mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-11-17 18:10:31 +00:00
ae03af2663
operand is now at index 2, rather than 3. This fixes the "Invalid child # of SDNode!" failures on PowerPC. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@82942 91177308-0d34-0410-b5e6-96231b3b80d8
5364 lines
214 KiB
C++
5364 lines
214 KiB
C++
//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the PPCISelLowering class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "PPCISelLowering.h"
|
|
#include "PPCMachineFunctionInfo.h"
|
|
#include "PPCPredicates.h"
|
|
#include "PPCTargetMachine.h"
|
|
#include "PPCPerfectShuffle.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/VectorExtras.h"
|
|
#include "llvm/CodeGen/CallingConvLower.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/PseudoSourceValue.h"
|
|
#include "llvm/CodeGen/SelectionDAG.h"
|
|
#include "llvm/CallingConv.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/Intrinsics.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
#include "llvm/Target/TargetLoweringObjectFile.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
using namespace llvm;
|
|
|
|
static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
|
|
CCValAssign::LocInfo &LocInfo,
|
|
ISD::ArgFlagsTy &ArgFlags,
|
|
CCState &State);
|
|
static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, EVT &ValVT,
|
|
EVT &LocVT,
|
|
CCValAssign::LocInfo &LocInfo,
|
|
ISD::ArgFlagsTy &ArgFlags,
|
|
CCState &State);
|
|
static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, EVT &ValVT,
|
|
EVT &LocVT,
|
|
CCValAssign::LocInfo &LocInfo,
|
|
ISD::ArgFlagsTy &ArgFlags,
|
|
CCState &State);
|
|
|
|
static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc",
|
|
cl::desc("enable preincrement load/store generation on PPC (experimental)"),
|
|
cl::Hidden);
|
|
|
|
static TargetLoweringObjectFile *CreateTLOF(const PPCTargetMachine &TM) {
|
|
if (TM.getSubtargetImpl()->isDarwin())
|
|
return new TargetLoweringObjectFileMachO();
|
|
return new TargetLoweringObjectFileELF();
|
|
}
|
|
|
|
|
|
PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
|
|
: TargetLowering(TM, CreateTLOF(TM)), PPCSubTarget(*TM.getSubtargetImpl()) {
|
|
|
|
setPow2DivIsCheap();
|
|
|
|
// Use _setjmp/_longjmp instead of setjmp/longjmp.
|
|
setUseUnderscoreSetJmp(true);
|
|
setUseUnderscoreLongJmp(true);
|
|
|
|
// Set up the register classes.
|
|
addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
|
|
addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
|
|
addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
|
|
|
|
// PowerPC has an i16 but no i8 (or i1) SEXTLOAD
|
|
setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
|
|
setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
|
|
|
|
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
|
|
|
|
// PowerPC has pre-inc load and store's.
|
|
setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
|
|
setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
|
|
setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
|
|
setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
|
|
setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
|
|
setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
|
|
setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
|
|
setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
|
|
setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
|
|
setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
|
|
|
|
// This is used in the ppcf128->int sequence. Note it has different semantics
|
|
// from FP_ROUND: that rounds to nearest, this rounds to zero.
|
|
setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
|
|
|
|
// PowerPC has no SREM/UREM instructions
|
|
setOperationAction(ISD::SREM, MVT::i32, Expand);
|
|
setOperationAction(ISD::UREM, MVT::i32, Expand);
|
|
setOperationAction(ISD::SREM, MVT::i64, Expand);
|
|
setOperationAction(ISD::UREM, MVT::i64, Expand);
|
|
|
|
// Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
|
|
setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
|
|
setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
|
|
setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
|
|
setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
|
|
setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
|
|
setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
|
|
setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
|
|
setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
|
|
|
|
// We don't support sin/cos/sqrt/fmod/pow
|
|
setOperationAction(ISD::FSIN , MVT::f64, Expand);
|
|
setOperationAction(ISD::FCOS , MVT::f64, Expand);
|
|
setOperationAction(ISD::FREM , MVT::f64, Expand);
|
|
setOperationAction(ISD::FPOW , MVT::f64, Expand);
|
|
setOperationAction(ISD::FSIN , MVT::f32, Expand);
|
|
setOperationAction(ISD::FCOS , MVT::f32, Expand);
|
|
setOperationAction(ISD::FREM , MVT::f32, Expand);
|
|
setOperationAction(ISD::FPOW , MVT::f32, Expand);
|
|
|
|
setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
|
|
|
|
// If we're enabling GP optimizations, use hardware square root
|
|
if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
|
|
setOperationAction(ISD::FSQRT, MVT::f64, Expand);
|
|
setOperationAction(ISD::FSQRT, MVT::f32, Expand);
|
|
}
|
|
|
|
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
|
|
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
|
|
|
|
// PowerPC does not have BSWAP, CTPOP or CTTZ
|
|
setOperationAction(ISD::BSWAP, MVT::i32 , Expand);
|
|
setOperationAction(ISD::CTPOP, MVT::i32 , Expand);
|
|
setOperationAction(ISD::CTTZ , MVT::i32 , Expand);
|
|
setOperationAction(ISD::BSWAP, MVT::i64 , Expand);
|
|
setOperationAction(ISD::CTPOP, MVT::i64 , Expand);
|
|
setOperationAction(ISD::CTTZ , MVT::i64 , Expand);
|
|
|
|
// PowerPC does not have ROTR
|
|
setOperationAction(ISD::ROTR, MVT::i32 , Expand);
|
|
setOperationAction(ISD::ROTR, MVT::i64 , Expand);
|
|
|
|
// PowerPC does not have Select
|
|
setOperationAction(ISD::SELECT, MVT::i32, Expand);
|
|
setOperationAction(ISD::SELECT, MVT::i64, Expand);
|
|
setOperationAction(ISD::SELECT, MVT::f32, Expand);
|
|
setOperationAction(ISD::SELECT, MVT::f64, Expand);
|
|
|
|
// PowerPC wants to turn select_cc of FP into fsel when possible.
|
|
setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
|
|
setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
|
|
|
|
// PowerPC wants to optimize integer setcc a bit
|
|
setOperationAction(ISD::SETCC, MVT::i32, Custom);
|
|
|
|
// PowerPC does not have BRCOND which requires SetCC
|
|
setOperationAction(ISD::BRCOND, MVT::Other, Expand);
|
|
|
|
setOperationAction(ISD::BR_JT, MVT::Other, Expand);
|
|
|
|
// PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
|
|
setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
|
|
|
|
// PowerPC does not have [U|S]INT_TO_FP
|
|
setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
|
|
setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
|
|
|
|
setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
|
|
setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
|
|
setOperationAction(ISD::BIT_CONVERT, MVT::i64, Expand);
|
|
setOperationAction(ISD::BIT_CONVERT, MVT::f64, Expand);
|
|
|
|
// We cannot sextinreg(i1). Expand to shifts.
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
|
|
|
|
// Support label based line numbers.
|
|
setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand);
|
|
setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
|
|
|
|
setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
|
|
setOperationAction(ISD::EHSELECTION, MVT::i64, Expand);
|
|
setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
|
|
setOperationAction(ISD::EHSELECTION, MVT::i32, Expand);
|
|
|
|
|
|
// We want to legalize GlobalAddress and ConstantPool nodes into the
|
|
// appropriate instructions to materialize the address.
|
|
setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
|
|
setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
|
|
setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
|
|
setOperationAction(ISD::JumpTable, MVT::i32, Custom);
|
|
setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
|
|
setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
|
|
setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
|
|
setOperationAction(ISD::JumpTable, MVT::i64, Custom);
|
|
|
|
// TRAP is legal.
|
|
setOperationAction(ISD::TRAP, MVT::Other, Legal);
|
|
|
|
// TRAMPOLINE is custom lowered.
|
|
setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
|
|
|
|
// VASTART needs to be custom lowered to use the VarArgsFrameIndex
|
|
setOperationAction(ISD::VASTART , MVT::Other, Custom);
|
|
|
|
// VAARG is custom lowered with the 32-bit SVR4 ABI.
|
|
if ( TM.getSubtarget<PPCSubtarget>().isSVR4ABI()
|
|
&& !TM.getSubtarget<PPCSubtarget>().isPPC64())
|
|
setOperationAction(ISD::VAARG, MVT::Other, Custom);
|
|
else
|
|
setOperationAction(ISD::VAARG, MVT::Other, Expand);
|
|
|
|
// Use the default implementation.
|
|
setOperationAction(ISD::VACOPY , MVT::Other, Expand);
|
|
setOperationAction(ISD::VAEND , MVT::Other, Expand);
|
|
setOperationAction(ISD::STACKSAVE , MVT::Other, Expand);
|
|
setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom);
|
|
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom);
|
|
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom);
|
|
|
|
// We want to custom lower some of our intrinsics.
|
|
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
|
|
|
|
// Comparisons that require checking two conditions.
|
|
setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
|
|
setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
|
|
setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
|
|
setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
|
|
setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
|
|
setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
|
|
setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
|
|
setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
|
|
setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
|
|
setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
|
|
setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
|
|
setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
|
|
|
|
if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
|
|
// They also have instructions for converting between i64 and fp.
|
|
setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
|
|
setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
|
|
setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
|
|
setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
|
|
// This is just the low 32 bits of a (signed) fp->i64 conversion.
|
|
// We cannot do this with Promote because i64 is not a legal type.
|
|
setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
|
|
|
|
// FIXME: disable this lowered code. This generates 64-bit register values,
|
|
// and we don't model the fact that the top part is clobbered by calls. We
|
|
// need to flag these together so that the value isn't live across a call.
|
|
//setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
|
|
} else {
|
|
// PowerPC does not have FP_TO_UINT on 32-bit implementations.
|
|
setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
|
|
}
|
|
|
|
if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
|
|
// 64-bit PowerPC implementations can support i64 types directly
|
|
addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
|
|
// BUILD_PAIR can't be handled natively, and should be expanded to shl/or
|
|
setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
|
|
// 64-bit PowerPC wants to expand i128 shifts itself.
|
|
setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
|
|
setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
|
|
setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
|
|
} else {
|
|
// 32-bit PowerPC wants to expand i64 shifts itself.
|
|
setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
|
|
setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
|
|
setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
|
|
}
|
|
|
|
if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
|
|
// First set operation action for all vector types to expand. Then we
|
|
// will selectively turn on ones that can be effectively codegen'd.
|
|
for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
|
|
i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
|
|
MVT::SimpleValueType VT = (MVT::SimpleValueType)i;
|
|
|
|
// add/sub are legal for all supported vector VT's.
|
|
setOperationAction(ISD::ADD , VT, Legal);
|
|
setOperationAction(ISD::SUB , VT, Legal);
|
|
|
|
// We promote all shuffles to v16i8.
|
|
setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
|
|
AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
|
|
|
|
// We promote all non-typed operations to v4i32.
|
|
setOperationAction(ISD::AND , VT, Promote);
|
|
AddPromotedToType (ISD::AND , VT, MVT::v4i32);
|
|
setOperationAction(ISD::OR , VT, Promote);
|
|
AddPromotedToType (ISD::OR , VT, MVT::v4i32);
|
|
setOperationAction(ISD::XOR , VT, Promote);
|
|
AddPromotedToType (ISD::XOR , VT, MVT::v4i32);
|
|
setOperationAction(ISD::LOAD , VT, Promote);
|
|
AddPromotedToType (ISD::LOAD , VT, MVT::v4i32);
|
|
setOperationAction(ISD::SELECT, VT, Promote);
|
|
AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
|
|
setOperationAction(ISD::STORE, VT, Promote);
|
|
AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
|
|
|
|
// No other operations are legal.
|
|
setOperationAction(ISD::MUL , VT, Expand);
|
|
setOperationAction(ISD::SDIV, VT, Expand);
|
|
setOperationAction(ISD::SREM, VT, Expand);
|
|
setOperationAction(ISD::UDIV, VT, Expand);
|
|
setOperationAction(ISD::UREM, VT, Expand);
|
|
setOperationAction(ISD::FDIV, VT, Expand);
|
|
setOperationAction(ISD::FNEG, VT, Expand);
|
|
setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
|
|
setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
|
|
setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
|
|
setOperationAction(ISD::UMUL_LOHI, VT, Expand);
|
|
setOperationAction(ISD::SMUL_LOHI, VT, Expand);
|
|
setOperationAction(ISD::UDIVREM, VT, Expand);
|
|
setOperationAction(ISD::SDIVREM, VT, Expand);
|
|
setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
|
|
setOperationAction(ISD::FPOW, VT, Expand);
|
|
setOperationAction(ISD::CTPOP, VT, Expand);
|
|
setOperationAction(ISD::CTLZ, VT, Expand);
|
|
setOperationAction(ISD::CTTZ, VT, Expand);
|
|
}
|
|
|
|
// We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
|
|
// with merges, splats, etc.
|
|
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
|
|
|
|
setOperationAction(ISD::AND , MVT::v4i32, Legal);
|
|
setOperationAction(ISD::OR , MVT::v4i32, Legal);
|
|
setOperationAction(ISD::XOR , MVT::v4i32, Legal);
|
|
setOperationAction(ISD::LOAD , MVT::v4i32, Legal);
|
|
setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
|
|
setOperationAction(ISD::STORE , MVT::v4i32, Legal);
|
|
|
|
addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
|
|
addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
|
|
addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
|
|
addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
|
|
|
|
setOperationAction(ISD::MUL, MVT::v4f32, Legal);
|
|
setOperationAction(ISD::MUL, MVT::v4i32, Custom);
|
|
setOperationAction(ISD::MUL, MVT::v8i16, Custom);
|
|
setOperationAction(ISD::MUL, MVT::v16i8, Custom);
|
|
|
|
setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
|
|
setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
|
|
|
|
setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
|
|
setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
|
|
setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
|
|
setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
|
|
}
|
|
|
|
setShiftAmountType(MVT::i32);
|
|
setBooleanContents(ZeroOrOneBooleanContent);
|
|
|
|
if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
|
|
setStackPointerRegisterToSaveRestore(PPC::X1);
|
|
setExceptionPointerRegister(PPC::X3);
|
|
setExceptionSelectorRegister(PPC::X4);
|
|
} else {
|
|
setStackPointerRegisterToSaveRestore(PPC::R1);
|
|
setExceptionPointerRegister(PPC::R3);
|
|
setExceptionSelectorRegister(PPC::R4);
|
|
}
|
|
|
|
// We have target-specific dag combine patterns for the following nodes:
|
|
setTargetDAGCombine(ISD::SINT_TO_FP);
|
|
setTargetDAGCombine(ISD::STORE);
|
|
setTargetDAGCombine(ISD::BR_CC);
|
|
setTargetDAGCombine(ISD::BSWAP);
|
|
|
|
// Darwin long double math library functions have $LDBL128 appended.
|
|
if (TM.getSubtarget<PPCSubtarget>().isDarwin()) {
|
|
setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
|
|
setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
|
|
setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
|
|
setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
|
|
setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
|
|
setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
|
|
setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
|
|
setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
|
|
setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
|
|
setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
|
|
}
|
|
|
|
computeRegisterProperties();
|
|
}
|
|
|
|
/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
|
|
/// function arguments in the caller parameter area.
|
|
unsigned PPCTargetLowering::getByValTypeAlignment(const Type *Ty) const {
|
|
TargetMachine &TM = getTargetMachine();
|
|
// Darwin passes everything on 4 byte boundary.
|
|
if (TM.getSubtarget<PPCSubtarget>().isDarwin())
|
|
return 4;
|
|
// FIXME SVR4 TBD
|
|
return 4;
|
|
}
|
|
|
|
const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
|
|
switch (Opcode) {
|
|
default: return 0;
|
|
case PPCISD::FSEL: return "PPCISD::FSEL";
|
|
case PPCISD::FCFID: return "PPCISD::FCFID";
|
|
case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ";
|
|
case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ";
|
|
case PPCISD::STFIWX: return "PPCISD::STFIWX";
|
|
case PPCISD::VMADDFP: return "PPCISD::VMADDFP";
|
|
case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP";
|
|
case PPCISD::VPERM: return "PPCISD::VPERM";
|
|
case PPCISD::Hi: return "PPCISD::Hi";
|
|
case PPCISD::Lo: return "PPCISD::Lo";
|
|
case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY";
|
|
case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC";
|
|
case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg";
|
|
case PPCISD::SRL: return "PPCISD::SRL";
|
|
case PPCISD::SRA: return "PPCISD::SRA";
|
|
case PPCISD::SHL: return "PPCISD::SHL";
|
|
case PPCISD::EXTSW_32: return "PPCISD::EXTSW_32";
|
|
case PPCISD::STD_32: return "PPCISD::STD_32";
|
|
case PPCISD::CALL_SVR4: return "PPCISD::CALL_SVR4";
|
|
case PPCISD::CALL_Darwin: return "PPCISD::CALL_Darwin";
|
|
case PPCISD::NOP: return "PPCISD::NOP";
|
|
case PPCISD::MTCTR: return "PPCISD::MTCTR";
|
|
case PPCISD::BCTRL_Darwin: return "PPCISD::BCTRL_Darwin";
|
|
case PPCISD::BCTRL_SVR4: return "PPCISD::BCTRL_SVR4";
|
|
case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG";
|
|
case PPCISD::MFCR: return "PPCISD::MFCR";
|
|
case PPCISD::VCMP: return "PPCISD::VCMP";
|
|
case PPCISD::VCMPo: return "PPCISD::VCMPo";
|
|
case PPCISD::LBRX: return "PPCISD::LBRX";
|
|
case PPCISD::STBRX: return "PPCISD::STBRX";
|
|
case PPCISD::LARX: return "PPCISD::LARX";
|
|
case PPCISD::STCX: return "PPCISD::STCX";
|
|
case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH";
|
|
case PPCISD::MFFS: return "PPCISD::MFFS";
|
|
case PPCISD::MTFSB0: return "PPCISD::MTFSB0";
|
|
case PPCISD::MTFSB1: return "PPCISD::MTFSB1";
|
|
case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ";
|
|
case PPCISD::MTFSF: return "PPCISD::MTFSF";
|
|
case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN";
|
|
}
|
|
}
|
|
|
|
MVT::SimpleValueType PPCTargetLowering::getSetCCResultType(EVT VT) const {
|
|
return MVT::i32;
|
|
}
|
|
|
|
/// getFunctionAlignment - Return the Log2 alignment of this function.
|
|
unsigned PPCTargetLowering::getFunctionAlignment(const Function *F) const {
|
|
if (getTargetMachine().getSubtarget<PPCSubtarget>().isDarwin())
|
|
return F->hasFnAttr(Attribute::OptimizeForSize) ? 2 : 4;
|
|
else
|
|
return 2;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Node matching predicates, for use by the tblgen matching code.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
|
|
static bool isFloatingPointZero(SDValue Op) {
|
|
if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
|
|
return CFP->getValueAPF().isZero();
|
|
else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
|
|
// Maybe this has already been legalized into the constant pool?
