llvm-6502/lib/LTO/LTOModule.cpp
Mehdi Amini c94da20917 Make DataLayout Non-Optional in the Module
Summary:
DataLayout keeps the string used for its creation.

As a side effect it is no longer needed in the Module.
This is "almost" NFC, the string is no longer
canonicalized, you can't rely on two "equals" DataLayout
having the same string returned by getStringRepresentation().

Get rid of DataLayoutPass: the DataLayout is in the Module

The DataLayout is "per-module", let's enforce this by not
duplicating it more than necessary.
One more step toward non-optionality of the DataLayout in the
module.

Make DataLayout Non-Optional in the Module

Module->getDataLayout() will never returns nullptr anymore.

Reviewers: echristo

Subscribers: resistor, llvm-commits, jholewinski

Differential Revision: http://reviews.llvm.org/D7992

From: Mehdi Amini <mehdi.amini@apple.com>

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231270 91177308-0d34-0410-b5e6-96231b3b80d8
2015-03-04 18:43:29 +00:00

664 lines
22 KiB
C++

//===-- LTOModule.cpp - LLVM Link Time Optimizer --------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Link Time Optimization library. This library is
// intended to be used by linker to optimize code at link time.
//
//===----------------------------------------------------------------------===//
#include "llvm/LTO/LTOModule.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Bitcode/ReaderWriter.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DiagnosticPrinter.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCParser/MCAsmParser.h"
#include "llvm/MC/MCSection.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/MCTargetAsmParser.h"
#include "llvm/MC/SubtargetFeature.h"
#include "llvm/Object/IRObjectFile.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/Host.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetSubtargetInfo.h"
#include "llvm/Transforms/Utils/GlobalStatus.h"
#include <system_error>
using namespace llvm;
using namespace llvm::object;
LTOModule::LTOModule(std::unique_ptr<object::IRObjectFile> Obj,
llvm::TargetMachine *TM)
: IRFile(std::move(Obj)), _target(TM) {}
LTOModule::LTOModule(std::unique_ptr<object::IRObjectFile> Obj,
llvm::TargetMachine *TM,
std::unique_ptr<LLVMContext> Context)
: OwnedContext(std::move(Context)), IRFile(std::move(Obj)), _target(TM) {}
LTOModule::~LTOModule() {}
/// isBitcodeFile - Returns 'true' if the file (or memory contents) is LLVM
/// bitcode.
bool LTOModule::isBitcodeFile(const void *Mem, size_t Length) {
ErrorOr<MemoryBufferRef> BCData = IRObjectFile::findBitcodeInMemBuffer(
MemoryBufferRef(StringRef((const char *)Mem, Length), "<mem>"));
return bool(BCData);
}
bool LTOModule::isBitcodeFile(const char *Path) {
ErrorOr<std::unique_ptr<MemoryBuffer>> BufferOrErr =
MemoryBuffer::getFile(Path);
if (!BufferOrErr)
return false;
ErrorOr<MemoryBufferRef> BCData = IRObjectFile::findBitcodeInMemBuffer(
BufferOrErr.get()->getMemBufferRef());
return bool(BCData);
}
bool LTOModule::isBitcodeForTarget(MemoryBuffer *Buffer,
StringRef TriplePrefix) {
ErrorOr<MemoryBufferRef> BCOrErr =
IRObjectFile::findBitcodeInMemBuffer(Buffer->getMemBufferRef());
if (!BCOrErr)
return false;
LLVMContext Context;
std::string Triple = getBitcodeTargetTriple(*BCOrErr, Context);
return StringRef(Triple).startswith(TriplePrefix);
}
LTOModule *LTOModule::createFromFile(const char *path, TargetOptions options,
