llvm-6502/lib/Target/SystemZ/SystemZISelDAGToDAG.cpp
Chris Lattner 518bb53485 move target-independent opcodes out of TargetInstrInfo
into TargetOpcodes.h.  #include the new TargetOpcodes.h
into MachineInstr.  Add new inline accessors (like isPHI())
to MachineInstr, and start using them throughout the 
codebase.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@95687 91177308-0d34-0410-b5e6-96231b3b80d8
2010-02-09 19:54:29 +00:00

827 lines
28 KiB
C++

//==-- SystemZISelDAGToDAG.cpp - A dag to dag inst selector for SystemZ ---===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines an instruction selector for the SystemZ target.
//
//===----------------------------------------------------------------------===//
#include "SystemZ.h"
#include "SystemZISelLowering.h"
#include "SystemZTargetMachine.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/Intrinsics.h"
#include "llvm/CallingConv.h"
#include "llvm/Constants.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
static const unsigned subreg_even32 = 1;
static const unsigned subreg_odd32 = 2;
static const unsigned subreg_even = 3;
static const unsigned subreg_odd = 4;
namespace {
/// SystemZRRIAddressMode - This corresponds to rriaddr, but uses SDValue's
/// instead of register numbers for the leaves of the matched tree.
struct SystemZRRIAddressMode {
enum {
RegBase,
FrameIndexBase
} BaseType;
struct { // This is really a union, discriminated by BaseType!
SDValue Reg;
int FrameIndex;
} Base;
SDValue IndexReg;
int64_t Disp;
bool isRI;
SystemZRRIAddressMode(bool RI = false)
: BaseType(RegBase), IndexReg(), Disp(0), isRI(RI) {
}
void dump() {
errs() << "SystemZRRIAddressMode " << this << '\n';
if (BaseType == RegBase) {
errs() << "Base.Reg ";
if (Base.Reg.getNode() != 0)
Base.Reg.getNode()->dump();
else
errs() << "nul";
errs() << '\n';
} else {
errs() << " Base.FrameIndex " << Base.FrameIndex << '\n';
}
if (!isRI) {
errs() << "IndexReg ";
if (IndexReg.getNode() != 0) IndexReg.getNode()->dump();
else errs() << "nul";
}
errs() << " Disp " << Disp << '\n';
}
};
}
/// SystemZDAGToDAGISel - SystemZ specific code to select SystemZ machine
/// instructions for SelectionDAG operations.
///
namespace {
class SystemZDAGToDAGISel : public SelectionDAGISel {
SystemZTargetLowering &Lowering;
const SystemZSubtarget &Subtarget;
void getAddressOperandsRI(const SystemZRRIAddressMode &AM,
SDValue &Base, SDValue &Disp);
void getAddressOperands(const SystemZRRIAddressMode &AM,
SDValue &Base, SDValue &Disp,
SDValue &Index);
public:
SystemZDAGToDAGISel(SystemZTargetMachine &TM, CodeGenOpt::Level OptLevel)
: SelectionDAGISel(TM, OptLevel),
Lowering(*TM.getTargetLowering()),
Subtarget(*TM.getSubtargetImpl()) { }
virtual void InstructionSelect();
virtual const char *getPassName() const {
return "SystemZ DAG->DAG Pattern Instruction Selection";
}
/// getI8Imm - Return a target constant with the specified value, of type
/// i8.
inline SDValue getI8Imm(uint64_t Imm) {
return CurDAG->getTargetConstant(Imm, MVT::i8);
}
/// getI16Imm - Return a target constant with the specified value, of type
/// i16.
inline SDValue getI16Imm(uint64_t Imm) {
return CurDAG->getTargetConstant(Imm, MVT::i16);
}
/// getI32Imm - Return a target constant with the specified value, of type
/// i32.
inline SDValue getI32Imm(uint64_t Imm) {
return CurDAG->getTargetConstant(Imm, MVT::i32);
}
// Include the pieces autogenerated from the target description.