|
|
if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
|
|
if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
|
|
return CFP->getValueAPF().isZero();
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return
|
|
/// true if Op is undef or if it matches the specified value.
|
|
static bool isConstantOrUndef(int Op, int Val) {
|
|
return Op < 0 || Op == Val;
|
|
}
|
|
|
|
/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
|
|
/// VPKUHUM instruction.
|
|
bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
|
|
if (!isUnary) {
|
|
for (unsigned i = 0; i != 16; ++i)
|
|
if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
|
|
return false;
|
|
} else {
|
|
for (unsigned i = 0; i != 8; ++i)
|
|
if (!isConstantOrUndef(N->getMaskElt(i), i*2+1) ||
|
|
!isConstantOrUndef(N->getMaskElt(i+8), i*2+1))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
|
|
/// VPKUWUM instruction.
|
|
bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
|
|
if (!isUnary) {
|
|
for (unsigned i = 0; i != 16; i += 2)
|
|
if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) ||
|
|
!isConstantOrUndef(N->getMaskElt(i+1), i*2+3))
|
|
return false;
|
|
} else {
|
|
for (unsigned i = 0; i != 8; i += 2)
|
|
if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) ||
|
|
!isConstantOrUndef(N->getMaskElt(i+1), i*2+3) ||
|
|
!isConstantOrUndef(N->getMaskElt(i+8), i*2+2) ||
|
|
!isConstantOrUndef(N->getMaskElt(i+9), i*2+3))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// isVMerge - Common function, used to match vmrg* shuffles.
|
|
///
|
|
static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
|
|
unsigned LHSStart, unsigned RHSStart) {
|
|
assert(N->getValueType(0) == MVT::v16i8 &&
|
|
"PPC only supports shuffles by bytes!");
|
|
assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
|
|
"Unsupported merge size!");
|
|
|
|
for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units
|
|
for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit
|
|
if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
|
|
LHSStart+j+i*UnitSize) ||
|
|
!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
|
|
RHSStart+j+i*UnitSize))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
|
|
/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
|
|
bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
|
|
bool isUnary) {
|
|
if (!isUnary)
|
|
return isVMerge(N, UnitSize, 8, 24);
|
|
return isVMerge(N, UnitSize, 8, 8);
|
|
}
|
|
|
|
/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
|
|
/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
|
|
bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
|
|
bool isUnary) {
|
|
if (!isUnary)
|
|
return isVMerge(N, UnitSize, 0, 16);
|
|
return isVMerge(N, UnitSize, 0, 0);
|
|
}
|
|
|
|
|
|
/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
|
|
/// amount, otherwise return -1.
|
|
int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
|
|
assert(N->getValueType(0) == MVT::v16i8 &&
|
|
"PPC only supports shuffles by bytes!");
|
|
|
|
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
|
|
|
|
// Find the first non-undef value in the shuffle mask.
|
|
unsigned i;
|
|
for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
|
|
/*search*/;
|
|
|
|
if (i == 16) return -1; // all undef.
|
|
|
|
// Otherwise, check to see if the rest of the elements are consecutively
|
|
// numbered from this value.
|
|
unsigned ShiftAmt = SVOp->getMaskElt(i);
|
|
if (ShiftAmt < i) return -1;
|
|
ShiftAmt -= i;
|
|
|
|
if (!isUnary) {
|
|
// Check the rest of the elements to see if they are consecutive.
|
|
for (++i; i != 16; ++i)
|
|
if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
|
|
return -1;
|
|
} else {
|
|
// Check the rest of the elements to see if they are consecutive.
|
|
for (++i; i != 16; ++i)
|
|
if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
|
|
return -1;
|
|
}
|
|
return ShiftAmt;
|
|
}
|
|
|
|
/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
|
|
/// specifies a splat of a single element that is suitable for input to
|
|
/// VSPLTB/VSPLTH/VSPLTW.
|
|
bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
|
|
assert(N->getValueType(0) == MVT::v16i8 &&
|
|
(EltSize == 1 || EltSize == 2 || EltSize == 4));
|
|
|
|
// This is a splat operation if each element of the permute is the same, and
|
|
// if the value doesn't reference the second vector.
|
|
unsigned ElementBase = N->getMaskElt(0);
|
|
|
|
// FIXME: Handle UNDEF elements too!
|
|
if (ElementBase >= 16)
|
|
return false;
|
|
|
|
// Check that the indices are consecutive, in the case of a multi-byte element
|
|
// splatted with a v16i8 mask.
|
|
for (unsigned i = 1; i != EltSize; ++i)
|
|
if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
|
|
return false;
|
|
|
|
for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
|
|
if (N->getMaskElt(i) < 0) continue;
|
|
for (unsigned j = 0; j != EltSize; ++j)
|
|
if (N->getMaskElt(i+j) != N->getMaskElt(j))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// isAllNegativeZeroVector - Returns true if all elements of build_vector
|
|
/// are -0.0.
|
|
bool PPC::isAllNegativeZeroVector(SDNode *N) {
|
|
BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N);
|
|
|
|
APInt APVal, APUndef;
|
|
unsigned BitSize;
|
|
bool HasAnyUndefs;
|
|
|
|
if (BV->isConstantSplat(APVal, APUndef, BitSize, HasAnyUndefs, 32))
|
|
if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
|
|
return CFP->getValueAPF().isNegZero();
|
|
|
|
return false;
|
|
}
|
|
|
|
/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
|
|
/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
|
|
unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
|
|
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
|
|
assert(isSplatShuffleMask(SVOp, EltSize));
|
|
return SVOp->getMaskElt(0) / EltSize;
|
|
}
|
|
|
|
/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
|
|
/// by using a vspltis[bhw] instruction of the specified element size, return
|
|
/// the constant being splatted. The ByteSize field indicates the number of
|
|
/// bytes of each element [124] -> [bhw].
|
|
SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
|
|
SDValue OpVal(0, 0);
|
|
|
|
// If ByteSize of the splat is bigger than the element size of the
|
|
// build_vector, then we have a case where we are checking for a splat where
|
|
// multiple elements of the buildvector are folded together into a single
|
|
// logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
|
|
unsigned EltSize = 16/N->getNumOperands();
|
|
if (EltSize < ByteSize) {
|
|
unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval.
|
|
SDValue UniquedVals[4];
|
|
assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
|
|
|
|
// See if all of the elements in the buildvector agree across.
|
|
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
|
|
if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
|
|
// If the element isn't a constant, bail fully out.
|
|
if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
|
|
|
|
|
|
if (UniquedVals[i&(Multiple-1)].getNode() == 0)
|
|
UniquedVals[i&(Multiple-1)] = N->getOperand(i);
|
|
else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
|
|
return SDValue(); // no match.
|
|
}
|
|
|
|
// Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
|
|
// either constant or undef values that are identical for each chunk. See
|
|
// if these chunks can form into a larger vspltis*.
|
|
|
|
// Check to see if all of the leading entries are either 0 or -1. If
|
|
// neither, then this won't fit into the immediate field.
|
|
bool LeadingZero = true;
|
|
bool LeadingOnes = true;
|
|
for (unsigned i = 0; i != Multiple-1; ++i) {
|
|
if (UniquedVals[i].getNode() == 0) continue; // Must have been undefs.
|
|
|
|
LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
|
|
LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
|
|
}
|
|
// Finally, check the least significant entry.
|
|
if (LeadingZero) {
|
|
if (UniquedVals[Multiple-1].getNode() == 0)
|
|
return DAG.getTargetConstant(0, MVT::i32); // 0,0,0,undef
|
|
int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
|
|
if (Val < 16)
|
|
return DAG.getTargetConstant(Val, MVT::i32); // 0,0,0,4 -> vspltisw(4)
|
|
}
|
|
if (LeadingOnes) {
|
|
if (UniquedVals[Multiple-1].getNode() == 0)
|
|
return DAG.getTargetConstant(~0U, MVT::i32); // -1,-1,-1,undef
|
|
int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
|
|
if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2)
|
|
return DAG.getTargetConstant(Val, MVT::i32);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
// Check to see if this buildvec has a single non-undef value in its elements.
|
|
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
|
|
if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
|
|
if (OpVal.getNode() == 0)
|
|
OpVal = N->getOperand(i);
|
|
else if (OpVal != N->getOperand(i))
|
|
return SDValue();
|
|
}
|
|
|
|
if (OpVal.getNode() == 0) return SDValue(); // All UNDEF: use implicit def.
|
|
|
|
unsigned ValSizeInBytes = EltSize;
|
|
uint64_t Value = 0;
|
|
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
|
|
Value = CN->getZExtValue();
|
|
} else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
|
|
assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
|
|
Value = FloatToBits(CN->getValueAPF().convertToFloat());
|
|
}
|
|
|
|
// If the splat value is larger than the element value, then we can never do
|
|
// this splat. The only case that we could fit the replicated bits into our
|
|
// immediate field for would be zero, and we prefer to use vxor for it.
|
|
if (ValSizeInBytes < ByteSize) return SDValue();
|
|
|
|
// If the element value is larger than the splat value, cut it in half and
|
|
// check to see if the two halves are equal. Continue doing this until we
|
|
// get to ByteSize. This allows us to handle 0x01010101 as 0x01.
|
|
while (ValSizeInBytes > ByteSize) {
|
|
ValSizeInBytes >>= 1;
|
|
|
|
// If the top half equals the bottom half, we're still ok.
|
|
if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
|
|
(Value & ((1 << (8*ValSizeInBytes))-1)))
|
|
return SDValue();
|
|
}
|
|
|
|
// Properly sign extend the value.
|
|
int ShAmt = (4-ByteSize)*8;
|
|
int MaskVal = ((int)Value << ShAmt) >> ShAmt;
|
|
|
|
// If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
|
|
if (MaskVal == 0) return SDValue();
|
|
|
|
// Finally, if this value fits in a 5 bit sext field, return it
|
|
if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
|
|
return DAG.getTargetConstant(MaskVal, MVT::i32);
|
|
return SDValue();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Addressing Mode Selection
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
|
|
/// or 64-bit immediate, and if the value can be accurately represented as a
|
|
/// sign extension from a 16-bit value. If so, this returns true and the
|
|
/// immediate.
|
|
static bool isIntS16Immediate(SDNode *N, short &Imm) {
|
|
if (N->getOpcode() != ISD::Constant)
|
|
return false;
|
|
|
|
Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
|
|
if (N->getValueType(0) == MVT::i32)
|
|
return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
|
|
else
|
|
return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
|
|
}
|
|
static bool isIntS16Immediate(SDValue Op, short &Imm) {
|
|
return isIntS16Immediate(Op.getNode(), Imm);
|
|
}
|
|
|
|
|
|
/// SelectAddressRegReg - Given the specified addressed, check to see if it
|
|
/// can be represented as an indexed [r+r] operation. Returns false if it
|
|
/// can be more efficiently represented with [r+imm].
|
|
bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
|
|
SDValue &Index,
|
|
SelectionDAG &DAG) const {
|
|
short imm = 0;
|
|
if (N.getOpcode() == ISD::ADD) {
|
|
if (isIntS16Immediate(N.getOperand(1), imm))
|
|
return false; // r+i
|
|
if (N.getOperand(1).getOpcode() == PPCISD::Lo)
|
|
return false; // r+i
|
|
|
|
Base = N.getOperand(0);
|
|
Index = N.getOperand(1);
|
|
return true;
|
|
} else if (N.getOpcode() == ISD::OR) {
|
|
if (isIntS16Immediate(N.getOperand(1), imm))
|
|
return false; // r+i can fold it if we can.
|
|
|
|
// If this is an or of disjoint bitfields, we can codegen this as an add
|
|
// (for better address arithmetic) if the LHS and RHS of the OR are provably
|
|
// disjoint.
|
|
APInt LHSKnownZero, LHSKnownOne;
|
|
APInt RHSKnownZero, RHSKnownOne;
|
|
DAG.ComputeMaskedBits(N.getOperand(0),
|
|
APInt::getAllOnesValue(N.getOperand(0)
|
|
.getValueSizeInBits()),
|
|
LHSKnownZero, LHSKnownOne);
|
|
|
|
if (LHSKnownZero.getBoolValue()) {
|
|
DAG.ComputeMaskedBits(N.getOperand(1),
|
|
APInt::getAllOnesValue(N.getOperand(1)
|
|
.getValueSizeInBits()),
|
|
RHSKnownZero, RHSKnownOne);
|
|
// If all of the bits are known zero on the LHS or RHS, the add won't
|
|
// carry.
|
|
if (~(LHSKnownZero | RHSKnownZero) == 0) {
|
|
Base = N.getOperand(0);
|
|
Index = N.getOperand(1);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Returns true if the address N can be represented by a base register plus
|
|
/// a signed 16-bit displacement [r+imm], and if it is not better
|
|
/// represented as reg+reg.
|
|
bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
|
|
SDValue &Base,
|
|
SelectionDAG &DAG) const {
|
|
// FIXME dl should come from parent load or store, not from address
|
|
DebugLoc dl = N.getDebugLoc();
|
|
// If this can be more profitably realized as r+r, fail.
|
|
if (SelectAddressRegReg(N, Disp, Base, DAG))
|
|
return false;
|
|
|
|
if (N.getOpcode() == ISD::ADD) {
|
|
short imm = 0;
|
|
if (isIntS16Immediate(N.getOperand(1), imm)) {
|
|
Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
|
|
if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
|
|
Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
|
|
} else {
|
|
Base = N.getOperand(0);
|
|
}
|
|
return true; // [r+i]
|
|
} else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
|
|
// Match LOAD (ADD (X, Lo(G))).
|
|
assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
|
|
&& "Cannot handle constant offsets yet!");
|
|
Disp = N.getOperand(1).getOperand(0); // The global address.
|
|
assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
|
|
Disp.getOpcode() == ISD::TargetConstantPool ||
|
|
Disp.getOpcode() == ISD::TargetJumpTable);
|
|
Base = N.getOperand(0);
|
|
return true; // [&g+r]
|
|
}
|
|
} else if (N.getOpcode() == ISD::OR) {
|
|
short imm = 0;
|
|
if (isIntS16Immediate(N.getOperand(1), imm)) {
|
|
// If this is an or of disjoint bitfields, we can codegen this as an add
|
|
// (for better address arithmetic) if the LHS and RHS of the OR are
|
|
// provably disjoint.
|
|
APInt LHSKnownZero, LHSKnownOne;
|
|
DAG.ComputeMaskedBits(N.getOperand(0),
|
|
APInt::getAllOnesValue(N.getOperand(0)
|
|
.getValueSizeInBits()),
|
|
LHSKnownZero, LHSKnownOne);
|
|
|
|
if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
|
|
// If all of the bits are known zero on the LHS or RHS, the add won't
|
|
// carry.
|
|
Base = N.getOperand(0);
|
|
Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
|
|
return true;
|
|
}
|
|
}
|
|
} else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
|
|
// Loading from a constant address.
|
|
|
|
// If this address fits entirely in a 16-bit sext immediate field, codegen
|
|
// this as "d, 0"
|
|
short Imm;
|
|
if (isIntS16Immediate(CN, Imm)) {
|
|
Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
|
|
Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
|
|
return true;
|
|
}
|
|
|
|
// Handle 32-bit sext immediates with LIS + addr mode.
|
|
if (CN->getValueType(0) == MVT::i32 ||
|
|
(int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
|
|
int Addr = (int)CN->getZExtValue();
|
|
|
|
// Otherwise, break this down into an LIS + disp.
|
|
Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
|
|
|
|
Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
|
|
unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
|
|
Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
Disp = DAG.getTargetConstant(0, getPointerTy());
|
|
if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
|
|
Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
|
|
else
|
|
Base = N;
|
|
return true; // [r+0]
|
|
}
|
|
|
|
/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
|
|
/// represented as an indexed [r+r] operation.
|
|
bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
|
|
SDValue &Index,
|
|
SelectionDAG &DAG) const {
|
|
// Check to see if we can easily represent this as an [r+r] address. This
|
|
// will fail if it thinks that the address is more profitably represented as
|
|
// reg+imm, e.g. where imm = 0.
|
|
if (SelectAddressRegReg(N, Base, Index, DAG))
|
|
return true;
|
|
|
|
// If the operand is an addition, always emit this as [r+r], since this is
|
|
// better (for code size, and execution, as the memop does the add for free)
|
|
// than emitting an explicit add.
|
|
if (N.getOpcode() == ISD::ADD) {
|
|
Base = N.getOperand(0);
|
|
Index = N.getOperand(1);
|
|
return true;
|
|
}
|
|
|
|
// Otherwise, do it the hard way, using R0 as the base register.
|
|
Base = DAG.getRegister(PPC::R0, N.getValueType());
|
|
Index = N;
|
|
return true;
|
|
}
|
|
|
|
/// SelectAddressRegImmShift - Returns true if the address N can be
|
|
/// represented by a base register plus a signed 14-bit displacement
|
|
/// [r+imm*4]. Suitable for use by STD and friends.
|
|
bool PPCTargetLowering::SelectAddressRegImmShift(SDValue N, SDValue &Disp,
|
|
SDValue &Base,
|
|
SelectionDAG &DAG) const {
|
|
// FIXME dl should come from the parent load or store, not the address
|
|
DebugLoc dl = N.getDebugLoc();
|
|
// If this can be more profitably realized as r+r, fail.
|
|
if (SelectAddressRegReg(N, Disp, Base, DAG))
|
|
return false;
|
|
|
|
if (N.getOpcode() == ISD::ADD) {
|
|
short imm = 0;
|
|
if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
|
|
Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
|
|
if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
|
|
Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
|
|
} else {
|
|
Base = N.getOperand(0);
|
|
}
|
|
return true; // [r+i]
|
|
} else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
|
|
// Match LOAD (ADD (X, Lo(G))).
|
|
assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
|
|
&& "Cannot handle constant offsets yet!");
|
|
Disp = N.getOperand(1).getOperand(0); // The global address.
|
|
assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
|
|
Disp.getOpcode() == ISD::TargetConstantPool ||
|
|
Disp.getOpcode() == ISD::TargetJumpTable);
|
|
Base = N.getOperand(0);
|
|
return true; // [&g+r]
|
|
}
|
|
} else if (N.getOpcode() == ISD::OR) {
|
|
short imm = 0;
|
|
if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
|
|
// If this is an or of disjoint bitfields, we can codegen this as an add
|
|
// (for better address arithmetic) if the LHS and RHS of the OR are
|
|
// provably disjoint.
|
|
APInt LHSKnownZero, LHSKnownOne;
|
|
DAG.ComputeMaskedBits(N.getOperand(0),
|
|
APInt::getAllOnesValue(N.getOperand(0)
|
|
.getValueSizeInBits()),
|
|
LHSKnownZero, LHSKnownOne);
|
|
if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
|
|
// If all of the bits are known zero on the LHS or RHS, the add won't
|
|
// carry.
|
|
Base = N.getOperand(0);
|
|
Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
|
|
return true;
|
|
}
|
|
}
|
|
} else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
|
|
// Loading from a constant address. Verify low two bits are clear.