std::string &errMsg) {
ErrorOr<std::unique_ptr<MemoryBuffer>> BufferOrErr =
MemoryBuffer::getFile(path);
if (std::error_code EC = BufferOrErr.getError()) {
errMsg = EC.message();
return nullptr;
}
std::unique_ptr<MemoryBuffer> Buffer = std::move(BufferOrErr.get());
return makeLTOModule(Buffer->getMemBufferRef(), options, errMsg,
&getGlobalContext());
}
LTOModule *LTOModule::createFromOpenFile(int fd, const char *path, size_t size,
TargetOptions options,
std::string &errMsg) {
return createFromOpenFileSlice(fd, path, size, 0, options, errMsg);
}
LTOModule *LTOModule::createFromOpenFileSlice(int fd, const char *path,
size_t map_size, off_t offset,
TargetOptions options,
std::string &errMsg) {
ErrorOr<std::unique_ptr<MemoryBuffer>> BufferOrErr =
MemoryBuffer::getOpenFileSlice(fd, path, map_size, offset);
if (std::error_code EC = BufferOrErr.getError()) {
errMsg = EC.message();
return nullptr;
}
std::unique_ptr<MemoryBuffer> Buffer = std::move(BufferOrErr.get());
return makeLTOModule(Buffer->getMemBufferRef(), options, errMsg,
&getGlobalContext());
}
LTOModule *LTOModule::createFromBuffer(const void *mem, size_t length,
TargetOptions options,
std::string &errMsg, StringRef path) {
return createInContext(mem, length, options, errMsg, path,
&getGlobalContext());
}
LTOModule *LTOModule::createInLocalContext(const void *mem, size_t length,
TargetOptions options,
std::string &errMsg,
StringRef path) {
return createInContext(mem, length, options, errMsg, path, nullptr);
}
LTOModule *LTOModule::createInContext(const void *mem, size_t length,
TargetOptions options,
std::string &errMsg, StringRef path,
LLVMContext *Context) {
StringRef Data((const char *)mem, length);
MemoryBufferRef Buffer(Data, path);
return makeLTOModule(Buffer, options, errMsg, Context);
}
static Module *parseBitcodeFileImpl(MemoryBufferRef Buffer,
LLVMContext &Context, bool ShouldBeLazy,
std::string &ErrMsg) {
// Find the buffer.
ErrorOr<MemoryBufferRef> MBOrErr =
IRObjectFile::findBitcodeInMemBuffer(Buffer);
if (std::error_code EC = MBOrErr.getError()) {
ErrMsg = EC.message();
return nullptr;
}
std::function<void(const DiagnosticInfo &)> DiagnosticHandler =
[&ErrMsg](const DiagnosticInfo &DI) {
raw_string_ostream Stream(ErrMsg);
DiagnosticPrinterRawOStream DP(Stream);
DI.print(DP);
};
if (!ShouldBeLazy) {
// Parse the full file.
ErrorOr<Module *> M =
parseBitcodeFile(*MBOrErr, Context, DiagnosticHandler);
if (!M)
return nullptr;
return *M;
}
// Parse lazily.
std::unique_ptr<MemoryBuffer> LightweightBuf =
MemoryBuffer::getMemBuffer(*MBOrErr, false);
ErrorOr<Module *> M = getLazyBitcodeModule(std::move(LightweightBuf), Context,
DiagnosticHandler);
if (!M)
return nullptr;
return *M;
}
LTOModule *LTOModule::makeLTOModule(MemoryBufferRef Buffer,
TargetOptions options, std::string &errMsg,
LLVMContext *Context) {
std::unique_ptr<LLVMContext> OwnedContext;
if (!Context) {
OwnedContext = llvm::make_unique<LLVMContext>();
Context = OwnedContext.get();
}
// If we own a context, we know this is being used only for symbol
// extraction, not linking. Be lazy in that case.
std::unique_ptr<Module> M(parseBitcodeFileImpl(
Buffer, *Context,
/* ShouldBeLazy */ static_cast<bool>(OwnedContext), errMsg));
if (!M)
return nullptr;
std::string TripleStr = M->getTargetTriple();
if (TripleStr.empty())
TripleStr = sys::getDefaultTargetTriple();
llvm::Triple Triple(TripleStr);