#include "SystemZGenDAGISel.inc"
private:
bool SelectAddrRI12Only(SDNode *Op, SDValue& Addr,
SDValue &Base, SDValue &Disp);
bool SelectAddrRI12(SDNode *Op, SDValue& Addr,
SDValue &Base, SDValue &Disp,
bool is12BitOnly = false);
bool SelectAddrRI(SDNode *Op, SDValue& Addr,
SDValue &Base, SDValue &Disp);
bool SelectAddrRRI12(SDNode *Op, SDValue Addr,
SDValue &Base, SDValue &Disp, SDValue &Index);
bool SelectAddrRRI20(SDNode *Op, SDValue Addr,
SDValue &Base, SDValue &Disp, SDValue &Index);
bool SelectLAAddr(SDNode *Op, SDValue Addr,
SDValue &Base, SDValue &Disp, SDValue &Index);
SDNode *Select(SDNode *Node);
bool TryFoldLoad(SDNode *P, SDValue N,
SDValue &Base, SDValue &Disp, SDValue &Index);
bool MatchAddress(SDValue N, SystemZRRIAddressMode &AM,
bool is12Bit, unsigned Depth = 0);
bool MatchAddressBase(SDValue N, SystemZRRIAddressMode &AM);
bool MatchAddressRI(SDValue N, SystemZRRIAddressMode &AM,
bool is12Bit);
#ifndef NDEBUG
unsigned Indent;
#endif
};
} // end anonymous namespace
/// createSystemZISelDag - This pass converts a legalized DAG into a
/// SystemZ-specific DAG, ready for instruction scheduling.
///
FunctionPass *llvm::createSystemZISelDag(SystemZTargetMachine &TM,
CodeGenOpt::Level OptLevel) {
return new SystemZDAGToDAGISel(TM, OptLevel);
}
/// isImmSExt20 - This method tests to see if the node is either a 32-bit
/// or 64-bit immediate, and if the value can be accurately represented as a
/// sign extension from a 20-bit value. If so, this returns true and the
/// immediate.
static bool isImmSExt20(int64_t Val, int64_t &Imm) {
if (Val >= -524288 && Val <= 524287) {
Imm = Val;
return true;
}
return false;
}
/// isImmZExt12 - This method tests to see if the node is either a 32-bit
/// or 64-bit immediate, and if the value can be accurately represented as a
/// zero extension from a 12-bit value. If so, this returns true and the
/// immediate.
static bool isImmZExt12(int64_t Val, int64_t &Imm) {
if (Val >= 0 && Val <= 0xFFF) {
Imm = Val;
return true;
}
return false;
}
/// MatchAddress - Add the specified node to the specified addressing mode,
/// returning true if it cannot be done. This just pattern matches for the
/// addressing mode.
bool SystemZDAGToDAGISel::MatchAddress(SDValue N, SystemZRRIAddressMode &AM,
bool is12Bit, unsigned Depth) {
DebugLoc dl = N.getDebugLoc();
DEBUG(errs() << "MatchAddress: "; AM.dump());
// Limit recursion.
if (Depth > 5)
return MatchAddressBase(N, AM);
// FIXME: We can perform better here. If we have something like
// (shift (add A, imm), N), we can try to reassociate stuff and fold shift of
// imm into addressing mode.
switch (N.getOpcode()) {
default: break;
case ISD::Constant: {
int64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
int64_t Imm = 0;
bool Match = (is12Bit ?
isImmZExt12(AM.Disp + Val, Imm) :
isImmSExt20(AM.Disp + Val, Imm));
if (Match) {
AM.Disp = Imm;
return false;
}
break;
}
case ISD::FrameIndex:
if (AM.BaseType == SystemZRRIAddressMode::RegBase &&
AM.Base.Reg.getNode() == 0) {
AM.BaseType = SystemZRRIAddressMode::FrameIndexBase;
AM.Base.FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
return false;
}
break;
case ISD::SUB: {
// Given A-B, if A can be completely folded into the address and
// the index field with the index field unused, use -B as the index.
// This is a win if a has multiple parts that can be folded into
// the address. Also, this saves a mov if the base register has
// other uses, since it avoids a two-address sub instruction, however
// it costs an additional mov if the index register has other uses.
// Test if the LHS of the sub can be folded.