|
|
if ((CN->getZExtValue() & 3) == 0) {
|
|
// If this address fits entirely in a 14-bit sext immediate field, codegen
|
|
// this as "d, 0"
|
|
short Imm;
|
|
if (isIntS16Immediate(CN, Imm)) {
|
|
Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
|
|
Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
|
|
return true;
|
|
}
|
|
|
|
// Fold the low-part of 32-bit absolute addresses into addr mode.
|
|
if (CN->getValueType(0) == MVT::i32 ||
|
|
(int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
|
|
int Addr = (int)CN->getZExtValue();
|
|
|
|
// Otherwise, break this down into an LIS + disp.
|
|
Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
|
|
Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
|
|
unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
|
|
Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base),0);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
Disp = DAG.getTargetConstant(0, getPointerTy());
|
|
if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
|
|
Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
|
|
else
|
|
Base = N;
|
|
return true; // [r+0]
|
|
}
|
|
|
|
|
|
/// getPreIndexedAddressParts - returns true by value, base pointer and
|
|
/// offset pointer and addressing mode by reference if the node's address
|
|
/// can be legally represented as pre-indexed load / store address.
|
|
bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
|
|
SDValue &Offset,
|
|
ISD::MemIndexedMode &AM,
|
|
SelectionDAG &DAG) const {
|
|
// Disabled by default for now.
|
|
if (!EnablePPCPreinc) return false;
|
|
|
|
SDValue Ptr;
|
|
EVT VT;
|
|
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
|
|
Ptr = LD->getBasePtr();
|
|
VT = LD->getMemoryVT();
|
|
|
|
} else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
|
|
ST = ST;
|
|
Ptr = ST->getBasePtr();
|
|
VT = ST->getMemoryVT();
|
|
} else
|
|
return false;
|
|
|
|
// PowerPC doesn't have preinc load/store instructions for vectors.
|
|
if (VT.isVector())
|
|
return false;
|
|
|
|
// TODO: Check reg+reg first.
|
|
|
|
// LDU/STU use reg+imm*4, others use reg+imm.
|
|
if (VT != MVT::i64) {
|
|
// reg + imm
|
|
if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
|
|
return false;
|
|
} else {
|
|
// reg + imm * 4.
|
|
if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
|
|
return false;
|
|
}
|
|
|
|
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
|
|
// PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of
|
|
// sext i32 to i64 when addr mode is r+i.
|
|
if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
|
|
LD->getExtensionType() == ISD::SEXTLOAD &&
|
|
isa<ConstantSDNode>(Offset))
|
|
return false;
|
|
}
|
|
|
|
AM = ISD::PRE_INC;
|
|
return true;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// LowerOperation implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
|
|
SelectionDAG &DAG) {
|
|
EVT PtrVT = Op.getValueType();
|
|
ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
|
|
Constant *C = CP->getConstVal();
|
|
SDValue CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment());
|
|
SDValue Zero = DAG.getConstant(0, PtrVT);
|
|
// FIXME there isn't really any debug info here
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
|
|
const TargetMachine &TM = DAG.getTarget();
|
|
|
|
SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, CPI, Zero);
|
|
SDValue Lo = DAG.getNode(PPCISD::Lo, dl, PtrVT, CPI, Zero);
|
|
|
|
// If this is a non-darwin platform, we don't support non-static relo models
|
|
// yet.
|
|
if (TM.getRelocationModel() == Reloc::Static ||
|
|
!TM.getSubtarget<PPCSubtarget>().isDarwin()) {
|
|
// Generate non-pic code that has direct accesses to the constant pool.
|
|
// The address of the global is just (hi(&g)+lo(&g)).
|
|
return DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
|
|
}
|
|
|
|
if (TM.getRelocationModel() == Reloc::PIC_) {
|
|
// With PIC, the first instruction is actually "GR+hi(&G)".
|
|
Hi = DAG.getNode(ISD::ADD, dl, PtrVT,
|
|
DAG.getNode(PPCISD::GlobalBaseReg,
|
|
DebugLoc::getUnknownLoc(), PtrVT), Hi);
|
|
}
|
|
|
|
Lo = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
|
|
return Lo;
|
|
}
|
|
|
|
SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) {
|
|
EVT PtrVT = Op.getValueType();
|
|
JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
|
|
SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
|
|
SDValue Zero = DAG.getConstant(0, PtrVT);
|
|
// FIXME there isn't really any debug loc here
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
|
|
const TargetMachine &TM = DAG.getTarget();
|
|
|
|
SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, JTI, Zero);
|
|
SDValue Lo = DAG.getNode(PPCISD::Lo, dl, PtrVT, JTI, Zero);
|
|
|
|
// If this is a non-darwin platform, we don't support non-static relo models
|
|
// yet.
|
|
if (TM.getRelocationModel() == Reloc::Static ||
|
|
!TM.getSubtarget<PPCSubtarget>().isDarwin()) {
|
|
// Generate non-pic code that has direct accesses to the constant pool.
|
|
// The address of the global is just (hi(&g)+lo(&g)).
|
|
return DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
|
|
}
|
|
|
|
if (TM.getRelocationModel() == Reloc::PIC_) {
|
|
// With PIC, the first instruction is actually "GR+hi(&G)".
|
|
Hi = DAG.getNode(ISD::ADD, dl, PtrVT,
|
|
DAG.getNode(PPCISD::GlobalBaseReg,
|
|
DebugLoc::getUnknownLoc(), PtrVT), Hi);
|
|
}
|
|
|
|
Lo = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
|
|
return Lo;
|
|
}
|
|
|
|
SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
|
|
SelectionDAG &DAG) {
|
|
llvm_unreachable("TLS not implemented for PPC.");
|
|
return SDValue(); // Not reached
|
|
}
|
|
|
|
SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
|
|
SelectionDAG &DAG) {
|
|
EVT PtrVT = Op.getValueType();
|
|
GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
|
|
GlobalValue *GV = GSDN->getGlobal();
|
|
SDValue GA = DAG.getTargetGlobalAddress(GV, PtrVT, GSDN->getOffset());
|
|
SDValue Zero = DAG.getConstant(0, PtrVT);
|
|
// FIXME there isn't really any debug info here
|
|
DebugLoc dl = GSDN->getDebugLoc();
|
|
|
|
const TargetMachine &TM = DAG.getTarget();
|
|
|
|
// 64-bit SVR4 ABI code is always position-independent.
|
|
// The actual address of the GlobalValue is stored in the TOC.
|
|
if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
|
|
return DAG.getNode(PPCISD::TOC_ENTRY, dl, MVT::i64, GA,
|
|
DAG.getRegister(PPC::X2, MVT::i64));
|
|
}
|
|
|
|
SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, GA, Zero);
|
|
SDValue Lo = DAG.getNode(PPCISD::Lo, dl, PtrVT, GA, Zero);
|
|
|
|
// If this is a non-darwin platform, we don't support non-static relo models
|
|
// yet.
|
|
if (TM.getRelocationModel() == Reloc::Static ||
|
|
!TM.getSubtarget<PPCSubtarget>().isDarwin()) {
|
|
// Generate non-pic code that has direct accesses to globals.
|
|
// The address of the global is just (hi(&g)+lo(&g)).
|
|
return DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
|
|
}
|
|
|
|
if (TM.getRelocationModel() == Reloc::PIC_) {
|
|
// With PIC, the first instruction is actually "GR+hi(&G)".
|
|
Hi = DAG.getNode(ISD::ADD, dl, PtrVT,
|
|
DAG.getNode(PPCISD::GlobalBaseReg,
|
|
DebugLoc::getUnknownLoc(), PtrVT), Hi);
|
|
}
|
|
|
|
Lo = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
|
|
|
|
if (!TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV, TM))
|
|
return Lo;
|
|
|
|
// If the global is weak or external, we have to go through the lazy
|
|
// resolution stub.
|
|
return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Lo, NULL, 0);
|
|
}
|
|
|
|
SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) {
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
|
|
// If we're comparing for equality to zero, expose the fact that this is
|
|
// implented as a ctlz/srl pair on ppc, so that the dag combiner can
|
|
// fold the new nodes.
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
|
|
if (C->isNullValue() && CC == ISD::SETEQ) {
|
|
EVT VT = Op.getOperand(0).getValueType();
|
|
SDValue Zext = Op.getOperand(0);
|
|
if (VT.bitsLT(MVT::i32)) {
|
|
VT = MVT::i32;
|
|
Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
|
|
}
|
|
unsigned Log2b = Log2_32(VT.getSizeInBits());
|
|
SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
|
|
SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
|
|
DAG.getConstant(Log2b, MVT::i32));
|
|
return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
|
|
}
|
|
// Leave comparisons against 0 and -1 alone for now, since they're usually
|
|
// optimized. FIXME: revisit this when we can custom lower all setcc
|
|
// optimizations.
|
|
if (C->isAllOnesValue() || C->isNullValue())
|
|
return SDValue();
|
|
}
|
|
|
|
// If we have an integer seteq/setne, turn it into a compare against zero
|
|
// by xor'ing the rhs with the lhs, which is faster than setting a
|
|
// condition register, reading it back out, and masking the correct bit. The
|
|
// normal approach here uses sub to do this instead of xor. Using xor exposes
|
|
// the result to other bit-twiddling opportunities.
|
|
EVT LHSVT = Op.getOperand(0).getValueType();
|
|
if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
|
|
EVT VT = Op.getValueType();
|
|
SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
|
|
Op.getOperand(1));
|
|
return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC);
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
|
|
int VarArgsFrameIndex,
|
|
int VarArgsStackOffset,
|
|
unsigned VarArgsNumGPR,
|
|
unsigned VarArgsNumFPR,
|
|
const PPCSubtarget &Subtarget) {
|
|
|
|
llvm_unreachable("VAARG not yet implemented for the SVR4 ABI!");
|
|
return SDValue(); // Not reached
|
|
}
|
|
|
|
SDValue PPCTargetLowering::LowerTRAMPOLINE(SDValue Op, SelectionDAG &DAG) {
|
|
SDValue Chain = Op.getOperand(0);
|
|
SDValue Trmp = Op.getOperand(1); // trampoline
|
|
SDValue FPtr = Op.getOperand(2); // nested function
|
|
SDValue Nest = Op.getOperand(3); // 'nest' parameter value
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
|
|
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
|
|
bool isPPC64 = (PtrVT == MVT::i64);
|
|
const Type *IntPtrTy =
|
|
DAG.getTargetLoweringInfo().getTargetData()->getIntPtrType(
|
|
*DAG.getContext());
|
|
|
|
TargetLowering::ArgListTy Args;
|
|
TargetLowering::ArgListEntry Entry;
|
|
|
|
Entry.Ty = IntPtrTy;
|
|
Entry.Node = Trmp; Args.push_back(Entry);
|
|
|
|
// TrampSize == (isPPC64 ? 48 : 40);
|
|
Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40,
|
|
isPPC64 ? MVT::i64 : MVT::i32);
|
|
Args.push_back(Entry);
|
|
|
|
Entry.Node = FPtr; Args.push_back(Entry);
|
|
Entry.Node = Nest; Args.push_back(Entry);
|
|
|
|
// Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
|
|
std::pair<SDValue, SDValue> CallResult =
|
|
LowerCallTo(Chain, Op.getValueType().getTypeForEVT(*DAG.getContext()),
|
|
false, false, false, false, 0, CallingConv::C, false,
|
|
/*isReturnValueUsed=*/true,
|
|
DAG.getExternalSymbol("__trampoline_setup", PtrVT),
|
|
Args, DAG, dl);
|
|
|
|
SDValue Ops[] =
|
|
{ CallResult.first, CallResult.second };
|
|
|
|
return DAG.getMergeValues(Ops, 2, dl);
|
|
}
|
|
|
|
SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
|
|
int VarArgsFrameIndex,
|
|
int VarArgsStackOffset,
|
|
unsigned VarArgsNumGPR,
|
|
unsigned VarArgsNumFPR,
|
|
const PPCSubtarget &Subtarget) {
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
|
|
if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
|
|
// vastart just stores the address of the VarArgsFrameIndex slot into the
|
|
// memory location argument.
|
|
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
|
|
SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
|
|
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
|
|
return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0);
|
|
}
|
|
|
|
// For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
|
|
// We suppose the given va_list is already allocated.
|
|
//
|
|
// typedef struct {
|
|
// char gpr; /* index into the array of 8 GPRs
|
|
// * stored in the register save area
|
|
// * gpr=0 corresponds to r3,
|
|
// * gpr=1 to r4, etc.
|
|
// */
|
|
// char fpr; /* index into the array of 8 FPRs
|
|
// * stored in the register save area
|
|
// * fpr=0 corresponds to f1,
|
|
// * fpr=1 to f2, etc.
|
|
// */
|
|
// char *overflow_arg_area;
|
|
// /* location on stack that holds
|
|
// * the next overflow argument
|
|
// */
|
|
// char *reg_save_area;
|
|
// /* where r3:r10 and f1:f8 (if saved)
|
|
// * are stored
|
|
// */
|
|
// } va_list[1];
|
|
|
|
|
|
SDValue ArgGPR = DAG.getConstant(VarArgsNumGPR, MVT::i32);
|
|
SDValue ArgFPR = DAG.getConstant(VarArgsNumFPR, MVT::i32);
|
|
|
|
|
|
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
|
|
|
|
SDValue StackOffsetFI = DAG.getFrameIndex(VarArgsStackOffset, PtrVT);
|
|
SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
|
|
|
|
uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
|
|
SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
|
|
|
|
uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
|
|
SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
|
|
|
|
uint64_t FPROffset = 1;
|
|
SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
|
|
|
|
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
|
|
|
|
// Store first byte : number of int regs
|
|
SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR,
|
|
Op.getOperand(1), SV, 0, MVT::i8);
|
|
uint64_t nextOffset = FPROffset;
|
|
SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
|
|
ConstFPROffset);
|
|
|
|
// Store second byte : number of float regs
|
|
SDValue secondStore =
|
|
DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, SV, nextOffset, MVT::i8);
|
|
nextOffset += StackOffset;
|
|
nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
|
|
|
|
// Store second word : arguments given on stack
|
|
SDValue thirdStore =
|
|
DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, SV, nextOffset);
|
|
nextOffset += FrameOffset;
|
|
nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
|
|
|
|
// Store third word : arguments given in registers
|
|
return DAG.getStore(thirdStore, dl, FR, nextPtr, SV, nextOffset);
|
|
|
|
}
|
|
|
|
#include "PPCGenCallingConv.inc"
|
|
|
|
static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
|
|
CCValAssign::LocInfo &LocInfo,
|
|
ISD::ArgFlagsTy &ArgFlags,
|
|
CCState &State) {
|
|
return true;
|
|
}
|
|
|
|
static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, EVT &ValVT,
|
|
EVT &LocVT,
|
|
CCValAssign::LocInfo &LocInfo,
|
|
ISD::ArgFlagsTy &ArgFlags,
|
|
CCState &State) {
|
|
static const unsigned ArgRegs[] = {
|
|
PPC::R3, PPC::R4, PPC::R5, PPC::R6,
|
|
PPC::R7, PPC::R8, PPC::R9, PPC::R10,
|
|
};
|
|
const unsigned NumArgRegs = array_lengthof(ArgRegs);
|
|
|
|
unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
|
|
|
|
// Skip one register if the first unallocated register has an even register
|
|
// number and there are still argument registers available which have not been
|
|
// allocated yet. RegNum is actually an index into ArgRegs, which means we
|
|
// need to skip a register if RegNum is odd.
|
|
if (RegNum != NumArgRegs && RegNum % 2 == 1) {
|
|
State.AllocateReg(ArgRegs[RegNum]);
|
|
}
|
|
|
|
// Always return false here, as this function only makes sure that the first
|
|
// unallocated register has an odd register number and does not actually
|
|
// allocate a register for the current argument.
|
|
return false;
|
|
}
|
|
|
|
static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, EVT &ValVT,
|
|
EVT &LocVT,
|
|
CCValAssign::LocInfo &LocInfo,
|
|
ISD::ArgFlagsTy &ArgFlags,
|
|
CCState &State) {
|
|
static const unsigned ArgRegs[] = {
|
|
PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
|
|
PPC::F8
|
|
};
|
|
|
|
const unsigned NumArgRegs = array_lengthof(ArgRegs);
|
|
|
|
unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
|
|
|
|
// If there is only one Floating-point register left we need to put both f64
|
|
// values of a split ppc_fp128 value on the stack.
|
|
if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
|
|
State.AllocateReg(ArgRegs[RegNum]);
|
|
}
|
|
|
|
// Always return false here, as this function only makes sure that the two f64
|
|
// values a ppc_fp128 value is split into are both passed in registers or both
|
|
// passed on the stack and does not actually allocate a register for the
|
|
// current argument.
|
|
return false;
|
|
}
|
|
|
|
/// GetFPR - Get the set of FP registers that should be allocated for arguments,
|
|
/// on Darwin.
|
|
static const unsigned *GetFPR() {
|
|
static const unsigned FPR[] = {
|
|
PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
|
|
PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
|
|
};
|
|
|
|
return FPR;
|
|
}
|
|
|
|
/// CalculateStackSlotSize - Calculates the size reserved for this argument on
|
|
/// the stack.
|
|
static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
|
|
unsigned PtrByteSize) {
|
|
unsigned ArgSize = ArgVT.getSizeInBits()/8;
|
|
if (Flags.isByVal())
|
|
ArgSize = Flags.getByValSize();
|
|
ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
|
|
|
|
return ArgSize;
|
|
}
|
|
|
|
SDValue
|
|
PPCTargetLowering::LowerFormalArguments(SDValue Chain,
|
|
CallingConv::ID CallConv, bool isVarArg,
|
|
const SmallVectorImpl<ISD::InputArg>
|
|
&Ins,
|
|
DebugLoc dl, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &InVals) {
|
|
if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64()) {
|
|
return LowerFormalArguments_SVR4(Chain, CallConv, isVarArg, Ins,
|
|
dl, DAG, InVals);
|
|
} else {
|
|
return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
|
|
dl, DAG, InVals);
|
|
}
|
|
}
|
|
|
|
SDValue
|
|
PPCTargetLowering::LowerFormalArguments_SVR4(
|
|
SDValue Chain,
|
|
CallingConv::ID CallConv, bool isVarArg,
|
|
const SmallVectorImpl<ISD::InputArg>
|
|
&Ins,
|
|
DebugLoc dl, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &InVals) {
|
|
|
|
// 32-bit SVR4 ABI Stack Frame Layout:
|
|
// +-----------------------------------+
|
|
// +--> | Back chain |
|
|
// | +-----------------------------------+
|
|
// | | Floating-point register save area |
|
|
// | +-----------------------------------+
|
|
// | | General register save area |
|
|
// | +-----------------------------------+
|
|
// | | CR save word |
|
|
// | +-----------------------------------+
|
|
// | | VRSAVE save word |
|
|
// | +-----------------------------------+
|
|
// | | Alignment padding |
|
|
// | +-----------------------------------+
|
|
// | | Vector register save area |
|
|
// | +-----------------------------------+
|
|
// | | Local variable space |
|
|
// | +-----------------------------------+
|
|
// | | Parameter list area |
|
|
// | +-----------------------------------+
|
|
// | | LR save word |
|
|
// | +-----------------------------------+
|
|
// SP--> +--- | Back chain |
|
|
// +-----------------------------------+
|
|
//
|
|
// Specifications:
|
|
// System V Application Binary Interface PowerPC Processor Supplement
|
|
// AltiVec Technology Programming Interface Manual
|
|
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
|
|
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
|
|
// Potential tail calls could cause overwriting of argument stack slots.
