, NewBB);
}
if (Latch == *BB) {
// For the last block, if UnrollProlog is true, create a direct jump to
// InsertBot. If not, create a loop back to cloned head.
VMap.erase((*BB)->getTerminator());
BasicBlock *FirstLoopBB = cast<BasicBlock>(VMap[Header]);
BranchInst *LatchBR = cast<BranchInst>(NewBB->getTerminator());
if (UnrollProlog) {
LatchBR->eraseFromParent();
BranchInst::Create(InsertBot, NewBB);
} else {
PHINode *NewIdx = PHINode::Create(NewIter->getType(), 2, "prol.iter",
FirstLoopBB->getFirstNonPHI());
IRBuilder<> Builder(LatchBR);
Value *IdxSub =
Builder.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1),
NewIdx->getName() + ".sub");
Value *IdxCmp =
Builder.CreateIsNotNull(IdxSub, NewIdx->getName() + ".cmp");
BranchInst::Create(FirstLoopBB, InsertBot, IdxCmp, NewBB);
NewIdx->addIncoming(NewIter, InsertTop);
NewIdx->addIncoming(IdxSub, NewBB);
LatchBR->eraseFromParent();
}
}
}
// Change the incoming values to the ones defined in the preheader or
// cloned loop.
for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
PHINode *NewPHI = cast<PHINode>(VMap[I]);
if (UnrollProlog) {
VMap[I] = NewPHI->getIncomingValueForBlock(Preheader);
cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI);
} else {
unsigned idx = NewPHI->getBasicBlockIndex(Preheader);
NewPHI->setIncomingBlock(idx, InsertTop);
BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]);
idx = NewPHI->getBasicBlockIndex(Latch);
Value *InVal = NewPHI->getIncomingValue(idx);
NewPHI->setIncomingBlock(idx, NewLatch);
if (VMap[InVal])
NewPHI->setIncomingValue(idx, VMap[InVal]);
}
}
if (NewLoop) {
// Add unroll disable metadata to disable future unrolling for this loop.
SmallVector<Metadata *, 4> MDs;
// Reserve first location for self reference to the LoopID metadata node.
MDs.push_back(nullptr);
MDNode *LoopID = NewLoop->getLoopID();
if (LoopID) {
// First remove any existing loop unrolling metadata.
for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
bool IsUnrollMetadata = false;
MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
if (MD) {
const MDString *S = dyn_cast<MDString>(MD->getOperand(0));
IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll.");
}
if (!IsUnrollMetadata)
MDs.push_back(LoopID->getOperand(i));
}
}
LLVMContext &Context = NewLoop->getHeader()->getContext();
SmallVector<Metadata *, 1> DisableOperands;
DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable"));
MDNode *DisableNode = MDNode::get(Context, DisableOperands);
MDs.push_back(DisableNode);
MDNode *NewLoopID = MDNode::get(Context, MDs);
// Set operand 0 to refer to the loop id itself.
NewLoopID->replaceOperandWith(0, NewLoopID);
NewLoop->setLoopID(NewLoopID);
}
}
/// Insert code in the prolog code when unrolling a loop with a
/// run-time trip-count.
///
/// This method assumes that the loop unroll factor is total number
/// of loop bodes in the loop after unrolling. (Some folks refer
/// to the unroll factor as the number of *extra* copies added).
/// We assume also that the loop unroll factor is a power-of-two. So, after
/// unrolling the loop, the number of loop bodies executed is 2,
/// 4, 8, etc. Note - LLVM converts the if-then-sequence to a switch
/// instruction in SimplifyCFG.cpp. Then, the backend decides how code for
/// the switch instruction is generated.
///
/// extraiters = tripcount % loopfactor
/// if (extraiters == 0) jump Loop:
/// else jump Prol
/// Prol: LoopBody;
/// extraiters -= 1 // Omitted if unroll factor is 2.
/// if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2.
/// if (tripcount < loopfactor) jump End
/// Loop:
/// ...
/// End:
///
bool llvm::UnrollRuntimeLoopProlog(Loop *L, unsigned Count,
bool AllowExpensiveTripCount, LoopInfo *LI,
LPPassManager *LPM) {
// for now, only unroll loops that contain a single exit
if (!L->getExitingBlock())
return false;
// Make sure the loop is in canonical form, and there is a single
// exit block only.
if (!L->isLoopSimplifyForm() || !L->getUniqueExitBlock())
return false;
// Use Scalar Evolution to compute the trip count. This allows more
// loops to be unrolled than relying on induction var simplification
if (!LPM)
return false;
ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>();
if (!SE)
return false;
// Only unroll loops with a computable trip count and the trip count needs
// to be an int value (allowing a pointer type is a TODO item)
const SCEV *BECountSC = SE->getBackedgeTakenCount(L);
if (isa<SCEVCouldNotCompute>(BECountSC) ||
!BECountSC->getType()->isIntegerTy())
return false;
unsigned BEWidth = cast<IntegerType>(BECountSC->getType())->getBitWidth();
// Add 1 since the backedge count doesn't include the first loop iteration
const SCEV *TripCountSC =
SE->getAddExpr(BECountSC, SE->getConstant(BECountSC->getType(), 1));
if (isa<SCEVCouldNotCompute>(TripCountSC))
return false;
BasicBlock *Header = L->getHeader();
const DataLayout &DL = Header->getModule()->getDataLayout();
SCEVExpander Expander(*SE, DL, "loop-unroll");
if (!AllowExpensiveTripCount && Expander.isHighCostExpansion(TripCountSC, L))
return false;
// We only handle cases when the unroll factor is a power of 2.