SystemZRRIAddressMode Backup = AM;
if (MatchAddress(N.getNode()->getOperand(0), AM, is12Bit, Depth+1)) {
AM = Backup;
break;
}
// Test if the index field is free for use.
if (AM.IndexReg.getNode() || AM.isRI) {
AM = Backup;
break;
}
// If the base is a register with multiple uses, this transformation may
// save a mov. Otherwise it's probably better not to do it.
if (AM.BaseType == SystemZRRIAddressMode::RegBase &&
(!AM.Base.Reg.getNode() || AM.Base.Reg.getNode()->hasOneUse())) {
AM = Backup;
break;
}
// Ok, the transformation is legal and appears profitable. Go for it.
SDValue RHS = N.getNode()->getOperand(1);
SDValue Zero = CurDAG->getConstant(0, N.getValueType());
SDValue Neg = CurDAG->getNode(ISD::SUB, dl, N.getValueType(), Zero, RHS);
AM.IndexReg = Neg;
// Insert the new nodes into the topological ordering.
if (Zero.getNode()->getNodeId() == -1 ||
Zero.getNode()->getNodeId() > N.getNode()->getNodeId()) {
CurDAG->RepositionNode(N.getNode(), Zero.getNode());
Zero.getNode()->setNodeId(N.getNode()->getNodeId());
}
if (Neg.getNode()->getNodeId() == -1 ||
Neg.getNode()->getNodeId() > N.getNode()->getNodeId()) {
CurDAG->RepositionNode(N.getNode(), Neg.getNode());
Neg.getNode()->setNodeId(N.getNode()->getNodeId());
}
return false;
}
case ISD::ADD: {
SystemZRRIAddressMode Backup = AM;
if (!MatchAddress(N.getNode()->getOperand(0), AM, is12Bit, Depth+1) &&
!MatchAddress(N.getNode()->getOperand(1), AM, is12Bit, Depth+1))
return false;
AM = Backup;
if (!MatchAddress(N.getNode()->getOperand(1), AM, is12Bit, Depth+1) &&
!MatchAddress(N.getNode()->getOperand(0), AM, is12Bit, Depth+1))
return false;
AM = Backup;
// If we couldn't fold both operands into the address at the same time,
// see if we can just put each operand into a register and fold at least
// the add.
if (!AM.isRI &&
AM.BaseType == SystemZRRIAddressMode::RegBase &&
!AM.Base.Reg.getNode() && !AM.IndexReg.getNode()) {
AM.Base.Reg = N.getNode()->getOperand(0);
AM.IndexReg = N.getNode()->getOperand(1);
return false;
}
break;
}
case ISD::OR:
// Handle "X | C" as "X + C" iff X is known to have C bits clear.
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
SystemZRRIAddressMode Backup = AM;
int64_t Offset = CN->getSExtValue();
int64_t Imm = 0;
bool MatchOffset = (is12Bit ?
isImmZExt12(AM.Disp + Offset, Imm) :
isImmSExt20(AM.Disp + Offset, Imm));
// The resultant disp must fit in 12 or 20-bits.
if (MatchOffset &&
// LHS should be an addr mode.
!MatchAddress(N.getOperand(0), AM, is12Bit, Depth+1) &&
// Check to see if the LHS & C is zero.
CurDAG->MaskedValueIsZero(N.getOperand(0), CN->getAPIntValue())) {
AM.Disp = Imm;
return false;
}
AM = Backup;
}
break;
}
return MatchAddressBase(N, AM);
}
/// MatchAddressBase - Helper for MatchAddress. Add the specified node to the
/// specified addressing mode without any further recursion.
bool SystemZDAGToDAGISel::MatchAddressBase(SDValue N,
SystemZRRIAddressMode &AM) {
// Is the base register already occupied?
if (AM.BaseType != SystemZRRIAddressMode::RegBase || AM.Base.Reg.getNode()) {
// If so, check to see if the index register is set.
if (AM.IndexReg.getNode() == 0 && !AM.isRI) {
AM.IndexReg = N;
return false;
}
// Otherwise, we cannot select it.
return true;
}
// Default, generate it as a register.