|
|
bool isImmutable = !(PerformTailCallOpt && (CallConv==CallingConv::Fast));
|
|
unsigned PtrByteSize = 4;
|
|
|
|
// Assign locations to all of the incoming arguments.
|
|
SmallVector<CCValAssign, 16> ArgLocs;
|
|
CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
|
|
*DAG.getContext());
|
|
|
|
// Reserve space for the linkage area on the stack.
|
|
CCInfo.AllocateStack(PPCFrameInfo::getLinkageSize(false, false), PtrByteSize);
|
|
|
|
CCInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4);
|
|
|
|
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
|
|
CCValAssign &VA = ArgLocs[i];
|
|
|
|
// Arguments stored in registers.
|
|
if (VA.isRegLoc()) {
|
|
TargetRegisterClass *RC;
|
|
EVT ValVT = VA.getValVT();
|
|
|
|
switch (ValVT.getSimpleVT().SimpleTy) {
|
|
default:
|
|
llvm_unreachable("ValVT not supported by formal arguments Lowering");
|
|
case MVT::i32:
|
|
RC = PPC::GPRCRegisterClass;
|
|
break;
|
|
case MVT::f32:
|
|
RC = PPC::F4RCRegisterClass;
|
|
break;
|
|
case MVT::f64:
|
|
RC = PPC::F8RCRegisterClass;
|
|
break;
|
|
case MVT::v16i8:
|
|
case MVT::v8i16:
|
|
case MVT::v4i32:
|
|
case MVT::v4f32:
|
|
RC = PPC::VRRCRegisterClass;
|
|
break;
|
|
}
|
|
|
|
// Transform the arguments stored in physical registers into virtual ones.
|
|
unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
|
|
SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, ValVT);
|
|
|
|
InVals.push_back(ArgValue);
|
|
} else {
|
|
// Argument stored in memory.
|
|
assert(VA.isMemLoc());
|
|
|
|
unsigned ArgSize = VA.getLocVT().getSizeInBits() / 8;
|
|
int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(),
|
|
isImmutable);
|
|
|
|
// Create load nodes to retrieve arguments from the stack.
|
|
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
|
|
InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN, NULL, 0));
|
|
}
|
|
}
|
|
|
|
// Assign locations to all of the incoming aggregate by value arguments.
|
|
// Aggregates passed by value are stored in the local variable space of the
|
|
// caller's stack frame, right above the parameter list area.
|
|
SmallVector<CCValAssign, 16> ByValArgLocs;
|
|
CCState CCByValInfo(CallConv, isVarArg, getTargetMachine(),
|
|
ByValArgLocs, *DAG.getContext());
|
|
|
|
// Reserve stack space for the allocations in CCInfo.
|
|
CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
|
|
|
|
CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4_ByVal);
|
|
|
|
// Area that is at least reserved in the caller of this function.
|
|
unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
|
|
|
|
// Set the size that is at least reserved in caller of this function. Tail
|
|
// call optimized function's reserved stack space needs to be aligned so that
|
|
// taking the difference between two stack areas will result in an aligned
|
|
// stack.
|
|
PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
|
|
|
|
MinReservedArea =
|
|
std::max(MinReservedArea,
|
|
PPCFrameInfo::getMinCallFrameSize(false, false));
|
|
|
|
unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
|
|
getStackAlignment();
|
|
unsigned AlignMask = TargetAlign-1;
|
|
MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
|
|
|
|
FI->setMinReservedArea(MinReservedArea);
|
|
|
|
SmallVector<SDValue, 8> MemOps;
|
|
|
|
// If the function takes variable number of arguments, make a frame index for
|
|
// the start of the first vararg value... for expansion of llvm.va_start.
|
|
if (isVarArg) {
|
|
static const unsigned GPArgRegs[] = {
|
|
PPC::R3, PPC::R4, PPC::R5, PPC::R6,
|
|
PPC::R7, PPC::R8, PPC::R9, PPC::R10,
|
|
};
|
|
const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
|
|
|
|
static const unsigned FPArgRegs[] = {
|
|
PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
|
|
PPC::F8
|
|
};
|
|
const unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
|
|
|
|
VarArgsNumGPR = CCInfo.getFirstUnallocated(GPArgRegs, NumGPArgRegs);
|
|
VarArgsNumFPR = CCInfo.getFirstUnallocated(FPArgRegs, NumFPArgRegs);
|
|
|
|
// Make room for NumGPArgRegs and NumFPArgRegs.
|
|
int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
|
|
NumFPArgRegs * EVT(MVT::f64).getSizeInBits()/8;
|
|
|
|
VarArgsStackOffset = MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
|
|
CCInfo.getNextStackOffset());
|
|
|
|
VarArgsFrameIndex = MFI->CreateStackObject(Depth, 8);
|
|
SDValue FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
|
|
|
|
// The fixed integer arguments of a variadic function are
|
|
// stored to the VarArgsFrameIndex on the stack.
|
|
unsigned GPRIndex = 0;
|
|
for (; GPRIndex != VarArgsNumGPR; ++GPRIndex) {
|
|
SDValue Val = DAG.getRegister(GPArgRegs[GPRIndex], PtrVT);
|
|
SDValue Store = DAG.getStore(Chain, dl, Val, FIN, NULL, 0);
|
|
MemOps.push_back(Store);
|
|
// Increment the address by four for the next argument to store
|
|
SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
|
|
FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
|
|
}
|
|
|
|
// If this function is vararg, store any remaining integer argument regs
|
|
// to their spots on the stack so that they may be loaded by deferencing the
|
|
// result of va_next.
|
|
for (; GPRIndex != NumGPArgRegs; ++GPRIndex) {
|
|
unsigned VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
|
|
|
|
SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
|
|
SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0);
|
|
MemOps.push_back(Store);
|
|
// Increment the address by four for the next argument to store
|
|
SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
|
|
FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
|
|
}
|
|
|
|
// FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
|
|
// is set.
|
|
|
|
// The double arguments are stored to the VarArgsFrameIndex
|
|
// on the stack.
|
|
unsigned FPRIndex = 0;
|
|
for (FPRIndex = 0; FPRIndex != VarArgsNumFPR; ++FPRIndex) {
|
|
SDValue Val = DAG.getRegister(FPArgRegs[FPRIndex], MVT::f64);
|
|
SDValue Store = DAG.getStore(Chain, dl, Val, FIN, NULL, 0);
|
|
MemOps.push_back(Store);
|
|
// Increment the address by eight for the next argument to store
|
|
SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8,
|
|
PtrVT);
|
|
FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
|
|
}
|
|
|
|
for (; FPRIndex != NumFPArgRegs; ++FPRIndex) {
|
|
unsigned VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
|
|
|
|
SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
|
|
SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0);
|
|
MemOps.push_back(Store);
|
|
// Increment the address by eight for the next argument to store
|
|
SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8,
|
|
PtrVT);
|
|
FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
|
|
}
|
|
}
|
|
|
|
if (!MemOps.empty())
|
|
Chain = DAG.getNode(ISD::TokenFactor, dl,
|
|
MVT::Other, &MemOps[0], MemOps.size());
|
|
|
|
return Chain;
|
|
}
|
|
|
|
SDValue
|
|
PPCTargetLowering::LowerFormalArguments_Darwin(
|
|
SDValue Chain,
|
|
CallingConv::ID CallConv, bool isVarArg,
|
|
const SmallVectorImpl<ISD::InputArg>
|
|
&Ins,
|
|
DebugLoc dl, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &InVals) {
|
|
// TODO: add description of PPC stack frame format, or at least some docs.
|
|
//
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
|
|
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
|
|
bool isPPC64 = PtrVT == MVT::i64;
|
|
// Potential tail calls could cause overwriting of argument stack slots.
|
|
bool isImmutable = !(PerformTailCallOpt && (CallConv==CallingConv::Fast));
|
|
unsigned PtrByteSize = isPPC64 ? 8 : 4;
|
|
|
|
unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, true);
|
|
// Area that is at least reserved in caller of this function.
|
|
unsigned MinReservedArea = ArgOffset;
|
|
|
|
static const unsigned GPR_32[] = { // 32-bit registers.
|
|
PPC::R3, PPC::R4, PPC::R5, PPC::R6,
|
|
PPC::R7, PPC::R8, PPC::R9, PPC::R10,
|
|
};
|
|
static const unsigned GPR_64[] = { // 64-bit registers.
|
|
PPC::X3, PPC::X4, PPC::X5, PPC::X6,
|
|
PPC::X7, PPC::X8, PPC::X9, PPC::X10,
|
|
};
|
|
|
|
static const unsigned *FPR = GetFPR();
|
|
|
|
static const unsigned VR[] = {
|
|
PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
|
|
PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
|
|
};
|
|
|
|
const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
|
|
const unsigned Num_FPR_Regs = 13;
|
|
const unsigned Num_VR_Regs = array_lengthof( VR);
|
|
|
|
unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
|
|
|
|
const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
|
|
|
|
// In 32-bit non-varargs functions, the stack space for vectors is after the
|
|
// stack space for non-vectors. We do not use this space unless we have
|
|
// too many vectors to fit in registers, something that only occurs in
|
|
// constructed examples:), but we have to walk the arglist to figure
|
|
// that out...for the pathological case, compute VecArgOffset as the
|
|
// start of the vector parameter area. Computing VecArgOffset is the
|
|
// entire point of the following loop.
|
|
unsigned VecArgOffset = ArgOffset;
|
|
if (!isVarArg && !isPPC64) {
|
|
for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
|
|
++ArgNo) {
|
|
EVT ObjectVT = Ins[ArgNo].VT;
|
|
unsigned ObjSize = ObjectVT.getSizeInBits()/8;
|
|
ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
|
|
|
|
if (Flags.isByVal()) {
|
|
// ObjSize is the true size, ArgSize rounded up to multiple of regs.
|
|
ObjSize = Flags.getByValSize();
|
|
unsigned ArgSize =
|
|
((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
|
|
VecArgOffset += ArgSize;
|
|
continue;
|
|
}
|
|
|
|
switch(ObjectVT.getSimpleVT().SimpleTy) {
|
|
default: llvm_unreachable("Unhandled argument type!");
|
|
case MVT::i32:
|
|
case MVT::f32:
|
|
VecArgOffset += isPPC64 ? 8 : 4;
|
|
break;
|
|
case MVT::i64: // PPC64
|
|
case MVT::f64:
|
|
VecArgOffset += 8;
|
|
break;
|
|
case MVT::v4f32:
|
|
case MVT::v4i32:
|
|
case MVT::v8i16:
|
|
case MVT::v16i8:
|
|
// Nothing to do, we're only looking at Nonvector args here.
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
// We've found where the vector parameter area in memory is. Skip the
|
|
// first 12 parameters; these don't use that memory.
|
|
VecArgOffset = ((VecArgOffset+15)/16)*16;
|
|
VecArgOffset += 12*16;
|
|
|
|
// Add DAG nodes to load the arguments or copy them out of registers. On
|
|
// entry to a function on PPC, the arguments start after the linkage area,
|
|
// although the first ones are often in registers.
|
|
|
|
SmallVector<SDValue, 8> MemOps;
|
|
unsigned nAltivecParamsAtEnd = 0;
|
|
for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
|
|
SDValue ArgVal;
|
|
bool needsLoad = false;
|
|
EVT ObjectVT = Ins[ArgNo].VT;
|
|
unsigned ObjSize = ObjectVT.getSizeInBits()/8;
|
|
unsigned ArgSize = ObjSize;
|
|
ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
|
|
|
|
unsigned CurArgOffset = ArgOffset;
|
|
|
|
// Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
|
|
if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
|
|
ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
|
|
if (isVarArg || isPPC64) {
|
|
MinReservedArea = ((MinReservedArea+15)/16)*16;
|
|
MinReservedArea += CalculateStackSlotSize(ObjectVT,
|
|
Flags,
|
|
PtrByteSize);
|
|
} else nAltivecParamsAtEnd++;
|
|
} else
|
|
// Calculate min reserved area.
|
|
MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
|
|
Flags,
|
|
PtrByteSize);
|
|
|
|
// FIXME the codegen can be much improved in some cases.
|
|
// We do not have to keep everything in memory.
|
|
if (Flags.isByVal()) {
|
|
// ObjSize is the true size, ArgSize rounded up to multiple of registers.
|
|
ObjSize = Flags.getByValSize();
|
|
ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
|
|
// Objects of size 1 and 2 are right justified, everything else is
|
|
// left justified. This means the memory address is adjusted forwards.
|
|
if (ObjSize==1 || ObjSize==2) {
|
|
CurArgOffset = CurArgOffset + (4 - ObjSize);
|
|
}
|
|
// The value of the object is its address.
|
|
int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset);
|
|
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
|
|
InVals.push_back(FIN);
|
|
if (ObjSize==1 || ObjSize==2) {
|
|
if (GPR_idx != Num_GPR_Regs) {
|
|
unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
|
|
SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
|
|
SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
|
|
NULL, 0, ObjSize==1 ? MVT::i8 : MVT::i16 );
|
|
MemOps.push_back(Store);
|
|
++GPR_idx;
|
|
}
|
|
|
|
ArgOffset += PtrByteSize;
|
|
|
|
continue;
|
|
}
|
|
for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
|
|
// Store whatever pieces of the object are in registers
|
|
// to memory. ArgVal will be address of the beginning of
|
|
// the object.
|
|
if (GPR_idx != Num_GPR_Regs) {
|
|
unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
|
|
int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset);
|
|
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
|
|
SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
|
|
SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0);
|
|
MemOps.push_back(Store);
|
|
++GPR_idx;
|
|
ArgOffset += PtrByteSize;
|
|
} else {
|
|
ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
|
|
break;
|
|
}
|
|
}
|
|
continue;
|
|
}
|
|
|
|
switch (ObjectVT.getSimpleVT().SimpleTy) {
|
|
default: llvm_unreachable("Unhandled argument type!");
|
|
case MVT::i32:
|
|
if (!isPPC64) {
|
|
if (GPR_idx != Num_GPR_Regs) {
|
|
unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
|
|
ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
|
|
++GPR_idx;
|
|
} else {
|
|
needsLoad = true;
|
|
ArgSize = PtrByteSize;
|
|
}
|
|
// All int arguments reserve stack space in the Darwin ABI.
|
|
ArgOffset += PtrByteSize;
|
|
break;
|
|
}
|
|
// FALLTHROUGH
|
|
case MVT::i64: // PPC64
|
|
if (GPR_idx != Num_GPR_Regs) {
|
|
unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
|
|
ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
|
|
|
|
if (ObjectVT == MVT::i32) {
|
|
// PPC64 passes i8, i16, and i32 values in i64 registers. Promote
|
|
// value to MVT::i64 and then truncate to the correct register size.
|
|
if (Flags.isSExt())
|
|
ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
|
|
DAG.getValueType(ObjectVT));
|
|
else if (Flags.isZExt())
|
|
ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
|
|
DAG.getValueType(ObjectVT));
|
|
|
|
ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
|
|
}
|
|
|
|
++GPR_idx;
|
|
} else {
|
|
needsLoad = true;
|
|
ArgSize = PtrByteSize;
|
|
}
|
|
// All int arguments reserve stack space in the Darwin ABI.
|
|
ArgOffset += 8;
|
|
break;
|
|
|
|
case MVT::f32:
|
|
case MVT::f64:
|
|
// Every 4 bytes of argument space consumes one of the GPRs available for
|
|
// argument passing.
|
|
if (GPR_idx != Num_GPR_Regs) {
|
|
++GPR_idx;
|
|
if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
|
|
++GPR_idx;
|
|
}
|
|
if (FPR_idx != Num_FPR_Regs) {
|
|
unsigned VReg;
|
|
|
|
if (ObjectVT == MVT::f32)
|
|
VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
|
|
else
|
|
VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
|
|
|
|
ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
|
|
++FPR_idx;
|
|
} else {
|
|
needsLoad = true;
|
|
}
|
|
|
|
// All FP arguments reserve stack space in the Darwin ABI.
|
|
ArgOffset += isPPC64 ? 8 : ObjSize;
|
|
break;
|
|
case MVT::v4f32:
|
|
case MVT::v4i32:
|
|
case MVT::v8i16:
|
|
case MVT::v16i8:
|
|
// Note that vector arguments in registers don't reserve stack space,
|
|
// except in varargs functions.
|
|
if (VR_idx != Num_VR_Regs) {
|
|
unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
|
|
ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
|
|
if (isVarArg) {
|
|
while ((ArgOffset % 16) != 0) {
|
|
ArgOffset += PtrByteSize;
|
|
if (GPR_idx != Num_GPR_Regs)
|
|
GPR_idx++;
|
|
}
|
|
ArgOffset += 16;
|
|
GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
|
|
}
|
|
++VR_idx;
|
|
} else {
|
|
if (!isVarArg && !isPPC64) {
|
|
// Vectors go after all the nonvectors.
|
|
CurArgOffset = VecArgOffset;
|
|
VecArgOffset += 16;
|
|
} else {
|
|
// Vectors are aligned.
|
|
ArgOffset = ((ArgOffset+15)/16)*16;
|
|
CurArgOffset = ArgOffset;
|
|
ArgOffset += 16;
|
|
}
|
|
needsLoad = true;
|
|
}
|
|
break;
|
|
}
|
|
|
|
// We need to load the argument to a virtual register if we determined above
|
|
// that we ran out of physical registers of the appropriate type.
|
|
if (needsLoad) {
|
|
int FI = MFI->CreateFixedObject(ObjSize,
|
|
CurArgOffset + (ArgSize - ObjSize),
|
|
isImmutable);
|
|
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
|
|
ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, NULL, 0);
|
|
}
|
|
|
|
InVals.push_back(ArgVal);
|
|
}
|
|
|
|
// Set the size that is at least reserved in caller of this function. Tail
|
|
// call optimized function's reserved stack space needs to be aligned so that
|
|
// taking the difference between two stack areas will result in an aligned
|
|
// stack.
|
|
PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
|
|
// Add the Altivec parameters at the end, if needed.