// find machine architecture for this module
const Target *march = TargetRegistry::lookupTarget(TripleStr, errMsg);
if (!march)
return nullptr;
// construct LTOModule, hand over ownership of module and target
SubtargetFeatures Features;
Features.getDefaultSubtargetFeatures(Triple);
std::string FeatureStr = Features.getString();
// Set a default CPU for Darwin triples.
std::string CPU;
if (Triple.isOSDarwin()) {
if (Triple.getArch() == llvm::Triple::x86_64)
CPU = "core2";
else if (Triple.getArch() == llvm::Triple::x86)
CPU = "yonah";
else if (Triple.getArch() == llvm::Triple::aarch64)
CPU = "cyclone";
}
TargetMachine *target = march->createTargetMachine(TripleStr, CPU, FeatureStr,
options);
M->setDataLayout(*target->getDataLayout());
std::unique_ptr<object::IRObjectFile> IRObj(
new object::IRObjectFile(Buffer, std::move(M)));
LTOModule *Ret;
if (OwnedContext)
Ret = new LTOModule(std::move(IRObj), target, std::move(OwnedContext));
else
Ret = new LTOModule(std::move(IRObj), target);
if (Ret->parseSymbols(errMsg)) {
delete Ret;
return nullptr;
}
Ret->parseMetadata();
return Ret;
}
/// Create a MemoryBuffer from a memory range with an optional name.
std::unique_ptr<MemoryBuffer>
LTOModule::makeBuffer(const void *mem, size_t length, StringRef name) {
const char *startPtr = (const char*)mem;
return MemoryBuffer::getMemBuffer(StringRef(startPtr, length), name, false);
}
/// objcClassNameFromExpression - Get string that the data pointer points to.
bool
LTOModule::objcClassNameFromExpression(const Constant *c, std::string &name) {
if (const ConstantExpr *ce = dyn_cast<ConstantExpr>(c)) {
Constant *op = ce->getOperand(0);
if (GlobalVariable *gvn = dyn_cast<GlobalVariable>(op)) {
Constant *cn = gvn->getInitializer();
if (ConstantDataArray *ca = dyn_cast<ConstantDataArray>(cn)) {
if (ca->isCString()) {
name = ".objc_class_name_" + ca->getAsCString().str();
return true;
}
}
}
}
return false;
}
/// addObjCClass - Parse i386/ppc ObjC class data structure.
void LTOModule::addObjCClass(const GlobalVariable *clgv) {
const ConstantStruct *c = dyn_cast<ConstantStruct>(clgv->getInitializer());
if (!c) return;
// second slot in __OBJC,__class is pointer to superclass name
std::string superclassName;
if (objcClassNameFromExpression(c->getOperand(1), superclassName)) {
auto IterBool =
_undefines.insert(std::make_pair(superclassName, NameAndAttributes()));
if (IterBool.second) {
NameAndAttributes &info = IterBool.first->second;
info.name = IterBool.first->first().data();
info.attributes = LTO_SYMBOL_DEFINITION_UNDEFINED;
info.isFunction = false;
info.symbol = clgv;
}
}
// third slot in __OBJC,__class is pointer to class name
std::string className;
if (objcClassNameFromExpression(c->getOperand(2), className)) {
auto Iter = _defines.insert(className).first;
NameAndAttributes info;
info.name = Iter->first().data();
info.attributes = LTO_SYMBOL_PERMISSIONS_DATA |
LTO_SYMBOL_DEFINITION_REGULAR | LTO_SYMBOL_SCOPE_DEFAULT;
info.isFunction = false;
info.symbol = clgv;
_symbols.push_back(info);
}
}
/// addObjCCategory - Parse i386/ppc ObjC category data structure.
void LTOModule::addObjCCategory(const GlobalVariable *clgv) {
const ConstantStruct *c = dyn_cast<ConstantStruct>(clgv->getInitializer());
if (!c) return;
// second slot in __OBJC,__category is pointer to target class name
std::string targetclassName;
if (!objcClassNameFromExpression(c->getOperand(1), targetclassName))