AM.BaseType = SystemZRRIAddressMode::RegBase;
AM.Base.Reg = N;
return false;
}
void SystemZDAGToDAGISel::getAddressOperandsRI(const SystemZRRIAddressMode &AM,
SDValue &Base, SDValue &Disp) {
if (AM.BaseType == SystemZRRIAddressMode::RegBase)
Base = AM.Base.Reg;
else
Base = CurDAG->getTargetFrameIndex(AM.Base.FrameIndex, TLI.getPointerTy());
Disp = CurDAG->getTargetConstant(AM.Disp, MVT::i64);
}
void SystemZDAGToDAGISel::getAddressOperands(const SystemZRRIAddressMode &AM,
SDValue &Base, SDValue &Disp,
SDValue &Index) {
getAddressOperandsRI(AM, Base, Disp);
Index = AM.IndexReg;
}
/// Returns true if the address can be represented by a base register plus
/// an unsigned 12-bit displacement [r+imm].
bool SystemZDAGToDAGISel::SelectAddrRI12Only(SDNode *Op, SDValue& Addr,
SDValue &Base, SDValue &Disp) {
return SelectAddrRI12(Op, Addr, Base, Disp, /*is12BitOnly*/true);
}
bool SystemZDAGToDAGISel::SelectAddrRI12(SDNode *Op, SDValue& Addr,
SDValue &Base, SDValue &Disp,
bool is12BitOnly) {
SystemZRRIAddressMode AM20(/*isRI*/true), AM12(/*isRI*/true);
bool Done = false;
if (!Addr.hasOneUse()) {
unsigned Opcode = Addr.getOpcode();
if (Opcode != ISD::Constant && Opcode != ISD::FrameIndex) {
// If we are able to fold N into addressing mode, then we'll allow it even
// if N has multiple uses. In general, addressing computation is used as
// addresses by all of its uses. But watch out for CopyToReg uses, that
// means the address computation is liveout. It will be computed by a LA
// so we want to avoid computing the address twice.
for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
if (UI->getOpcode() == ISD::CopyToReg) {
MatchAddressBase(Addr, AM12);
Done = true;
break;
}
}
}
}
if (!Done && MatchAddress(Addr, AM12, /* is12Bit */ true))
return false;
// Check, whether we can match stuff using 20-bit displacements
if (!Done && !is12BitOnly &&
!MatchAddress(Addr, AM20, /* is12Bit */ false))
if (AM12.Disp == 0 && AM20.Disp != 0)
return false;
DEBUG(errs() << "MatchAddress (final): "; AM12.dump());
EVT VT = Addr.getValueType();
if (AM12.BaseType == SystemZRRIAddressMode::RegBase) {
if (!AM12.Base.Reg.getNode())
AM12.Base.Reg = CurDAG->getRegister(0, VT);
}
assert(AM12.IndexReg.getNode() == 0 && "Invalid reg-imm address mode!");
getAddressOperandsRI(AM12, Base, Disp);
return true;
}
/// Returns true if the address can be represented by a base register plus
/// a signed 20-bit displacement [r+imm].
bool SystemZDAGToDAGISel::SelectAddrRI(SDNode *Op, SDValue& Addr,
SDValue &Base, SDValue &Disp) {
SystemZRRIAddressMode AM(/*isRI*/true);
bool Done = false;
if (!Addr.hasOneUse()) {
unsigned Opcode = Addr.getOpcode();
if (Opcode != ISD::Constant && Opcode != ISD::FrameIndex) {
// If we are able to fold N into addressing mode, then we'll allow it even
// if N has multiple uses. In general, addressing computation is used as
// addresses by all of its uses. But watch out for CopyToReg uses, that
// means the address computation is liveout. It will be computed by a LA
// so we want to avoid computing the address twice.
for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
if (UI->getOpcode() == ISD::CopyToReg) {
MatchAddressBase(Addr, AM);
Done = true;
break;
}
}
}
}
if (!Done && MatchAddress(Addr, AM, /* is12Bit */ false))
return false;
DEBUG(errs() << "MatchAddress (final): "; AM.dump());
EVT VT = Addr.getValueType();
if (AM.BaseType == SystemZRRIAddressMode::RegBase) {
if (!AM.Base.Reg.getNode())
AM.Base.Reg = CurDAG->getRegister(0, VT);
}
assert(AM.IndexReg.getNode() == 0 && "Invalid reg-imm address mode!");
getAddressOperandsRI(AM, Base, Disp);
return true;
}
/// Returns true if the address can be represented by a base register plus
/// index register plus an unsigned 12-bit displacement [base + idx + imm].