|
|
if (nAltivecParamsAtEnd) {
|
|
MinReservedArea = ((MinReservedArea+15)/16)*16;
|
|
MinReservedArea += 16*nAltivecParamsAtEnd;
|
|
}
|
|
MinReservedArea =
|
|
std::max(MinReservedArea,
|
|
PPCFrameInfo::getMinCallFrameSize(isPPC64, true));
|
|
unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
|
|
getStackAlignment();
|
|
unsigned AlignMask = TargetAlign-1;
|
|
MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
|
|
FI->setMinReservedArea(MinReservedArea);
|
|
|
|
// If the function takes variable number of arguments, make a frame index for
|
|
// the start of the first vararg value... for expansion of llvm.va_start.
|
|
if (isVarArg) {
|
|
int Depth = ArgOffset;
|
|
|
|
VarArgsFrameIndex = MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
|
|
Depth);
|
|
SDValue FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
|
|
|
|
// If this function is vararg, store any remaining integer argument regs
|
|
// to their spots on the stack so that they may be loaded by deferencing the
|
|
// result of va_next.
|
|
for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
|
|
unsigned VReg;
|
|
|
|
if (isPPC64)
|
|
VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
|
|
else
|
|
VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
|
|
|
|
SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
|
|
SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0);
|
|
MemOps.push_back(Store);
|
|
// Increment the address by four for the next argument to store
|
|
SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
|
|
FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
|
|
}
|
|
}
|
|
|
|
if (!MemOps.empty())
|
|
Chain = DAG.getNode(ISD::TokenFactor, dl,
|
|
MVT::Other, &MemOps[0], MemOps.size());
|
|
|
|
return Chain;
|
|
}
|
|
|
|
/// CalculateParameterAndLinkageAreaSize - Get the size of the paramter plus
|
|
/// linkage area for the Darwin ABI.
|
|
static unsigned
|
|
CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG,
|
|
bool isPPC64,
|
|
bool isVarArg,
|
|
unsigned CC,
|
|
const SmallVectorImpl<ISD::OutputArg>
|
|
&Outs,
|
|
unsigned &nAltivecParamsAtEnd) {
|
|
// Count how many bytes are to be pushed on the stack, including the linkage
|
|
// area, and parameter passing area. We start with 24/48 bytes, which is
|
|
// prereserved space for [SP][CR][LR][3 x unused].
|
|
unsigned NumBytes = PPCFrameInfo::getLinkageSize(isPPC64, true);
|
|
unsigned NumOps = Outs.size();
|
|
unsigned PtrByteSize = isPPC64 ? 8 : 4;
|
|
|
|
// Add up all the space actually used.
|
|
// In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
|
|
// they all go in registers, but we must reserve stack space for them for
|
|
// possible use by the caller. In varargs or 64-bit calls, parameters are
|
|
// assigned stack space in order, with padding so Altivec parameters are
|
|
// 16-byte aligned.
|
|
nAltivecParamsAtEnd = 0;
|
|
for (unsigned i = 0; i != NumOps; ++i) {
|
|
SDValue Arg = Outs[i].Val;
|
|
ISD::ArgFlagsTy Flags = Outs[i].Flags;
|
|
EVT ArgVT = Arg.getValueType();
|
|
// Varargs Altivec parameters are padded to a 16 byte boundary.
|
|
if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 ||
|
|
ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) {
|
|
if (!isVarArg && !isPPC64) {
|
|
// Non-varargs Altivec parameters go after all the non-Altivec
|
|
// parameters; handle those later so we know how much padding we need.
|
|
nAltivecParamsAtEnd++;
|
|
continue;
|
|
}
|
|
// Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
|
|
NumBytes = ((NumBytes+15)/16)*16;
|
|
}
|
|
NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
|
|
}
|
|
|
|
// Allow for Altivec parameters at the end, if needed.
|
|
if (nAltivecParamsAtEnd) {
|
|
NumBytes = ((NumBytes+15)/16)*16;
|
|
NumBytes += 16*nAltivecParamsAtEnd;
|
|
}
|
|
|
|
// The prolog code of the callee may store up to 8 GPR argument registers to
|
|
// the stack, allowing va_start to index over them in memory if its varargs.
|
|
// Because we cannot tell if this is needed on the caller side, we have to
|
|
// conservatively assume that it is needed. As such, make sure we have at
|
|
// least enough stack space for the caller to store the 8 GPRs.
|
|
NumBytes = std::max(NumBytes,
|
|
PPCFrameInfo::getMinCallFrameSize(isPPC64, true));
|
|
|
|
// Tail call needs the stack to be aligned.
|
|
if (CC==CallingConv::Fast && PerformTailCallOpt) {
|
|
unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
|
|
getStackAlignment();
|
|
unsigned AlignMask = TargetAlign-1;
|
|
NumBytes = (NumBytes + AlignMask) & ~AlignMask;
|
|
}
|
|
|
|
return NumBytes;
|
|
}
|
|
|
|
/// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
|
|
/// adjusted to accomodate the arguments for the tailcall.
|
|
static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool IsTailCall,
|
|
unsigned ParamSize) {
|
|
|
|
if (!IsTailCall) return 0;
|
|
|
|
PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
|
|
unsigned CallerMinReservedArea = FI->getMinReservedArea();
|
|
int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
|
|
// Remember only if the new adjustement is bigger.
|
|
if (SPDiff < FI->getTailCallSPDelta())
|
|
FI->setTailCallSPDelta(SPDiff);
|
|
|
|
return SPDiff;
|
|
}
|
|
|
|
/// IsEligibleForTailCallOptimization - Check whether the call is eligible
|
|
/// for tail call optimization. Targets which want to do tail call
|
|
/// optimization should implement this function.
|
|
bool
|
|
PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
|
|
CallingConv::ID CalleeCC,
|
|
bool isVarArg,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
SelectionDAG& DAG) const {
|
|
// Variable argument functions are not supported.
|
|
if (isVarArg)
|
|
return false;
|
|
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
|
|
if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
|
|
// Functions containing by val parameters are not supported.
|
|
for (unsigned i = 0; i != Ins.size(); i++) {
|
|
ISD::ArgFlagsTy Flags = Ins[i].Flags;
|
|
if (Flags.isByVal()) return false;
|
|
}
|
|
|
|
// Non PIC/GOT tail calls are supported.
|
|
if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
|
|
return true;
|
|
|
|
// At the moment we can only do local tail calls (in same module, hidden
|
|
// or protected) if we are generating PIC.
|
|
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
|
|
return G->getGlobal()->hasHiddenVisibility()
|
|
|| G->getGlobal()->hasProtectedVisibility();
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// isCallCompatibleAddress - Return the immediate to use if the specified
|
|
/// 32-bit value is representable in the immediate field of a BxA instruction.
|
|
static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
|
|
ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
|
|
if (!C) return 0;
|
|
|
|
int Addr = C->getZExtValue();
|
|
if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero.
|
|
(Addr << 6 >> 6) != Addr)
|
|
return 0; // Top 6 bits have to be sext of immediate.
|
|
|
|
return DAG.getConstant((int)C->getZExtValue() >> 2,
|
|
DAG.getTargetLoweringInfo().getPointerTy()).getNode();
|
|
}
|
|
|
|
namespace {
|
|
|
|
struct TailCallArgumentInfo {
|
|
SDValue Arg;
|
|
SDValue FrameIdxOp;
|
|
int FrameIdx;
|
|
|
|
TailCallArgumentInfo() : FrameIdx(0) {}
|
|
};
|
|
|
|
}
|
|
|
|
/// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
|
|
static void
|
|
StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
|
|
SDValue Chain,
|
|
const SmallVector<TailCallArgumentInfo, 8> &TailCallArgs,
|
|
SmallVector<SDValue, 8> &MemOpChains,
|
|
DebugLoc dl) {
|
|
for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
|
|
SDValue Arg = TailCallArgs[i].Arg;
|
|
SDValue FIN = TailCallArgs[i].FrameIdxOp;
|
|
int FI = TailCallArgs[i].FrameIdx;
|
|
// Store relative to framepointer.
|
|
MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN,
|
|
PseudoSourceValue::getFixedStack(FI),
|
|
0));
|
|
}
|
|
}
|
|
|
|
/// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
|
|
/// the appropriate stack slot for the tail call optimized function call.
|
|
static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
|
|
MachineFunction &MF,
|
|
SDValue Chain,
|
|
SDValue OldRetAddr,
|
|
SDValue OldFP,
|
|
int SPDiff,
|
|
bool isPPC64,
|
|
bool isDarwinABI,
|
|
DebugLoc dl) {
|
|
if (SPDiff) {
|
|
// Calculate the new stack slot for the return address.
|
|
int SlotSize = isPPC64 ? 8 : 4;
|
|
int NewRetAddrLoc = SPDiff + PPCFrameInfo::getReturnSaveOffset(isPPC64,
|
|
isDarwinABI);
|
|
int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
|
|
NewRetAddrLoc);
|
|
EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
|
|
SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
|
|
Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
|
|
PseudoSourceValue::getFixedStack(NewRetAddr), 0);
|
|
|
|
// When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
|
|
// slot as the FP is never overwritten.
|
|
if (isDarwinABI) {
|
|
int NewFPLoc =
|
|
SPDiff + PPCFrameInfo::getFramePointerSaveOffset(isPPC64, isDarwinABI);
|
|
int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc);
|
|
SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
|
|
Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
|
|
PseudoSourceValue::getFixedStack(NewFPIdx), 0);
|
|
}
|
|
}
|
|
return Chain;
|
|
}
|
|
|
|
/// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
|
|
/// the position of the argument.
|
|
static void
|
|
CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
|
|
SDValue Arg, int SPDiff, unsigned ArgOffset,
|
|
SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) {
|
|
int Offset = ArgOffset + SPDiff;
|
|
uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
|
|
int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset);
|
|
EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
|
|
SDValue FIN = DAG.getFrameIndex(FI, VT);
|
|
TailCallArgumentInfo Info;
|
|
Info.Arg = Arg;
|
|
Info.FrameIdxOp = FIN;
|
|
Info.FrameIdx = FI;
|
|
TailCallArguments.push_back(Info);
|
|
}
|
|
|
|
/// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
|
|
/// stack slot. Returns the chain as result and the loaded frame pointers in
|
|
/// LROpOut/FPOpout. Used when tail calling.
|
|
SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
|
|
int SPDiff,
|
|
SDValue Chain,
|
|
SDValue &LROpOut,
|
|
SDValue &FPOpOut,
|
|
bool isDarwinABI,
|
|
DebugLoc dl) {
|
|
if (SPDiff) {
|
|
// Load the LR and FP stack slot for later adjusting.
|
|
EVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32;
|
|
LROpOut = getReturnAddrFrameIndex(DAG);
|
|
LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, NULL, 0);
|
|
Chain = SDValue(LROpOut.getNode(), 1);
|
|
|
|
// When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
|
|
// slot as the FP is never overwritten.
|
|
if (isDarwinABI) {
|
|
FPOpOut = getFramePointerFrameIndex(DAG);
|
|
FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, NULL, 0);
|
|
Chain = SDValue(FPOpOut.getNode(), 1);
|
|
}
|
|
}
|
|
return Chain;
|
|
}
|
|
|
|
/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
|
|
/// by "Src" to address "Dst" of size "Size". Alignment information is
|
|
/// specified by the specific parameter attribute. The copy will be passed as
|
|
/// a byval function parameter.
|
|
/// Sometimes what we are copying is the end of a larger object, the part that
|
|
/// does not fit in registers.
|
|
static SDValue
|
|
CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
|
|
ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
|
|
DebugLoc dl) {
|
|
SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
|
|
return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
|
|
false, NULL, 0, NULL, 0);
|
|
}
|
|
|
|
/// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
|
|
/// tail calls.
|
|
static void
|
|
LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
|
|
SDValue Arg, SDValue PtrOff, int SPDiff,
|
|
unsigned ArgOffset, bool isPPC64, bool isTailCall,
|
|
bool isVector, SmallVector<SDValue, 8> &MemOpChains,
|
|
SmallVector<TailCallArgumentInfo, 8>& TailCallArguments,
|
|
DebugLoc dl) {
|
|
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
|
|
if (!isTailCall) {
|
|
if (isVector) {
|
|
SDValue StackPtr;
|
|
if (isPPC64)
|
|
StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
|
|
else
|
|
StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
|
|
PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
|
|
DAG.getConstant(ArgOffset, PtrVT));
|
|
}
|
|
MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, NULL, 0));
|
|
// Calculate and remember argument location.
|
|
} else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
|
|
TailCallArguments);
|
|
}
|
|
|
|
static
|
|
void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
|
|
DebugLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes,
|
|
SDValue LROp, SDValue FPOp, bool isDarwinABI,
|
|
SmallVector<TailCallArgumentInfo, 8> &TailCallArguments) {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
|
|
// Emit a sequence of copyto/copyfrom virtual registers for arguments that
|
|
// might overwrite each other in case of tail call optimization.
|
|
SmallVector<SDValue, 8> MemOpChains2;
|
|
// Do not flag preceeding copytoreg stuff together with the following stuff.
|
|
InFlag = SDValue();
|
|
StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
|
|
MemOpChains2, dl);
|
|
if (!MemOpChains2.empty())
|
|
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
|
|
&MemOpChains2[0], MemOpChains2.size());
|
|
|
|
// Store the return address to the appropriate stack slot.
|
|
Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
|
|
isPPC64, isDarwinABI, dl);
|
|
|
|
// Emit callseq_end just before tailcall node.
|
|
Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
|
|
DAG.getIntPtrConstant(0, true), InFlag);
|
|
InFlag = Chain.getValue(1);
|
|
}
|
|
|
|
static
|
|
unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
|
|
SDValue &Chain, DebugLoc dl, int SPDiff, bool isTailCall,
|
|
SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
|
|
SmallVector<SDValue, 8> &Ops, std::vector<EVT> &NodeTys,
|
|
bool isSVR4ABI) {
|
|
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
|
|
NodeTys.push_back(MVT::Other); // Returns a chain
|
|
NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use.
|
|
|
|
unsigned CallOpc = isSVR4ABI ? PPCISD::CALL_SVR4 : PPCISD::CALL_Darwin;
|
|
|
|
// If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
|
|
// direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
|
|
// node so that legalize doesn't hack it.
|
|
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
|
|
Callee = DAG.getTargetGlobalAddress(G->getGlobal(), Callee.getValueType());
|
|
else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
|
|
Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType());
|
|
else if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
|
|
// If this is an absolute destination address, use the munged value.
|
|
Callee = SDValue(Dest, 0);
|
|
else {
|
|
// Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair
|
|
// to do the call, we can't use PPCISD::CALL.
|
|
SDValue MTCTROps[] = {Chain, Callee, InFlag};
|
|
Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, MTCTROps,
|
|
2 + (InFlag.getNode() != 0));
|
|
InFlag = Chain.getValue(1);
|
|
|
|
NodeTys.clear();
|
|
NodeTys.push_back(MVT::Other);
|
|
NodeTys.push_back(MVT::Flag);
|
|
Ops.push_back(Chain);
|
|
CallOpc = isSVR4ABI ? PPCISD::BCTRL_SVR4 : PPCISD::BCTRL_Darwin;
|
|
Callee.setNode(0);
|
|
// Add CTR register as callee so a bctr can be emitted later.
|
|
if (isTailCall)
|
|
Ops.push_back(DAG.getRegister(PPC::CTR, PtrVT));
|
|
}
|
|
|
|
// If this is a direct call, pass the chain and the callee.
|
|
if (Callee.getNode()) {
|
|
Ops.push_back(Chain);
|
|
Ops.push_back(Callee);
|
|
}
|
|
// If this is a tail call add stack pointer delta.
|
|
if (isTailCall)
|
|
Ops.push_back(DAG.getConstant(SPDiff, MVT::i32));
|
|
|
|
// Add argument registers to the end of the list so that they are known live
|
|
// into the call.
|
|
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
|
|
Ops.push_back(DAG.getRegister(RegsToPass[i].first,
|
|
RegsToPass[i].second.getValueType()));
|
|
|
|
return CallOpc;
|
|
}
|
|
|
|
SDValue
|
|
PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
|
|
CallingConv::ID CallConv, bool isVarArg,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
DebugLoc dl, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &InVals) {
|
|
|
|
SmallVector<CCValAssign, 16> RVLocs;
|
|
CCState CCRetInfo(CallConv, isVarArg, getTargetMachine(),
|
|
RVLocs, *DAG.getContext());
|
|
CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC);
|
|
|
|
// Copy all of the result registers out of their specified physreg.
|
|
for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
|
|
CCValAssign &VA = RVLocs[i];
|
|
EVT VT = VA.getValVT();
|
|
assert(VA.isRegLoc() && "Can only return in registers!");
|
|
Chain = DAG.getCopyFromReg(Chain, dl,
|
|
VA.getLocReg(), VT, InFlag).getValue(1);
|
|
InVals.push_back(Chain.getValue(0));
|
|
InFlag = Chain.getValue(2);
|
|
}
|
|
|
|
return Chain;
|
|
}
|
|
|
|
SDValue
|
|
PPCTargetLowering::FinishCall(CallingConv::ID CallConv, DebugLoc dl,
|
|
bool isTailCall, bool isVarArg,
|
|
SelectionDAG &DAG,
|
|
SmallVector<std::pair<unsigned, SDValue>, 8>
|
|
&RegsToPass,
|
|
SDValue InFlag, SDValue Chain,
|
|
SDValue &Callee,
|
|
int SPDiff, unsigned NumBytes,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
SmallVectorImpl<SDValue> &InVals) {
|
|
std::vector<EVT> NodeTys;
|
|
SmallVector<SDValue, 8> Ops;
|
|
unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, dl, SPDiff,
|
|
isTailCall, RegsToPass, Ops, NodeTys,
|
|
PPCSubTarget.isSVR4ABI());
|
|
|
|
// When performing tail call optimization the callee pops its arguments off
|
|
// the stack. Account for this here so these bytes can be pushed back on in
|
|
// PPCRegisterInfo::eliminateCallFramePseudoInstr.
|
|
int BytesCalleePops =
|
|
(CallConv==CallingConv::Fast && PerformTailCallOpt) ? NumBytes : 0;
|
|
|
|
if (InFlag.getNode())
|
|
Ops.push_back(InFlag);
|
|
|
|
// Emit tail call.
|
|
if (isTailCall) {
|
|
// If this is the first return lowered for this function, add the regs
|
|
// to the liveout set for the function.
|
|
if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
|
|
SmallVector<CCValAssign, 16> RVLocs;
|
|
CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
|
|
*DAG.getContext());
|
|
CCInfo.AnalyzeCallResult(Ins, RetCC_PPC);
|
|
for (unsigned i = 0; i != RVLocs.size(); ++i)
|
|
DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
|
|
}
|
|
|
|
assert(((Callee.getOpcode() == ISD::Register &&
|
|
cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
|
|
Callee.getOpcode() == ISD::TargetExternalSymbol ||
|
|
Callee.getOpcode() == ISD::TargetGlobalAddress ||
|
|
isa<ConstantSDNode>(Callee)) &&
|
|
"Expecting an global address, external symbol, absolute value or register");
|
|
|
|
return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, &Ops[0], Ops.size());
|
|
}
|
|
|
|
Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
|
|
InFlag = Chain.getValue(1);
|
|
|
|
// Add a NOP immediately after the branch instruction when using the 64-bit
|
|
// SVR4 ABI. At link time, if caller and callee are in a different module and
|
|
// thus have a different TOC, the call will be replaced with a call to a stub
|
|
// function which saves the current TOC, loads the TOC of the callee and
|
|
// branches to the callee. The NOP will be replaced with a load instruction
|
|
// which restores the TOC of the caller from the TOC save slot of the current
|
|
// stack frame. If caller and callee belong to the same module (and have the
|
|
// same TOC), the NOP will remain unchanged.