return;
auto IterBool =
_undefines.insert(std::make_pair(targetclassName, NameAndAttributes()));
if (!IterBool.second)
return;
NameAndAttributes &info = IterBool.first->second;
info.name = IterBool.first->first().data();
info.attributes = LTO_SYMBOL_DEFINITION_UNDEFINED;
info.isFunction = false;
info.symbol = clgv;
}
/// addObjCClassRef - Parse i386/ppc ObjC class list data structure.
void LTOModule::addObjCClassRef(const GlobalVariable *clgv) {
std::string targetclassName;
if (!objcClassNameFromExpression(clgv->getInitializer(), targetclassName))
return;
auto IterBool =
_undefines.insert(std::make_pair(targetclassName, NameAndAttributes()));
if (!IterBool.second)
return;
NameAndAttributes &info = IterBool.first->second;
info.name = IterBool.first->first().data();
info.attributes = LTO_SYMBOL_DEFINITION_UNDEFINED;
info.isFunction = false;
info.symbol = clgv;
}
void LTOModule::addDefinedDataSymbol(const object::BasicSymbolRef &Sym) {
SmallString<64> Buffer;
{
raw_svector_ostream OS(Buffer);
Sym.printName(OS);
}
const GlobalValue *V = IRFile->getSymbolGV(Sym.getRawDataRefImpl());
addDefinedDataSymbol(Buffer.c_str(), V);
}
void LTOModule::addDefinedDataSymbol(const char *Name, const GlobalValue *v) {
// Add to list of defined symbols.
addDefinedSymbol(Name, v, false);
if (!v->hasSection() /* || !isTargetDarwin */)
return;
// Special case i386/ppc ObjC data structures in magic sections:
// The issue is that the old ObjC object format did some strange
// contortions to avoid real linker symbols. For instance, the
// ObjC class data structure is allocated statically in the executable
// that defines that class. That data structures contains a pointer to
// its superclass. But instead of just initializing that part of the
// struct to the address of its superclass, and letting the static and
// dynamic linkers do the rest, the runtime works by having that field
// instead point to a C-string that is the name of the superclass.
// At runtime the objc initialization updates that pointer and sets
// it to point to the actual super class. As far as the linker
// knows it is just a pointer to a string. But then someone wanted the
// linker to issue errors at build time if the superclass was not found.
// So they figured out a way in mach-o object format to use an absolute
// symbols (.objc_class_name_Foo = 0) and a floating reference
// (.reference .objc_class_name_Bar) to cause the linker into erroring when
// a class was missing.
// The following synthesizes the implicit .objc_* symbols for the linker
// from the ObjC data structures generated by the front end.
// special case if this data blob is an ObjC class definition
std::string Section = v->getSection();
if (Section.compare(0, 15, "__OBJC,__class,") == 0) {
if (const GlobalVariable *gv = dyn_cast<GlobalVariable>(v)) {
addObjCClass(gv);
}
}
// special case if this data blob is an ObjC category definition
else if (Section.compare(0, 18, "__OBJC,__category,") == 0) {
if (const GlobalVariable *gv = dyn_cast<GlobalVariable>(v)) {
addObjCCategory(gv);
}
}
// special case if this data blob is the list of referenced classes
else if (Section.compare(0, 18, "__OBJC,__cls_refs,") == 0) {
if (const GlobalVariable *gv = dyn_cast<GlobalVariable>(v)) {
addObjCClassRef(gv);
}
}
}
void LTOModule::addDefinedFunctionSymbol(const object::BasicSymbolRef &Sym) {