bool SystemZDAGToDAGISel::SelectAddrRRI12(SDNode *Op, SDValue Addr,
SDValue &Base, SDValue &Disp, SDValue &Index) {
SystemZRRIAddressMode AM20, AM12;
bool Done = false;
if (!Addr.hasOneUse()) {
unsigned Opcode = Addr.getOpcode();
if (Opcode != ISD::Constant && Opcode != ISD::FrameIndex) {
// If we are able to fold N into addressing mode, then we'll allow it even
// if N has multiple uses. In general, addressing computation is used as
// addresses by all of its uses. But watch out for CopyToReg uses, that
// means the address computation is liveout. It will be computed by a LA
// so we want to avoid computing the address twice.
for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
if (UI->getOpcode() == ISD::CopyToReg) {
MatchAddressBase(Addr, AM12);
Done = true;
break;
}
}
}
}
if (!Done && MatchAddress(Addr, AM12, /* is12Bit */ true))
return false;
// Check, whether we can match stuff using 20-bit displacements
if (!Done && !MatchAddress(Addr, AM20, /* is12Bit */ false))
if (AM12.Disp == 0 && AM20.Disp != 0)
return false;
DEBUG(errs() << "MatchAddress (final): "; AM12.dump());
EVT VT = Addr.getValueType();
if (AM12.BaseType == SystemZRRIAddressMode::RegBase) {
if (!AM12.Base.Reg.getNode())
AM12.Base.Reg = CurDAG->getRegister(0, VT);
}
if (!AM12.IndexReg.getNode())
AM12.IndexReg = CurDAG->getRegister(0, VT);
getAddressOperands(AM12, Base, Disp, Index);
return true;
}
/// Returns true if the address can be represented by a base register plus
/// index register plus a signed 20-bit displacement [base + idx + imm].
bool SystemZDAGToDAGISel::SelectAddrRRI20(SDNode *Op, SDValue Addr,
SDValue &Base, SDValue &Disp, SDValue &Index) {
SystemZRRIAddressMode AM;
bool Done = false;
if (!Addr.hasOneUse()) {
unsigned Opcode = Addr.getOpcode();
if (Opcode != ISD::Constant && Opcode != ISD::FrameIndex) {
// If we are able to fold N into addressing mode, then we'll allow it even
// if N has multiple uses. In general, addressing computation is used as
// addresses by all of its uses. But watch out for CopyToReg uses, that
// means the address computation is liveout. It will be computed by a LA
// so we want to avoid computing the address twice.
for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
if (UI->getOpcode() == ISD::CopyToReg) {
MatchAddressBase(Addr, AM);
Done = true;
break;
}
}
}
}
if (!Done && MatchAddress(Addr, AM, /* is12Bit */ false))
return false;
DEBUG(errs() << "MatchAddress (final): "; AM.dump());
EVT VT = Addr.getValueType();
if (AM.BaseType == SystemZRRIAddressMode::RegBase) {
if (!AM.Base.Reg.getNode())
AM.Base.Reg = CurDAG->getRegister(0, VT);
}
if (!AM.IndexReg.getNode())
AM.IndexReg = CurDAG->getRegister(0, VT);
getAddressOperands(AM, Base, Disp, Index);
return true;
}
/// SelectLAAddr - it calls SelectAddr and determines if the maximal addressing
/// mode it matches can be cost effectively emitted as an LA/LAY instruction.
bool SystemZDAGToDAGISel::SelectLAAddr(SDNode *Op, SDValue Addr,
SDValue &Base, SDValue &Disp, SDValue &Index) {
SystemZRRIAddressMode AM;
if (MatchAddress(Addr, AM, false))
return false;
EVT VT = Addr.getValueType();
unsigned Complexity = 0;
if (AM.BaseType == SystemZRRIAddressMode::RegBase)
if (AM.Base.Reg.getNode())
Complexity = 1;
else
AM.Base.Reg = CurDAG->getRegister(0, VT);
else if (AM.BaseType == SystemZRRIAddressMode::FrameIndexBase)
Complexity = 4;
if (AM.IndexReg.getNode())
Complexity += 1;
else
AM.IndexReg = CurDAG->getRegister(0, VT);
if (AM.Disp && (AM.Base.Reg.getNode() || AM.IndexReg.getNode()))
Complexity += 1;
if (Complexity > 2) {
getAddressOperands(AM, Base, Disp, Index);
return true;
}
return false;
}
bool SystemZDAGToDAGISel::TryFoldLoad(SDNode *P, SDValue N,
SDValue &Base, SDValue &Disp, SDValue &Index) {
if (ISD::isNON_EXTLoad(N.getNode()) &&
N.hasOneUse() &&
IsLegalAndProfitableToFold(N.getNode(), P, P))
return SelectAddrRRI20(P, N.getOperand(1), Base, Disp, Index);
return false;
}
/// InstructionSelect - This callback is invoked by
/// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
void SystemZDAGToDAGISel::InstructionSelect() {
// Codegen the basic block.