|
|
if (!isTailCall && PPCSubTarget.isSVR4ABI()&& PPCSubTarget.isPPC64()) {
|
|
// Insert NOP.
|
|
InFlag = DAG.getNode(PPCISD::NOP, dl, MVT::Flag, InFlag);
|
|
}
|
|
|
|
Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
|
|
DAG.getIntPtrConstant(BytesCalleePops, true),
|
|
InFlag);
|
|
if (!Ins.empty())
|
|
InFlag = Chain.getValue(1);
|
|
|
|
return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
|
|
Ins, dl, DAG, InVals);
|
|
}
|
|
|
|
SDValue
|
|
PPCTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
|
|
CallingConv::ID CallConv, bool isVarArg,
|
|
bool isTailCall,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
DebugLoc dl, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &InVals) {
|
|
if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64()) {
|
|
return LowerCall_SVR4(Chain, Callee, CallConv, isVarArg,
|
|
isTailCall, Outs, Ins,
|
|
dl, DAG, InVals);
|
|
} else {
|
|
return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
|
|
isTailCall, Outs, Ins,
|
|
dl, DAG, InVals);
|
|
}
|
|
}
|
|
|
|
SDValue
|
|
PPCTargetLowering::LowerCall_SVR4(SDValue Chain, SDValue Callee,
|
|
CallingConv::ID CallConv, bool isVarArg,
|
|
bool isTailCall,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
DebugLoc dl, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &InVals) {
|
|
// See PPCTargetLowering::LowerFormalArguments_SVR4() for a description
|
|
// of the 32-bit SVR4 ABI stack frame layout.
|
|
|
|
assert((!isTailCall ||
|
|
(CallConv == CallingConv::Fast && PerformTailCallOpt)) &&
|
|
"IsEligibleForTailCallOptimization missed a case!");
|
|
|
|
assert((CallConv == CallingConv::C ||
|
|
CallConv == CallingConv::Fast) && "Unknown calling convention!");
|
|
|
|
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
|
|
unsigned PtrByteSize = 4;
|
|
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
|
|
// Mark this function as potentially containing a function that contains a
|
|
// tail call. As a consequence the frame pointer will be used for dynamicalloc
|
|
// and restoring the callers stack pointer in this functions epilog. This is
|
|
// done because by tail calling the called function might overwrite the value
|
|
// in this function's (MF) stack pointer stack slot 0(SP).
|
|
if (PerformTailCallOpt && CallConv==CallingConv::Fast)
|
|
MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
|
|
|
|
// Count how many bytes are to be pushed on the stack, including the linkage
|
|
// area, parameter list area and the part of the local variable space which
|
|
// contains copies of aggregates which are passed by value.
|
|
|
|
// Assign locations to all of the outgoing arguments.
|
|
SmallVector<CCValAssign, 16> ArgLocs;
|
|
CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
|
|
ArgLocs, *DAG.getContext());
|
|
|
|
// Reserve space for the linkage area on the stack.
|
|
CCInfo.AllocateStack(PPCFrameInfo::getLinkageSize(false, false), PtrByteSize);
|
|
|
|
if (isVarArg) {
|
|
// Handle fixed and variable vector arguments differently.
|
|
// Fixed vector arguments go into registers as long as registers are
|
|
// available. Variable vector arguments always go into memory.
|
|
unsigned NumArgs = Outs.size();
|
|
|
|
for (unsigned i = 0; i != NumArgs; ++i) {
|
|
EVT ArgVT = Outs[i].Val.getValueType();
|
|
ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
|
|
bool Result;
|
|
|
|
if (Outs[i].IsFixed) {
|
|
Result = CC_PPC_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
|
|
CCInfo);
|
|
} else {
|
|
Result = CC_PPC_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
|
|
ArgFlags, CCInfo);
|
|
}
|
|
|
|
if (Result) {
|
|
#ifndef NDEBUG
|
|
errs() << "Call operand #" << i << " has unhandled type "
|
|
<< ArgVT.getEVTString() << "\n";
|
|
#endif
|
|
llvm_unreachable(0);
|
|
}
|
|
}
|
|
} else {
|
|
// All arguments are treated the same.
|
|
CCInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4);
|
|
}
|
|
|
|
// Assign locations to all of the outgoing aggregate by value arguments.
|
|
SmallVector<CCValAssign, 16> ByValArgLocs;
|
|
CCState CCByValInfo(CallConv, isVarArg, getTargetMachine(), ByValArgLocs,
|
|
*DAG.getContext());
|
|
|
|
// Reserve stack space for the allocations in CCInfo.
|
|
CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
|
|
|
|
CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4_ByVal);
|
|
|
|
// Size of the linkage area, parameter list area and the part of the local
|
|
// space variable where copies of aggregates which are passed by value are
|
|
// stored.
|
|
unsigned NumBytes = CCByValInfo.getNextStackOffset();
|
|
|
|
// Calculate by how many bytes the stack has to be adjusted in case of tail
|
|
// call optimization.
|
|
int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
|
|
|
|
// Adjust the stack pointer for the new arguments...
|
|
// These operations are automatically eliminated by the prolog/epilog pass
|
|
Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
|
|
SDValue CallSeqStart = Chain;
|
|
|
|
// Load the return address and frame pointer so it can be moved somewhere else
|
|
// later.
|
|
SDValue LROp, FPOp;
|
|
Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false,
|
|
dl);
|
|
|
|
// Set up a copy of the stack pointer for use loading and storing any
|
|
// arguments that may not fit in the registers available for argument
|
|
// passing.
|
|
SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
|
|
|
|
SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
|
|
SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
|
|
SmallVector<SDValue, 8> MemOpChains;
|
|
|
|
// Walk the register/memloc assignments, inserting copies/loads.
|
|
for (unsigned i = 0, j = 0, e = ArgLocs.size();
|
|
i != e;
|
|
++i) {
|
|
CCValAssign &VA = ArgLocs[i];
|
|
SDValue Arg = Outs[i].Val;
|
|
ISD::ArgFlagsTy Flags = Outs[i].Flags;
|
|
|
|
if (Flags.isByVal()) {
|
|
// Argument is an aggregate which is passed by value, thus we need to
|
|
// create a copy of it in the local variable space of the current stack
|
|
// frame (which is the stack frame of the caller) and pass the address of
|
|
// this copy to the callee.
|
|
assert((j < ByValArgLocs.size()) && "Index out of bounds!");
|
|
CCValAssign &ByValVA = ByValArgLocs[j++];
|
|
assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
|
|
|
|
// Memory reserved in the local variable space of the callers stack frame.
|
|
unsigned LocMemOffset = ByValVA.getLocMemOffset();
|
|
|
|
SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
|
|
PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
|
|
|
|
// Create a copy of the argument in the local area of the current
|
|
// stack frame.
|
|
SDValue MemcpyCall =
|
|
CreateCopyOfByValArgument(Arg, PtrOff,
|
|
CallSeqStart.getNode()->getOperand(0),
|
|
Flags, DAG, dl);
|
|
|
|
// This must go outside the CALLSEQ_START..END.
|
|
SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
|
|
CallSeqStart.getNode()->getOperand(1));
|
|
DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
|
|
NewCallSeqStart.getNode());
|
|
Chain = CallSeqStart = NewCallSeqStart;
|
|
|
|
// Pass the address of the aggregate copy on the stack either in a
|
|
// physical register or in the parameter list area of the current stack
|
|
// frame to the callee.
|
|
Arg = PtrOff;
|
|
}
|
|
|
|
if (VA.isRegLoc()) {
|
|
// Put argument in a physical register.
|
|
RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
|
|
} else {
|
|
// Put argument in the parameter list area of the current stack frame.
|
|
assert(VA.isMemLoc());
|
|
unsigned LocMemOffset = VA.getLocMemOffset();
|
|
|
|
if (!isTailCall) {
|
|
SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
|
|
PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
|
|
|
|
MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
|
|
PseudoSourceValue::getStack(), LocMemOffset));
|
|
} else {
|
|
// Calculate and remember argument location.
|
|
CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
|
|
TailCallArguments);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!MemOpChains.empty())
|
|
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
|
|
&MemOpChains[0], MemOpChains.size());
|
|
|
|
// Build a sequence of copy-to-reg nodes chained together with token chain
|
|
// and flag operands which copy the outgoing args into the appropriate regs.
|
|
SDValue InFlag;
|
|
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
|
|
Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
|
|
RegsToPass[i].second, InFlag);
|
|
InFlag = Chain.getValue(1);
|
|
}
|
|
|
|
// Set CR6 to true if this is a vararg call.
|
|
if (isVarArg) {
|
|
SDValue SetCR(DAG.getMachineNode(PPC::CRSET, dl, MVT::i32), 0);
|
|
Chain = DAG.getCopyToReg(Chain, dl, PPC::CR1EQ, SetCR, InFlag);
|
|
InFlag = Chain.getValue(1);
|
|
}
|
|
|
|
if (isTailCall) {
|
|
PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp,
|
|
false, TailCallArguments);
|
|
}
|
|
|
|
return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
|
|
RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
|
|
Ins, InVals);
|
|
}
|
|
|
|
SDValue
|
|
PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee,
|
|
CallingConv::ID CallConv, bool isVarArg,
|
|
bool isTailCall,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
DebugLoc dl, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &InVals) {
|
|
|
|
unsigned NumOps = Outs.size();
|
|
|
|
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
|
|
bool isPPC64 = PtrVT == MVT::i64;
|
|
unsigned PtrByteSize = isPPC64 ? 8 : 4;
|
|
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
|
|
// Mark this function as potentially containing a function that contains a
|
|
// tail call. As a consequence the frame pointer will be used for dynamicalloc
|
|
// and restoring the callers stack pointer in this functions epilog. This is
|
|
// done because by tail calling the called function might overwrite the value
|
|
// in this function's (MF) stack pointer stack slot 0(SP).
|
|
if (PerformTailCallOpt && CallConv==CallingConv::Fast)
|
|
MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
|
|
|
|
unsigned nAltivecParamsAtEnd = 0;
|
|
|
|
// Count how many bytes are to be pushed on the stack, including the linkage
|
|
// area, and parameter passing area. We start with 24/48 bytes, which is
|
|
// prereserved space for [SP][CR][LR][3 x unused].
|
|
unsigned NumBytes =
|
|
CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isVarArg, CallConv,
|
|
Outs,
|
|
nAltivecParamsAtEnd);
|
|
|
|
// Calculate by how many bytes the stack has to be adjusted in case of tail
|
|
// call optimization.
|
|
int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
|
|
|
|
// To protect arguments on the stack from being clobbered in a tail call,
|
|
// force all the loads to happen before doing any other lowering.
|
|
if (isTailCall)
|
|
Chain = DAG.getStackArgumentTokenFactor(Chain);
|
|
|
|
// Adjust the stack pointer for the new arguments...
|
|
// These operations are automatically eliminated by the prolog/epilog pass
|
|
Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
|
|
SDValue CallSeqStart = Chain;
|
|
|
|
// Load the return address and frame pointer so it can be move somewhere else
|
|
// later.
|
|
SDValue LROp, FPOp;
|
|
Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
|
|
dl);
|
|
|
|
// Set up a copy of the stack pointer for use loading and storing any
|
|
// arguments that may not fit in the registers available for argument
|
|
// passing.
|
|
SDValue StackPtr;
|
|
if (isPPC64)
|
|
StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
|
|
else
|
|
StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
|
|
|
|
// Figure out which arguments are going to go in registers, and which in
|
|
// memory. Also, if this is a vararg function, floating point operations
|
|
// must be stored to our stack, and loaded into integer regs as well, if
|
|
// any integer regs are available for argument passing.
|
|
unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, true);
|
|
unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
|
|
|
|
static const unsigned GPR_32[] = { // 32-bit registers.
|
|
PPC::R3, PPC::R4, PPC::R5, PPC::R6,
|
|
PPC::R7, PPC::R8, PPC::R9, PPC::R10,
|
|
};
|
|
static const unsigned GPR_64[] = { // 64-bit registers.
|
|
PPC::X3, PPC::X4, PPC::X5, PPC::X6,
|
|
PPC::X7, PPC::X8, PPC::X9, PPC::X10,
|
|
};
|
|
static const unsigned *FPR = GetFPR();
|
|
|
|
static const unsigned VR[] = {
|
|
PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
|
|
PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
|
|
};
|
|
const unsigned NumGPRs = array_lengthof(GPR_32);
|
|
const unsigned NumFPRs = 13;
|
|
const unsigned NumVRs = array_lengthof(VR);
|
|
|
|
const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
|
|
|
|
SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
|
|
SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
|
|
|
|
SmallVector<SDValue, 8> MemOpChains;
|
|
for (unsigned i = 0; i != NumOps; ++i) {
|
|
SDValue Arg = Outs[i].Val;
|
|
ISD::ArgFlagsTy Flags = Outs[i].Flags;
|
|
|
|
// PtrOff will be used to store the current argument to the stack if a
|
|
// register cannot be found for it.
|
|
SDValue PtrOff;
|
|
|
|
PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
|
|
|
|
PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
|
|
|
|
// On PPC64, promote integers to 64-bit values.
|
|
if (isPPC64 && Arg.getValueType() == MVT::i32) {
|
|
// FIXME: Should this use ANY_EXTEND if neither sext nor zext?
|
|
unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
|
|
Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
|
|
}
|
|
|
|
// FIXME memcpy is used way more than necessary. Correctness first.
|
|
if (Flags.isByVal()) {
|
|
unsigned Size = Flags.getByValSize();
|
|
if (Size==1 || Size==2) {
|
|
// Very small objects are passed right-justified.
|
|
// Everything else is passed left-justified.
|
|
EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
|
|
if (GPR_idx != NumGPRs) {
|
|
SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
|
|
NULL, 0, VT);
|
|
MemOpChains.push_back(Load.getValue(1));
|
|
RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
|
|
|
|
ArgOffset += PtrByteSize;
|
|
} else {
|
|
SDValue Const = DAG.getConstant(4 - Size, PtrOff.getValueType());
|
|
SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
|
|
SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, AddPtr,
|
|
CallSeqStart.getNode()->getOperand(0),
|
|
Flags, DAG, dl);
|
|
// This must go outside the CALLSEQ_START..END.
|
|
SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
|
|
CallSeqStart.getNode()->getOperand(1));
|
|
DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
|
|
NewCallSeqStart.getNode());
|
|
Chain = CallSeqStart = NewCallSeqStart;
|
|
ArgOffset += PtrByteSize;
|
|
}
|
|
continue;
|
|
}
|
|
// Copy entire object into memory. There are cases where gcc-generated
|
|
// code assumes it is there, even if it could be put entirely into
|
|
// registers. (This is not what the doc says.)
|
|
SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
|
|
CallSeqStart.getNode()->getOperand(0),
|
|
Flags, DAG, dl);
|
|
// This must go outside the CALLSEQ_START..END.
|
|
SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
|
|
CallSeqStart.getNode()->getOperand(1));
|
|
DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), NewCallSeqStart.getNode());
|
|
Chain = CallSeqStart = NewCallSeqStart;
|
|
// And copy the pieces of it that fit into registers.
|
|
for (unsigned j=0; j<Size; j+=PtrByteSize) {
|
|
SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
|
|
SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
|
|
if (GPR_idx != NumGPRs) {
|
|
SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg, NULL, 0);
|
|
MemOpChains.push_back(Load.getValue(1));
|
|
RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
|
|
ArgOffset += PtrByteSize;
|
|
} else {
|
|
ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
|
|
break;
|
|
}
|
|
}
|
|
continue;
|
|
}
|
|
|
|
switch (Arg.getValueType().getSimpleVT().SimpleTy) {
|
|
default: llvm_unreachable("Unexpected ValueType for argument!");
|
|
case MVT::i32:
|
|
case MVT::i64:
|
|
if (GPR_idx != NumGPRs) {
|
|
RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
|
|
} else {
|
|
LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
|
|
isPPC64, isTailCall, false, MemOpChains,
|
|
TailCallArguments, dl);
|
|
}
|
|
ArgOffset += PtrByteSize;
|
|
break;
|
|
case MVT::f32:
|
|
case MVT::f64:
|
|
if (FPR_idx != NumFPRs) {
|
|
RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
|
|
|
|
if (isVarArg) {
|
|
SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, NULL, 0);
|
|
MemOpChains.push_back(Store);
|
|
|
|
// Float varargs are always shadowed in available integer registers
|
|
if (GPR_idx != NumGPRs) {
|
|
SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, NULL, 0);
|
|
MemOpChains.push_back(Load.getValue(1));
|
|
RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
|
|
}
|
|
if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
|
|
SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
|
|
PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
|
|
SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, NULL, 0);
|
|
MemOpChains.push_back(Load.getValue(1));
|
|
RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
|
|
}
|
|
} else {
|
|
// If we have any FPRs remaining, we may also have GPRs remaining.
|
|
// Args passed in FPRs consume either 1 (f32) or 2 (f64) available
|
|
// GPRs.
|
|
if (GPR_idx != NumGPRs)
|
|
++GPR_idx;
|
|
if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
|
|
!isPPC64) // PPC64 has 64-bit GPR's obviously :)
|
|
++GPR_idx;
|
|
}
|
|
} else {
|
|
LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
|
|
isPPC64, isTailCall, false, MemOpChains,
|
|
TailCallArguments, dl);
|
|
}
|
|
if (isPPC64)
|
|
ArgOffset += 8;
|
|
else
|
|
ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
|
|
break;
|
|
case MVT::v4f32:
|
|
case MVT::v4i32:
|
|
case MVT::v8i16:
|
|
case MVT::v16i8:
|
|
if (isVarArg) {
|
|
// These go aligned on the stack, or in the corresponding R registers
|
|
// when within range. The Darwin PPC ABI doc claims they also go in
|
|
// V registers; in fact gcc does this only for arguments that are
|
|
// prototyped, not for those that match the ... We do it for all
|
|
// arguments, seems to work.
|
|
while (ArgOffset % 16 !=0) {
|
|
ArgOffset += PtrByteSize;
|
|
if (GPR_idx != NumGPRs)
|
|
GPR_idx++;
|
|
}
|
|
// We could elide this store in the case where the object fits
|
|
// entirely in R registers. Maybe later.