SmallString<64> Buffer;
{
raw_svector_ostream OS(Buffer);
Sym.printName(OS);
}
const Function *F =
cast<Function>(IRFile->getSymbolGV(Sym.getRawDataRefImpl()));
addDefinedFunctionSymbol(Buffer.c_str(), F);
}
void LTOModule::addDefinedFunctionSymbol(const char *Name, const Function *F) {
// add to list of defined symbols
addDefinedSymbol(Name, F, true);
}
void LTOModule::addDefinedSymbol(const char *Name, const GlobalValue *def,
bool isFunction) {
// set alignment part log2() can have rounding errors
uint32_t align = def->getAlignment();
uint32_t attr = align ? countTrailingZeros(align) : 0;
// set permissions part
if (isFunction) {
attr |= LTO_SYMBOL_PERMISSIONS_CODE;
} else {
const GlobalVariable *gv = dyn_cast<GlobalVariable>(def);
if (gv && gv->isConstant())
attr |= LTO_SYMBOL_PERMISSIONS_RODATA;
else
attr |= LTO_SYMBOL_PERMISSIONS_DATA;
}
// set definition part
if (def->hasWeakLinkage() || def->hasLinkOnceLinkage())
attr |= LTO_SYMBOL_DEFINITION_WEAK;
else if (def->hasCommonLinkage())
attr |= LTO_SYMBOL_DEFINITION_TENTATIVE;
else
attr |= LTO_SYMBOL_DEFINITION_REGULAR;
// set scope part
if (def->hasLocalLinkage())
// Ignore visibility if linkage is local.
attr |= LTO_SYMBOL_SCOPE_INTERNAL;
else if (def->hasHiddenVisibility())
attr |= LTO_SYMBOL_SCOPE_HIDDEN;
else if (def->hasProtectedVisibility())
attr |= LTO_SYMBOL_SCOPE_PROTECTED;
else if (canBeOmittedFromSymbolTable(def))
attr |= LTO_SYMBOL_SCOPE_DEFAULT_CAN_BE_HIDDEN;
else
attr |= LTO_SYMBOL_SCOPE_DEFAULT;
auto Iter = _defines.insert(Name).first;
// fill information structure
NameAndAttributes info;
StringRef NameRef = Iter->first();
info.name = NameRef.data();
assert(info.name[NameRef.size()] == '\0');
info.attributes = attr;
info.isFunction = isFunction;
info.symbol = def;
// add to table of symbols
_symbols.push_back(info);
}
/// addAsmGlobalSymbol - Add a global symbol from module-level ASM to the
/// defined list.
void LTOModule::addAsmGlobalSymbol(const char *name,
lto_symbol_attributes scope) {
auto IterBool = _defines.insert(name);
// only add new define if not already defined
if (!IterBool.second)
return;
NameAndAttributes &info = _undefines[IterBool.first->first().data()];
if (info.symbol == nullptr) {
// FIXME: This is trying to take care of module ASM like this:
//
// module asm ".zerofill __FOO, __foo, _bar_baz_qux, 0"
//
// but is gross and its mother dresses it funny. Have the ASM parser give us
// more details for this type of situation so that we're not guessing so
// much.
// fill information structure
info.name = IterBool.first->first().data();
info.attributes =
LTO_SYMBOL_PERMISSIONS_DATA | LTO_SYMBOL_DEFINITION_REGULAR | scope;
info.isFunction = false;
info.symbol = nullptr;
// add to table of symbols
_symbols.push_back(info);
return;
}
if (info.isFunction)
addDefinedFunctionSymbol(info.name, cast<Function>(info.symbol));
else
addDefinedDataSymbol(info.name, info.symbol);
_symbols.back().attributes &= ~LTO_SYMBOL_SCOPE_MASK;
_symbols.back().attributes |= scope;
}
/// addAsmGlobalSymbolUndef - Add a global symbol from module-level ASM to the
/// undefined list.
void LTOModule::addAsmGlobalSymbolUndef(const char *name) {
auto IterBool = _undefines.insert(std::make_pair(name, NameAndAttributes()));
_asm_undefines.push_back(IterBool.first->first().data());
// we already have the symbol
if (!IterBool.second)
return;
uint32_t attr = LTO_SYMBOL_DEFINITION_UNDEFINED;