DEBUG(errs() << "===== Instruction selection begins:\n");
DEBUG(Indent = 0);
SelectRoot(*CurDAG);
DEBUG(errs() << "===== Instruction selection ends:\n");
CurDAG->RemoveDeadNodes();
}
SDNode *SystemZDAGToDAGISel::Select(SDNode *Node) {
EVT NVT = Node->getValueType(0);
DebugLoc dl = Node->getDebugLoc();
unsigned Opcode = Node->getOpcode();
// Dump information about the Node being selected
DEBUG(errs().indent(Indent) << "Selecting: ";
Node->dump(CurDAG);
errs() << "\n");
DEBUG(Indent += 2);
// If we have a custom node, we already have selected!
if (Node->isMachineOpcode()) {
DEBUG(errs().indent(Indent-2) << "== ";
Node->dump(CurDAG);
errs() << "\n");
DEBUG(Indent -= 2);
return NULL; // Already selected.
}
switch (Opcode) {
default: break;
case ISD::SDIVREM: {
unsigned Opc, MOpc;
SDValue N0 = Node->getOperand(0);
SDValue N1 = Node->getOperand(1);
EVT ResVT;
bool is32Bit = false;
switch (NVT.getSimpleVT().SimpleTy) {
default: assert(0 && "Unsupported VT!");
case MVT::i32:
Opc = SystemZ::SDIVREM32r; MOpc = SystemZ::SDIVREM32m;
ResVT = MVT::v2i64;
is32Bit = true;
break;
case MVT::i64:
Opc = SystemZ::SDIVREM64r; MOpc = SystemZ::SDIVREM64m;
ResVT = MVT::v2i64;
break;
}
SDValue Tmp0, Tmp1, Tmp2;
bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2);
// Prepare the dividend
SDNode *Dividend;
if (is32Bit)
Dividend = CurDAG->getMachineNode(SystemZ::MOVSX64rr32, dl, MVT::i64, N0);
else
Dividend = N0.getNode();
// Insert prepared dividend into suitable 'subreg'
SDNode *Tmp = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
dl, ResVT);
Dividend =
CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, dl, ResVT,
SDValue(Tmp, 0), SDValue(Dividend, 0),
CurDAG->getTargetConstant(subreg_odd, MVT::i32));
SDNode *Result;
SDValue DivVal = SDValue(Dividend, 0);
if (foldedLoad) {
SDValue Ops[] = { DivVal, Tmp0, Tmp1, Tmp2, N1.getOperand(0) };
Result = CurDAG->getMachineNode(MOpc, dl, ResVT, MVT::Other,
Ops, array_lengthof(Ops));
// Update the chain.
ReplaceUses(N1.getValue(1), SDValue(Result, 1));
} else {
Result = CurDAG->getMachineNode(Opc, dl, ResVT, SDValue(Dividend, 0), N1);
}
// Copy the division (odd subreg) result, if it is needed.
if (!SDValue(Node, 0).use_empty()) {
unsigned SubRegIdx = (is32Bit ? subreg_odd32 : subreg_odd);
SDNode *Div = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
dl, NVT,
SDValue(Result, 0),
CurDAG->getTargetConstant(SubRegIdx,
MVT::i32));
ReplaceUses(SDValue(Node, 0), SDValue(Div, 0));
DEBUG(errs().indent(Indent-2) << "=> ";
Result->dump(CurDAG);
errs() << "\n");
}
// Copy the remainder (even subreg) result, if it is needed.