|
|
PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
|
|
DAG.getConstant(ArgOffset, PtrVT));
|
|
SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, NULL, 0);
|
|
MemOpChains.push_back(Store);
|
|
if (VR_idx != NumVRs) {
|
|
SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, NULL, 0);
|
|
MemOpChains.push_back(Load.getValue(1));
|
|
RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
|
|
}
|
|
ArgOffset += 16;
|
|
for (unsigned i=0; i<16; i+=PtrByteSize) {
|
|
if (GPR_idx == NumGPRs)
|
|
break;
|
|
SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
|
|
DAG.getConstant(i, PtrVT));
|
|
SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, NULL, 0);
|
|
MemOpChains.push_back(Load.getValue(1));
|
|
RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
|
|
}
|
|
break;
|
|
}
|
|
|
|
// Non-varargs Altivec params generally go in registers, but have
|
|
// stack space allocated at the end.
|
|
if (VR_idx != NumVRs) {
|
|
// Doesn't have GPR space allocated.
|
|
RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
|
|
} else if (nAltivecParamsAtEnd==0) {
|
|
// We are emitting Altivec params in order.
|
|
LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
|
|
isPPC64, isTailCall, true, MemOpChains,
|
|
TailCallArguments, dl);
|
|
ArgOffset += 16;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
// If all Altivec parameters fit in registers, as they usually do,
|
|
// they get stack space following the non-Altivec parameters. We
|
|
// don't track this here because nobody below needs it.
|
|
// If there are more Altivec parameters than fit in registers emit
|
|
// the stores here.
|
|
if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
|
|
unsigned j = 0;
|
|
// Offset is aligned; skip 1st 12 params which go in V registers.
|
|
ArgOffset = ((ArgOffset+15)/16)*16;
|
|
ArgOffset += 12*16;
|
|
for (unsigned i = 0; i != NumOps; ++i) {
|
|
SDValue Arg = Outs[i].Val;
|
|
EVT ArgType = Arg.getValueType();
|
|
if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
|
|
ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
|
|
if (++j > NumVRs) {
|
|
SDValue PtrOff;
|
|
// We are emitting Altivec params in order.
|
|
LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
|
|
isPPC64, isTailCall, true, MemOpChains,
|
|
TailCallArguments, dl);
|
|
ArgOffset += 16;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!MemOpChains.empty())
|
|
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
|
|
&MemOpChains[0], MemOpChains.size());
|
|
|
|
// Build a sequence of copy-to-reg nodes chained together with token chain
|
|
// and flag operands which copy the outgoing args into the appropriate regs.
|
|
SDValue InFlag;
|
|
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
|
|
Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
|
|
RegsToPass[i].second, InFlag);
|
|
InFlag = Chain.getValue(1);
|
|
}
|
|
|
|
if (isTailCall) {
|
|
PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp,
|
|
FPOp, true, TailCallArguments);
|
|
}
|
|
|
|
return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
|
|
RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
|
|
Ins, InVals);
|
|
}
|
|
|
|
SDValue
|
|
PPCTargetLowering::LowerReturn(SDValue Chain,
|
|
CallingConv::ID CallConv, bool isVarArg,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
DebugLoc dl, SelectionDAG &DAG) {
|
|
|
|
SmallVector<CCValAssign, 16> RVLocs;
|
|
CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
|
|
RVLocs, *DAG.getContext());
|
|
CCInfo.AnalyzeReturn(Outs, RetCC_PPC);
|
|
|
|
// If this is the first return lowered for this function, add the regs to the
|
|
// liveout set for the function.
|
|
if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
|
|
for (unsigned i = 0; i != RVLocs.size(); ++i)
|
|
DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
|
|
}
|
|
|
|
SDValue Flag;
|
|
|
|
// Copy the result values into the output registers.
|
|
for (unsigned i = 0; i != RVLocs.size(); ++i) {
|
|
CCValAssign &VA = RVLocs[i];
|
|
assert(VA.isRegLoc() && "Can only return in registers!");
|
|
Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
|
|
Outs[i].Val, Flag);
|
|
Flag = Chain.getValue(1);
|
|
}
|
|
|
|
if (Flag.getNode())
|
|
return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
|
|
else
|
|
return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain);
|
|
}
|
|
|
|
SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
|
|
const PPCSubtarget &Subtarget) {
|
|
// When we pop the dynamic allocation we need to restore the SP link.
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
|
|
// Get the corect type for pointers.
|
|
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
|
|
|
|
// Construct the stack pointer operand.
|
|
bool IsPPC64 = Subtarget.isPPC64();
|
|
unsigned SP = IsPPC64 ? PPC::X1 : PPC::R1;
|
|
SDValue StackPtr = DAG.getRegister(SP, PtrVT);
|
|
|
|
// Get the operands for the STACKRESTORE.
|
|
SDValue Chain = Op.getOperand(0);
|
|
SDValue SaveSP = Op.getOperand(1);
|
|
|
|
// Load the old link SP.
|
|
SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr, NULL, 0);
|
|
|
|
// Restore the stack pointer.
|
|
Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
|
|
|
|
// Store the old link SP.
|
|
return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, NULL, 0);
|
|
}
|
|
|
|
|
|
|
|
SDValue
|
|
PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
bool IsPPC64 = PPCSubTarget.isPPC64();
|
|
bool isDarwinABI = PPCSubTarget.isDarwinABI();
|
|
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
|
|
|
|
// Get current frame pointer save index. The users of this index will be
|
|
// primarily DYNALLOC instructions.
|
|
PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
|
|
int RASI = FI->getReturnAddrSaveIndex();
|
|
|
|
// If the frame pointer save index hasn't been defined yet.
|
|
if (!RASI) {
|
|
// Find out what the fix offset of the frame pointer save area.
|
|
int LROffset = PPCFrameInfo::getReturnSaveOffset(IsPPC64, isDarwinABI);
|
|
// Allocate the frame index for frame pointer save area.
|
|
RASI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, LROffset);
|
|
// Save the result.
|
|
FI->setReturnAddrSaveIndex(RASI);
|
|
}
|
|
return DAG.getFrameIndex(RASI, PtrVT);
|
|
}
|
|
|
|
SDValue
|
|
PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
bool IsPPC64 = PPCSubTarget.isPPC64();
|
|
bool isDarwinABI = PPCSubTarget.isDarwinABI();
|
|
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
|
|
|
|
// Get current frame pointer save index. The users of this index will be
|
|
// primarily DYNALLOC instructions.
|
|
PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
|
|
int FPSI = FI->getFramePointerSaveIndex();
|
|
|
|
// If the frame pointer save index hasn't been defined yet.
|
|
if (!FPSI) {
|
|
// Find out what the fix offset of the frame pointer save area.
|
|
int FPOffset = PPCFrameInfo::getFramePointerSaveOffset(IsPPC64,
|
|
isDarwinABI);
|
|
|
|
// Allocate the frame index for frame pointer save area.
|
|
FPSI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, FPOffset);
|
|
// Save the result.
|
|
FI->setFramePointerSaveIndex(FPSI);
|
|
}
|
|
return DAG.getFrameIndex(FPSI, PtrVT);
|
|
}
|
|
|
|
SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
|
|
SelectionDAG &DAG,
|
|
const PPCSubtarget &Subtarget) {
|
|
// Get the inputs.
|
|
SDValue Chain = Op.getOperand(0);
|
|
SDValue Size = Op.getOperand(1);
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
|
|
// Get the corect type for pointers.
|
|
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
|
|
// Negate the size.
|
|
SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
|
|
DAG.getConstant(0, PtrVT), Size);
|
|
// Construct a node for the frame pointer save index.
|
|
SDValue FPSIdx = getFramePointerFrameIndex(DAG);
|
|
// Build a DYNALLOC node.
|
|
SDValue Ops[3] = { Chain, NegSize, FPSIdx };
|
|
SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
|
|
return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops, 3);
|
|
}
|
|
|
|
/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
|
|
/// possible.
|
|
SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) {
|
|
// Not FP? Not a fsel.
|
|
if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
|
|
!Op.getOperand(2).getValueType().isFloatingPoint())
|
|
return Op;
|
|
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
|
|
|
|
// Cannot handle SETEQ/SETNE.
|
|
if (CC == ISD::SETEQ || CC == ISD::SETNE) return Op;
|
|
|
|
EVT ResVT = Op.getValueType();
|
|
EVT CmpVT = Op.getOperand(0).getValueType();
|
|
SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
|
|
SDValue TV = Op.getOperand(2), FV = Op.getOperand(3);
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
|
|
// If the RHS of the comparison is a 0.0, we don't need to do the
|
|
// subtraction at all.
|
|
if (isFloatingPointZero(RHS))
|
|
switch (CC) {
|
|
default: break; // SETUO etc aren't handled by fsel.
|
|
case ISD::SETULT:
|
|
case ISD::SETLT:
|
|
std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
|
|
case ISD::SETOGE:
|
|
case ISD::SETGE:
|
|
if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
|
|
LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
|
|
return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
|
|
case ISD::SETUGT:
|
|
case ISD::SETGT:
|
|
std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
|
|
case ISD::SETOLE:
|
|
case ISD::SETLE:
|
|
if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
|
|
LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
|
|
return DAG.getNode(PPCISD::FSEL, dl, ResVT,
|
|
DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
|
|
}
|
|
|
|
SDValue Cmp;
|
|
switch (CC) {
|
|
default: break; // SETUO etc aren't handled by fsel.
|
|
case ISD::SETULT:
|
|
case ISD::SETLT:
|
|
Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
|
|
if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
|
|
Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
|
|
return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
|
|
case ISD::SETOGE:
|
|
case ISD::SETGE:
|
|
Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
|
|
if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
|
|
Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
|
|
return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
|
|
case ISD::SETUGT:
|
|
case ISD::SETGT:
|
|
Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
|
|
if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
|
|
Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
|
|
return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
|
|
case ISD::SETOLE:
|
|
case ISD::SETLE:
|
|
Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
|
|
if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
|
|
Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
|
|
return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
|
|
}
|
|
return Op;
|
|
}
|
|
|
|
// FIXME: Split this code up when LegalizeDAGTypes lands.
|
|
SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
|
|
DebugLoc dl) {
|
|
assert(Op.getOperand(0).getValueType().isFloatingPoint());
|
|
SDValue Src = Op.getOperand(0);
|
|
if (Src.getValueType() == MVT::f32)
|
|
Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
|
|
|
|
SDValue Tmp;
|
|
switch (Op.getValueType().getSimpleVT().SimpleTy) {
|
|
default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
|
|
case MVT::i32:
|
|
Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIWZ :
|
|
PPCISD::FCTIDZ,
|
|
dl, MVT::f64, Src);
|
|
break;
|
|
case MVT::i64:
|
|
Tmp = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Src);
|
|
break;
|
|
}
|
|
|
|
// Convert the FP value to an int value through memory.
|
|
SDValue FIPtr = DAG.CreateStackTemporary(MVT::f64);
|
|
|
|
// Emit a store to the stack slot.
|
|
SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, NULL, 0);
|
|
|
|
// Result is a load from the stack slot. If loading 4 bytes, make sure to
|
|
// add in a bias.
|
|
if (Op.getValueType() == MVT::i32)
|
|
FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
|
|
DAG.getConstant(4, FIPtr.getValueType()));
|
|
return DAG.getLoad(Op.getValueType(), dl, Chain, FIPtr, NULL, 0);
|
|
}
|
|
|
|
SDValue PPCTargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
// Don't handle ppc_fp128 here; let it be lowered to a libcall.
|
|
if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
|
|
return SDValue();
|
|
|
|
if (Op.getOperand(0).getValueType() == MVT::i64) {
|
|
SDValue Bits = DAG.getNode(ISD::BIT_CONVERT, dl,
|
|
MVT::f64, Op.getOperand(0));
|
|
SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Bits);
|
|
if (Op.getValueType() == MVT::f32)
|
|
FP = DAG.getNode(ISD::FP_ROUND, dl,
|
|
MVT::f32, FP, DAG.getIntPtrConstant(0));
|
|
return FP;
|
|
}
|
|
|
|
assert(Op.getOperand(0).getValueType() == MVT::i32 &&
|
|
"Unhandled SINT_TO_FP type in custom expander!");
|
|
// Since we only generate this in 64-bit mode, we can take advantage of
|
|
// 64-bit registers. In particular, sign extend the input value into the
|
|
// 64-bit register with extsw, store the WHOLE 64-bit value into the stack
|
|
// then lfd it and fcfid it.
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineFrameInfo *FrameInfo = MF.getFrameInfo();
|
|
int FrameIdx = FrameInfo->CreateStackObject(8, 8);
|
|
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
|
|
SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
|
|
|
|
SDValue Ext64 = DAG.getNode(PPCISD::EXTSW_32, dl, MVT::i32,
|
|
Op.getOperand(0));
|
|
|
|
// STD the extended value into the stack slot.
|
|
MachineMemOperand *MMO =
|
|
MF.getMachineMemOperand(PseudoSourceValue::getFixedStack(FrameIdx),
|
|
MachineMemOperand::MOStore, 0, 8, 8);
|
|
SDValue Ops[] = { DAG.getEntryNode(), Ext64, FIdx };
|
|
SDValue Store =
|
|
DAG.getMemIntrinsicNode(PPCISD::STD_32, dl, DAG.getVTList(MVT::Other),
|
|
Ops, 4, MVT::i64, MMO);
|
|
// Load the value as a double.
|
|
SDValue Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx, NULL, 0);
|
|
|
|
// FCFID it and return it.
|
|
SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Ld);
|
|
if (Op.getValueType() == MVT::f32)
|
|
FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0));
|
|
return FP;
|
|
}
|
|
|
|
SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) {
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
/*
|
|
The rounding mode is in bits 30:31 of FPSR, and has the following
|
|
settings:
|
|
00 Round to nearest
|
|
01 Round to 0
|
|
10 Round to +inf
|
|
11 Round to -inf
|
|
|
|
FLT_ROUNDS, on the other hand, expects the following:
|
|
-1 Undefined
|
|
0 Round to 0
|
|
1 Round to nearest
|
|
2 Round to +inf
|
|
3 Round to -inf
|
|
|
|
To perform the conversion, we do:
|
|
((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
|
|
*/
|
|
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
EVT VT = Op.getValueType();
|
|
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
|
|
std::vector<EVT> NodeTys;
|
|
SDValue MFFSreg, InFlag;
|
|
|
|
// Save FP Control Word to register
|
|
NodeTys.push_back(MVT::f64); // return register
|
|
NodeTys.push_back(MVT::Flag); // unused in this context
|
|
SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
|
|
|
|
// Save FP register to stack slot
|
|
int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
|
|
SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
|
|
SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain,
|
|
StackSlot, NULL, 0);
|
|
|
|
// Load FP Control Word from low 32 bits of stack slot.
|
|
SDValue Four = DAG.getConstant(4, PtrVT);
|
|
SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
|
|
SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, NULL, 0);
|
|
|
|
// Transform as necessary
|
|
SDValue CWD1 =
|
|
DAG.getNode(ISD::AND, dl, MVT::i32,
|
|
CWD, DAG.getConstant(3, MVT::i32));
|
|
SDValue CWD2 =
|
|
DAG.getNode(ISD::SRL, dl, MVT::i32,
|
|
DAG.getNode(ISD::AND, dl, MVT::i32,
|
|
DAG.getNode(ISD::XOR, dl, MVT::i32,
|
|
CWD, DAG.getConstant(3, MVT::i32)),
|
|
DAG.getConstant(3, MVT::i32)),
|
|
DAG.getConstant(1, MVT::i32));
|
|
|
|
SDValue RetVal =
|
|
DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
|
|
|
|
return DAG.getNode((VT.getSizeInBits() < 16 ?
|
|
ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
|
|
}
|
|
|
|
SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) {
|
|
EVT VT = Op.getValueType();
|
|
unsigned BitWidth = VT.getSizeInBits();
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
assert(Op.getNumOperands() == 3 &&
|
|
VT == Op.getOperand(1).getValueType() &&
|
|
"Unexpected SHL!");
|
|
|
|
// Expand into a bunch of logical ops. Note that these ops
|
|
// depend on the PPC behavior for oversized shift amounts.
|
|
SDValue Lo = Op.getOperand(0);
|
|
SDValue Hi = Op.getOperand(1);
|
|
SDValue Amt = Op.getOperand(2);
|
|
EVT AmtVT = Amt.getValueType();
|
|
|
|
SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
|
|
DAG.getConstant(BitWidth, AmtVT), Amt);
|
|
SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
|
|
SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
|
|
SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
|
|
SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
|
|
DAG.getConstant(-BitWidth, AmtVT));
|
|
SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
|
|
SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
|
|
SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
|
|
SDValue OutOps[] = { OutLo, OutHi };
|
|
return DAG.getMergeValues(OutOps, 2, dl);
|
|
}
|
|
|
|
SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) {
|
|
EVT VT = Op.getValueType();
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
unsigned BitWidth = VT.getSizeInBits();
|
|
assert(Op.getNumOperands() == 3 &&
|
|
VT == Op.getOperand(1).getValueType() &&
|
|
"Unexpected SRL!");
|
|
|
|
// Expand into a bunch of logical ops. Note that these ops
|
|
// depend on the PPC behavior for oversized shift amounts.
|
|
SDValue Lo = Op.getOperand(0);
|
|
SDValue Hi = Op.getOperand(1);
|
|
SDValue Amt = Op.getOperand(2);
|
|
EVT AmtVT = Amt.getValueType();
|
|
|
|
SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
|
|
DAG.getConstant(BitWidth, AmtVT), Amt);
|
|
SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
|
|
SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
|
|
SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
|
|
SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
|
|
DAG.getConstant(-BitWidth, AmtVT));
|
|
SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
|
|
SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
|
|
SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
|
|
SDValue OutOps[] = { OutLo, OutHi };
|
|
return DAG.getMergeValues(OutOps, 2, dl);
|
|
}
|
|
|
|
SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) {
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
EVT VT = Op.getValueType();
|
|
unsigned BitWidth = VT.getSizeInBits();
|
|
assert(Op.getNumOperands() == 3 &&
|
|
VT == Op.getOperand(1).getValueType() &&
|
|
"Unexpected SRA!");
|
|
|
|
// Expand into a bunch of logical ops, followed by a select_cc.
|
|
SDValue Lo = Op.getOperand(0);
|
|
SDValue Hi = Op.getOperand(1);
|
|
SDValue Amt = Op.getOperand(2);
|
|
EVT AmtVT = Amt.getValueType();
|
|
|
|
SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
|
|
DAG.getConstant(BitWidth, AmtVT), Amt);
|
|
SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
|
|
SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
|
|
SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
|
|
SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
|
|
DAG.getConstant(-BitWidth, AmtVT));
|
|
SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
|
|
SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
|
|
SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT),
|
|
Tmp4, Tmp6, ISD::SETLE);
|
|
SDValue OutOps[] = { OutLo, OutHi };
|
|
return DAG.getMergeValues(OutOps, 2, dl);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Vector related lowering.