attr |= LTO_SYMBOL_SCOPE_DEFAULT;
NameAndAttributes &info = IterBool.first->second;
info.name = IterBool.first->first().data();
info.attributes = attr;
info.isFunction = false;
info.symbol = nullptr;
}
/// Add a symbol which isn't defined just yet to a list to be resolved later.
void LTOModule::addPotentialUndefinedSymbol(const object::BasicSymbolRef &Sym,
bool isFunc) {
SmallString<64> name;
{
raw_svector_ostream OS(name);
Sym.printName(OS);
}
auto IterBool = _undefines.insert(std::make_pair(name, NameAndAttributes()));
// we already have the symbol
if (!IterBool.second)
return;
NameAndAttributes &info = IterBool.first->second;
info.name = IterBool.first->first().data();
const GlobalValue *decl = IRFile->getSymbolGV(Sym.getRawDataRefImpl());
if (decl->hasExternalWeakLinkage())
info.attributes = LTO_SYMBOL_DEFINITION_WEAKUNDEF;
else
info.attributes = LTO_SYMBOL_DEFINITION_UNDEFINED;
info.isFunction = isFunc;
info.symbol = decl;
}
/// parseSymbols - Parse the symbols from the module and model-level ASM and add
/// them to either the defined or undefined lists.
bool LTOModule::parseSymbols(std::string &errMsg) {
for (auto &Sym : IRFile->symbols()) {
const GlobalValue *GV = IRFile->getSymbolGV(Sym.getRawDataRefImpl());
uint32_t Flags = Sym.getFlags();
if (Flags & object::BasicSymbolRef::SF_FormatSpecific)
continue;
bool IsUndefined = Flags & object::BasicSymbolRef::SF_Undefined;
if (!GV) {
SmallString<64> Buffer;
{
raw_svector_ostream OS(Buffer);
Sym.printName(OS);
}
const char *Name = Buffer.c_str();
if (IsUndefined)
addAsmGlobalSymbolUndef(Name);
else if (Flags & object::BasicSymbolRef::SF_Global)
addAsmGlobalSymbol(Name, LTO_SYMBOL_SCOPE_DEFAULT);
else
addAsmGlobalSymbol(Name, LTO_SYMBOL_SCOPE_INTERNAL);
continue;
}
auto *F = dyn_cast<Function>(GV);
if (IsUndefined) {
addPotentialUndefinedSymbol(Sym, F != nullptr);
continue;
}
if (F) {
addDefinedFunctionSymbol(Sym);
continue;
}
if (isa<GlobalVariable>(GV)) {
addDefinedDataSymbol(Sym);
continue;
}
assert(isa<GlobalAlias>(GV));
addDefinedDataSymbol(Sym);
}
// make symbols for all undefines
for (StringMap<NameAndAttributes>::iterator u =_undefines.begin(),
e = _undefines.end(); u != e; ++u) {
// If this symbol also has a definition, then don't make an undefine because
// it is a tentative definition.
if (_defines.count(u->getKey())) continue;
NameAndAttributes info = u->getValue();
_symbols.push_back(info);
}
return false;
}
/// parseMetadata - Parse metadata from the module
void LTOModule::parseMetadata() {
// Linker Options
if (Metadata *Val = getModule().getModuleFlag("Linker Options")) {
MDNode *LinkerOptions = cast<MDNode>(Val);
for (unsigned i = 0, e = LinkerOptions->getNumOperands(); i != e; ++i) {
MDNode *MDOptions = cast<MDNode>(LinkerOptions->getOperand(i));
for (unsigned ii = 0, ie = MDOptions->getNumOperands(); ii != ie; ++ii) {
MDString *MDOption = cast<MDString>(MDOptions->getOperand(ii));
// FIXME: Make StringSet::insert match Self-Associative Container
// requirements, returning <iter,bool> rather than bool, and use that
// here.
StringRef Op =
_linkeropt_strings.insert(MDOption->getString()).first->first();
StringRef DepLibName =
_target->getObjFileLowering()->getDepLibFromLinkerOpt(Op);
if (!DepLibName.empty())
_deplibs.push_back(DepLibName.data());
else if (!Op.empty())
_linkeropts.push_back(Op.data());
}
}
}
// Add other interesting metadata here.
}