if (!SDValue(Node, 1).use_empty()) {
unsigned SubRegIdx = (is32Bit ? subreg_even32 : subreg_even);
SDNode *Rem = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
dl, NVT,
SDValue(Result, 0),
CurDAG->getTargetConstant(SubRegIdx,
MVT::i32));
ReplaceUses(SDValue(Node, 1), SDValue(Rem, 0));
DEBUG(errs().indent(Indent-2) << "=> ";
Result->dump(CurDAG);
errs() << "\n");
}
#ifndef NDEBUG
Indent -= 2;
#endif
return NULL;
}
case ISD::UDIVREM: {
unsigned Opc, MOpc, ClrOpc;
SDValue N0 = Node->getOperand(0);
SDValue N1 = Node->getOperand(1);
EVT ResVT;
bool is32Bit = false;
switch (NVT.getSimpleVT().SimpleTy) {
default: assert(0 && "Unsupported VT!");
case MVT::i32:
Opc = SystemZ::UDIVREM32r; MOpc = SystemZ::UDIVREM32m;
ClrOpc = SystemZ::MOV64Pr0_even;
ResVT = MVT::v2i32;
is32Bit = true;
break;
case MVT::i64:
Opc = SystemZ::UDIVREM64r; MOpc = SystemZ::UDIVREM64m;
ClrOpc = SystemZ::MOV128r0_even;
ResVT = MVT::v2i64;
break;
}
SDValue Tmp0, Tmp1, Tmp2;
bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2);
// Prepare the dividend
SDNode *Dividend = N0.getNode();
// Insert prepared dividend into suitable 'subreg'
SDNode *Tmp = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
dl, ResVT);
{
unsigned SubRegIdx = (is32Bit ? subreg_odd32 : subreg_odd);
Dividend =
CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, dl, ResVT,
SDValue(Tmp, 0), SDValue(Dividend, 0),
CurDAG->getTargetConstant(SubRegIdx, MVT::i32));
}
// Zero out even subreg
Dividend = CurDAG->getMachineNode(ClrOpc, dl, ResVT, SDValue(Dividend, 0));
SDValue DivVal = SDValue(Dividend, 0);
SDNode *Result;
if (foldedLoad) {
SDValue Ops[] = { DivVal, Tmp0, Tmp1, Tmp2, N1.getOperand(0) };
Result = CurDAG->getMachineNode(MOpc, dl, ResVT, MVT::Other,
Ops, array_lengthof(Ops));
// Update the chain.
ReplaceUses(N1.getValue(1), SDValue(Result, 1));
} else {
Result = CurDAG->getMachineNode(Opc, dl, ResVT, DivVal, N1);
}
// Copy the division (odd subreg) result, if it is needed.
if (!SDValue(Node, 0).use_empty()) {
unsigned SubRegIdx = (is32Bit ? subreg_odd32 : subreg_odd);
SDNode *Div = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
dl, NVT,
SDValue(Result, 0),
CurDAG->getTargetConstant(SubRegIdx,
MVT::i32));
ReplaceUses(SDValue(Node, 0), SDValue(Div, 0));
DEBUG(errs().indent(Indent-2) << "=> ";
Result->dump(CurDAG);
errs() << "\n");
}
// Copy the remainder (even subreg) result, if it is needed.
if (!SDValue(Node, 1).use_empty()) {
unsigned SubRegIdx = (is32Bit ? subreg_even32 : subreg_even);
SDNode *Rem = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
dl, NVT,
SDValue(Result, 0),
CurDAG->getTargetConstant(SubRegIdx,
MVT::i32));
ReplaceUses(SDValue(Node, 1), SDValue(Rem, 0));
DEBUG(errs().indent(Indent-2) << "=> ";
Result->dump(CurDAG);
errs() << "\n");
}
#ifndef NDEBUG
Indent -= 2;
#endif
return NULL;
}
}
// Select the default instruction
SDNode *ResNode = SelectCode(Node);
DEBUG(errs().indent(Indent-2) << "=> ";
if (ResNode == NULL || ResNode == Node)
Node->dump(CurDAG);
else
ResNode->dump(CurDAG);
errs() << "\n";
);
DEBUG(Indent -= 2);
return ResNode;
}