// Count is the loop unroll factor, the number of extra copies added + 1.
if (!isPowerOf2_32(Count))
return false;
// This constraint lets us deal with an overflowing trip count easily; see the
// comment on ModVal below.
if (Log2_32(Count) > BEWidth)
return false;
// If this loop is nested, then the loop unroller changes the code in
// parent loop, so the Scalar Evolution pass needs to be run again
if (Loop *ParentLoop = L->getParentLoop())
SE->forgetLoop(ParentLoop);
// Grab analyses that we preserve.
auto *DTWP = LPM->getAnalysisIfAvailable<DominatorTreeWrapperPass>();
auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
BasicBlock *PH = L->getLoopPreheader();
BasicBlock *Latch = L->getLoopLatch();
// It helps to splits the original preheader twice, one for the end of the
// prolog code and one for a new loop preheader
BasicBlock *PEnd = SplitEdge(PH, Header, DT, LI);
BasicBlock *NewPH = SplitBlock(PEnd, PEnd->getTerminator(), DT, LI);
BranchInst *PreHeaderBR = cast<BranchInst>(PH->getTerminator());
// Compute the number of extra iterations required, which is:
// extra iterations = run-time trip count % (loop unroll factor + 1)
Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(),
PreHeaderBR);
Value *BECount = Expander.expandCodeFor(BECountSC, BECountSC->getType(),
PreHeaderBR);
IRBuilder<> B(PreHeaderBR);
Value *ModVal = B.CreateAnd(TripCount, Count - 1, "xtraiter");
// If ModVal is zero, we know that either
// 1. there are no iteration to be run in the prologue loop
// OR
// 2. the addition computing TripCount overflowed
//
// If (2) is true, we know that TripCount really is (1 << BEWidth) and so the
// number of iterations that remain to be run in the original loop is a
// multiple Count == (1 << Log2(Count)) because Log2(Count) <= BEWidth (we
// explicitly check this above).
Value *BranchVal = B.CreateIsNotNull(ModVal, "lcmp.mod");
// Branch to either the extra iterations or the cloned/unrolled loop
// We will fix up the true branch label when adding loop body copies
BranchInst::Create(PEnd, PEnd, BranchVal, PreHeaderBR);
assert(PreHeaderBR->isUnconditional() &&
PreHeaderBR->getSuccessor(0) == PEnd &&
"CFG edges in Preheader are not correct");
PreHeaderBR->eraseFromParent();
Function *F = Header->getParent();
// Get an ordered list of blocks in the loop to help with the ordering of the
// cloned blocks in the prolog code
LoopBlocksDFS LoopBlocks(L);
LoopBlocks.perform(LI);
//
// For each extra loop iteration, create a copy of the loop's basic blocks
// and generate a condition that branches to the copy depending on the
// number of 'left over' iterations.
//
std::vector<BasicBlock *> NewBlocks;
ValueToValueMapTy VMap;
bool UnrollPrologue = Count == 2;
// Clone all the basic blocks in the loop. If Count is 2, we don't clone
// the loop, otherwise we create a cloned loop to execute the extra
// iterations. This function adds the appropriate CFG connections.
CloneLoopBlocks(L, ModVal, UnrollPrologue, PH, PEnd, NewBlocks, LoopBlocks,
VMap, LI);
// Insert the cloned blocks into function just before the original loop
F->getBasicBlockList().splice(PEnd, F->getBasicBlockList(), NewBlocks[0],
F->end());
// Rewrite the cloned instruction operands to use the values
// created when the clone is created.
for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i) {
for (BasicBlock::iterator I = NewBlocks[i]->begin(),
E = NewBlocks[i]->end();
I != E; ++I) {
RemapInstruction(I, VMap,
RF_NoModuleLevelChanges | RF_IgnoreMissingEntries);
}
}
// Connect the prolog code to the original loop and update the
// PHI functions.
BasicBlock *LastLoopBB = cast<BasicBlock>(VMap[Latch]);
ConnectProlog(L, BECount, Count, LastLoopBB, PEnd, PH, NewPH, VMap,
/*AliasAnalysis*/ nullptr, DT, LI, LPM->getAsPass());
NumRuntimeUnrolled++;
return true;
}