|
|
//
|
|
|
|
/// BuildSplatI - Build a canonical splati of Val with an element size of
|
|
/// SplatSize. Cast the result to VT.
|
|
static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
|
|
SelectionDAG &DAG, DebugLoc dl) {
|
|
assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
|
|
|
|
static const EVT VTys[] = { // canonical VT to use for each size.
|
|
MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
|
|
};
|
|
|
|
EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
|
|
|
|
// Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
|
|
if (Val == -1)
|
|
SplatSize = 1;
|
|
|
|
EVT CanonicalVT = VTys[SplatSize-1];
|
|
|
|
// Build a canonical splat for this value.
|
|
SDValue Elt = DAG.getConstant(Val, MVT::i32);
|
|
SmallVector<SDValue, 8> Ops;
|
|
Ops.assign(CanonicalVT.getVectorNumElements(), Elt);
|
|
SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT,
|
|
&Ops[0], Ops.size());
|
|
return DAG.getNode(ISD::BIT_CONVERT, dl, ReqVT, Res);
|
|
}
|
|
|
|
/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
|
|
/// specified intrinsic ID.
|
|
static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
|
|
SelectionDAG &DAG, DebugLoc dl,
|
|
EVT DestVT = MVT::Other) {
|
|
if (DestVT == MVT::Other) DestVT = LHS.getValueType();
|
|
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
|
|
DAG.getConstant(IID, MVT::i32), LHS, RHS);
|
|
}
|
|
|
|
/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
|
|
/// specified intrinsic ID.
|
|
static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
|
|
SDValue Op2, SelectionDAG &DAG,
|
|
DebugLoc dl, EVT DestVT = MVT::Other) {
|
|
if (DestVT == MVT::Other) DestVT = Op0.getValueType();
|
|
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
|
|
DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
|
|
}
|
|
|
|
|
|
/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
|
|
/// amount. The result has the specified value type.
|
|
static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
|
|
EVT VT, SelectionDAG &DAG, DebugLoc dl) {
|
|
// Force LHS/RHS to be the right type.
|
|
LHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, LHS);
|
|
RHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, RHS);
|
|
|
|
int Ops[16];
|
|
for (unsigned i = 0; i != 16; ++i)
|
|
Ops[i] = i + Amt;
|
|
SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
|
|
return DAG.getNode(ISD::BIT_CONVERT, dl, VT, T);
|
|
}
|
|
|
|
// If this is a case we can't handle, return null and let the default
|
|
// expansion code take care of it. If we CAN select this case, and if it
|
|
// selects to a single instruction, return Op. Otherwise, if we can codegen
|
|
// this case more efficiently than a constant pool load, lower it to the
|
|
// sequence of ops that should be used.
|
|
SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
|
|
assert(BVN != 0 && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
|
|
|
|
// Check if this is a splat of a constant value.
|
|
APInt APSplatBits, APSplatUndef;
|
|
unsigned SplatBitSize;
|
|
bool HasAnyUndefs;
|
|
if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
|
|
HasAnyUndefs) || SplatBitSize > 32)
|
|
return SDValue();
|
|
|
|
unsigned SplatBits = APSplatBits.getZExtValue();
|
|
unsigned SplatUndef = APSplatUndef.getZExtValue();
|
|
unsigned SplatSize = SplatBitSize / 8;
|
|
|
|
// First, handle single instruction cases.
|
|
|
|
// All zeros?
|
|
if (SplatBits == 0) {
|
|
// Canonicalize all zero vectors to be v4i32.
|
|
if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
|
|
SDValue Z = DAG.getConstant(0, MVT::i32);
|
|
Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z);
|
|
Op = DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Z);
|
|
}
|
|
return Op;
|
|
}
|
|
|
|
// If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
|
|
int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
|
|
(32-SplatBitSize));
|
|
if (SextVal >= -16 && SextVal <= 15)
|
|
return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
|
|
|
|
|
|
// Two instruction sequences.
|
|
|
|
// If this value is in the range [-32,30] and is even, use:
|
|
// tmp = VSPLTI[bhw], result = add tmp, tmp
|
|
if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
|
|
SDValue Res = BuildSplatI(SextVal >> 1, SplatSize, MVT::Other, DAG, dl);
|
|
Res = DAG.getNode(ISD::ADD, dl, Res.getValueType(), Res, Res);
|
|
return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
|
|
}
|
|
|
|
// If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is
|
|
// 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important
|
|
// for fneg/fabs.
|
|
if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
|
|
// Make -1 and vspltisw -1:
|
|
SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
|
|
|
|
// Make the VSLW intrinsic, computing 0x8000_0000.
|
|
SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
|
|
OnesV, DAG, dl);
|
|
|
|
// xor by OnesV to invert it.
|
|
Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
|
|
return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
|
|
}
|
|
|
|
// Check to see if this is a wide variety of vsplti*, binop self cases.
|
|
static const signed char SplatCsts[] = {
|
|
-1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
|
|
-8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
|
|
};
|
|
|
|
for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
|
|
// Indirect through the SplatCsts array so that we favor 'vsplti -1' for
|
|
// cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1'
|
|
int i = SplatCsts[idx];
|
|
|
|
// Figure out what shift amount will be used by altivec if shifted by i in
|
|
// this splat size.
|
|
unsigned TypeShiftAmt = i & (SplatBitSize-1);
|
|
|
|
// vsplti + shl self.
|
|
if (SextVal == (i << (int)TypeShiftAmt)) {
|
|
SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
|
|
static const unsigned IIDs[] = { // Intrinsic to use for each size.
|
|
Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
|
|
Intrinsic::ppc_altivec_vslw
|
|
};
|
|
Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
|
|
return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
|
|
}
|
|
|
|
// vsplti + srl self.
|
|
if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
|
|
SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
|
|
static const unsigned IIDs[] = { // Intrinsic to use for each size.
|
|
Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
|
|
Intrinsic::ppc_altivec_vsrw
|
|
};
|
|
Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
|
|
return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
|
|
}
|
|
|
|
// vsplti + sra self.
|
|
if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
|
|
SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
|
|
static const unsigned IIDs[] = { // Intrinsic to use for each size.
|
|
Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
|
|
Intrinsic::ppc_altivec_vsraw
|
|
};
|
|
Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
|
|
return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
|
|
}
|
|
|
|
// vsplti + rol self.
|
|
if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
|
|
((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
|
|
SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
|
|
static const unsigned IIDs[] = { // Intrinsic to use for each size.
|
|
Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
|
|
Intrinsic::ppc_altivec_vrlw
|
|
};
|
|
Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
|
|
return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
|
|
}
|
|
|
|
// t = vsplti c, result = vsldoi t, t, 1
|
|
if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) {
|
|
SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
|
|
return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl);
|
|
}
|
|
// t = vsplti c, result = vsldoi t, t, 2
|
|
if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) {
|
|
SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
|
|
return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl);
|
|
}
|
|
// t = vsplti c, result = vsldoi t, t, 3
|
|
if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) {
|
|
SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
|
|
return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl);
|
|
}
|
|
}
|
|
|
|
// Three instruction sequences.
|
|
|
|
// Odd, in range [17,31]: (vsplti C)-(vsplti -16).
|
|
if (SextVal >= 0 && SextVal <= 31) {
|
|
SDValue LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG, dl);
|
|
SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
|
|
LHS = DAG.getNode(ISD::SUB, dl, LHS.getValueType(), LHS, RHS);
|
|
return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), LHS);
|
|
}
|
|
// Odd, in range [-31,-17]: (vsplti C)+(vsplti -16).
|
|
if (SextVal >= -31 && SextVal <= 0) {
|
|
SDValue LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG, dl);
|
|
SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
|
|
LHS = DAG.getNode(ISD::ADD, dl, LHS.getValueType(), LHS, RHS);
|
|
return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), LHS);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
|
|
/// the specified operations to build the shuffle.
|
|
static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
|
|
SDValue RHS, SelectionDAG &DAG,
|
|
DebugLoc dl) {
|
|
unsigned OpNum = (PFEntry >> 26) & 0x0F;
|
|
unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
|
|
unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1);
|
|
|
|
enum {
|
|
OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
|
|
OP_VMRGHW,
|
|
OP_VMRGLW,
|
|
OP_VSPLTISW0,
|
|
OP_VSPLTISW1,
|
|
OP_VSPLTISW2,
|
|
OP_VSPLTISW3,
|
|
OP_VSLDOI4,
|
|
OP_VSLDOI8,
|
|
OP_VSLDOI12
|
|
};
|
|
|
|
if (OpNum == OP_COPY) {
|
|
if (LHSID == (1*9+2)*9+3) return LHS;
|
|
assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
|
|
return RHS;
|
|
}
|
|
|
|
SDValue OpLHS, OpRHS;
|
|
OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
|
|
OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
|
|
|
|
int ShufIdxs[16];
|
|
switch (OpNum) {
|
|
default: llvm_unreachable("Unknown i32 permute!");
|
|
case OP_VMRGHW:
|
|
ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3;
|
|
ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
|
|
ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7;
|
|
ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
|
|
break;
|
|
case OP_VMRGLW:
|
|
ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
|
|
ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
|
|
ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
|
|
ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
|
|
break;
|
|
case OP_VSPLTISW0:
|
|
for (unsigned i = 0; i != 16; ++i)
|
|
ShufIdxs[i] = (i&3)+0;
|
|
break;
|
|
case OP_VSPLTISW1:
|
|
for (unsigned i = 0; i != 16; ++i)
|
|
ShufIdxs[i] = (i&3)+4;
|
|
break;
|
|
case OP_VSPLTISW2:
|
|
for (unsigned i = 0; i != 16; ++i)
|
|
ShufIdxs[i] = (i&3)+8;
|
|
break;
|
|
case OP_VSPLTISW3:
|
|
for (unsigned i = 0; i != 16; ++i)
|
|
ShufIdxs[i] = (i&3)+12;
|
|
break;
|
|
case OP_VSLDOI4:
|
|
return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
|
|
case OP_VSLDOI8:
|
|
return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
|
|
case OP_VSLDOI12:
|
|
return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
|
|
}
|
|
EVT VT = OpLHS.getValueType();
|
|
OpLHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, OpLHS);
|
|
OpRHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, OpRHS);
|
|
SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
|
|
return DAG.getNode(ISD::BIT_CONVERT, dl, VT, T);
|
|
}
|
|
|
|
/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this
|
|
/// is a shuffle we can handle in a single instruction, return it. Otherwise,
|
|
/// return the code it can be lowered into. Worst case, it can always be
|
|
/// lowered into a vperm.
|
|
SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
|
|
SelectionDAG &DAG) {
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
SDValue V1 = Op.getOperand(0);
|
|
SDValue V2 = Op.getOperand(1);
|
|
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
|
|
EVT VT = Op.getValueType();
|
|
|
|
// Cases that are handled by instructions that take permute immediates
|
|
// (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
|
|
// selected by the instruction selector.
|
|
if (V2.getOpcode() == ISD::UNDEF) {
|
|
if (PPC::isSplatShuffleMask(SVOp, 1) ||
|
|
PPC::isSplatShuffleMask(SVOp, 2) ||
|
|
PPC::isSplatShuffleMask(SVOp, 4) ||
|
|
PPC::isVPKUWUMShuffleMask(SVOp, true) ||
|
|
PPC::isVPKUHUMShuffleMask(SVOp, true) ||
|
|
PPC::isVSLDOIShuffleMask(SVOp, true) != -1 ||
|
|
PPC::isVMRGLShuffleMask(SVOp, 1, true) ||
|
|
PPC::isVMRGLShuffleMask(SVOp, 2, true) ||
|
|
PPC::isVMRGLShuffleMask(SVOp, 4, true) ||
|
|
PPC::isVMRGHShuffleMask(SVOp, 1, true) ||
|
|
PPC::isVMRGHShuffleMask(SVOp, 2, true) ||
|
|
PPC::isVMRGHShuffleMask(SVOp, 4, true)) {
|
|
return Op;
|
|
}
|
|
}
|
|
|
|
// Altivec has a variety of "shuffle immediates" that take two vector inputs
|
|
// and produce a fixed permutation. If any of these match, do not lower to
|
|
// VPERM.
|
|
if (PPC::isVPKUWUMShuffleMask(SVOp, false) ||
|
|
PPC::isVPKUHUMShuffleMask(SVOp, false) ||
|
|
PPC::isVSLDOIShuffleMask(SVOp, false) != -1 ||
|
|
PPC::isVMRGLShuffleMask(SVOp, 1, false) ||
|
|
PPC::isVMRGLShuffleMask(SVOp, 2, false) ||
|
|
PPC::isVMRGLShuffleMask(SVOp, 4, false) ||
|
|
PPC::isVMRGHShuffleMask(SVOp, 1, false) ||
|
|
PPC::isVMRGHShuffleMask(SVOp, 2, false) ||
|
|
PPC::isVMRGHShuffleMask(SVOp, 4, false))
|
|
return Op;
|
|
|
|
// Check to see if this is a shuffle of 4-byte values. If so, we can use our
|
|
// perfect shuffle table to emit an optimal matching sequence.
|
|
SmallVector<int, 16> PermMask;
|
|
SVOp->getMask(PermMask);
|
|
|
|
unsigned PFIndexes[4];
|
|
bool isFourElementShuffle = true;
|
|
for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
|
|
unsigned EltNo = 8; // Start out undef.
|
|
for (unsigned j = 0; j != 4; ++j) { // Intra-element byte.
|
|
if (PermMask[i*4+j] < 0)
|
|
continue; // Undef, ignore it.
|
|
|
|
unsigned ByteSource = PermMask[i*4+j];
|
|
if ((ByteSource & 3) != j) {
|
|
isFourElementShuffle = false;
|
|
break;
|
|
}
|
|
|
|
if (EltNo == 8) {
|
|
EltNo = ByteSource/4;
|
|
} else if (EltNo != ByteSource/4) {
|
|
isFourElementShuffle = false;
|
|
break;
|
|
}
|
|
}
|
|
PFIndexes[i] = EltNo;
|
|
}
|
|
|
|
// If this shuffle can be expressed as a shuffle of 4-byte elements, use the
|
|
// perfect shuffle vector to determine if it is cost effective to do this as
|
|
// discrete instructions, or whether we should use a vperm.
|
|
if (isFourElementShuffle) {
|
|
// Compute the index in the perfect shuffle table.
|
|
unsigned PFTableIndex =
|
|
PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
|
|
|
|
unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
|
|
unsigned Cost = (PFEntry >> 30);
|
|
|
|
// Determining when to avoid vperm is tricky. Many things affect the cost
|
|
// of vperm, particularly how many times the perm mask needs to be computed.
|
|
// For example, if the perm mask can be hoisted out of a loop or is already
|
|
// used (perhaps because there are multiple permutes with the same shuffle
|
|
// mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of
|
|
// the loop requires an extra register.
|
|
//
|
|
// As a compromise, we only emit discrete instructions if the shuffle can be
|
|
// generated in 3 or fewer operations. When we have loop information
|
|
// available, if this block is within a loop, we should avoid using vperm
|
|
// for 3-operation perms and use a constant pool load instead.
|
|
if (Cost < 3)
|
|
return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
|
|
}
|
|
|
|
// Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
|
|
// vector that will get spilled to the constant pool.
|
|
if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
|
|
|
|
// The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
|
|
// that it is in input element units, not in bytes. Convert now.
|
|
EVT EltVT = V1.getValueType().getVectorElementType();
|
|
unsigned BytesPerElement = EltVT.getSizeInBits()/8;
|
|
|
|
SmallVector<SDValue, 16> ResultMask;
|
|
for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
|
|
unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
|
|
|
|
for (unsigned j = 0; j != BytesPerElement; ++j)
|
|
ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
|
|
MVT::i32));
|
|
}
|
|
|
|
SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8,
|
|
&ResultMask[0], ResultMask.size());
|
|
return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), V1, V2, VPermMask);
|
|
}
|
|
|
|
/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
|
|
/// altivec comparison. If it is, return true and fill in Opc/isDot with
|
|
/// information about the intrinsic.
|
|
static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc,
|
|
bool &isDot) {
|
|
unsigned IntrinsicID =
|
|
cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
|
|
CompareOpc = -1;
|
|
isDot = false;
|
|
switch (IntrinsicID) {
|
|
default: return false;
|
|
// Comparison predicates.
|
|
case Intrinsic::ppc_altivec_vcmpbfp_p: CompareOpc = 966; isDot = 1; break;
|
|
case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
|
|
case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc = 6; isDot = 1; break;
|
|
case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc = 70; isDot = 1; break;
|
|
case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
|
|
case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
|
|
case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
|
|
case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
|
|
case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
|
|
case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
|
|
case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
|
|
case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
|
|
case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
|
|
|
|
// Normal Comparisons.
|
|
case Intrinsic::ppc_altivec_vcmpbfp: CompareOpc = 966; isDot = 0; break;
|
|
case Intrinsic::ppc_altivec_vcmpeqfp: CompareOpc = 198; isDot = 0; break;
|
|
case Intrinsic::ppc_altivec_vcmpequb: CompareOpc = 6; isDot = 0; break;
|
|
case Intrinsic::ppc_altivec_vcmpequh: CompareOpc = 70; isDot = 0; break;
|
|
case Intrinsic::ppc_altivec_vcmpequw: CompareOpc = 134; isDot = 0; break;
|
|
case Intrinsic::ppc_altivec_vcmpgefp: CompareOpc = 454; isDot = 0; break;
|
|
case Intrinsic::ppc_altivec_vcmpgtfp: CompareOpc = 710; isDot = 0; break;
|
|
case Intrinsic::ppc_altivec_vcmpgtsb: CompareOpc = 774; isDot = 0; break;
|
|
case Intrinsic::ppc_altivec_vcmpgtsh: CompareOpc = 838; isDot = 0; break;
|
|
case Intrinsic::ppc_altivec_vcmpgtsw: CompareOpc = 902; isDot = 0; break;
|
|
case Intrinsic::ppc_altivec_vcmpgtub: CompareOpc = 518; isDot = 0; break;
|
|
case Intrinsic::ppc_altivec_vcmpgtuh: CompareOpc = 582; isDot = 0; break;
|
|
case Intrinsic::ppc_altivec_vcmpgtuw: CompareOpc = 646; isDot = 0; break;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
|
|
/// lower, do it, otherwise return null.
|
|
SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
|
|
SelectionDAG &DAG) {
|
|
// If this is a lowered altivec predicate compare, CompareOpc is set to the
|
|
// opcode number of the comparison.
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
int CompareOpc;
|
|
bool isDot;
|
|
if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
|
|
return SDValue(); // Don't custom lower most intrinsics.
|
|
|
|
// If this is a non-dot comparison, make the VCMP node and we are done.
|
|
if (!isDot) {
|
|
SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
|
|
Op.getOperand(1), Op.getOperand(2),
|
|
DAG.getConstant(CompareOpc, MVT::i32));
|
|
return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Tmp);
|
|
}
|
|
|
|
// Create the PPCISD altivec 'dot' comparison node.
|
|
SDValue Ops[] = {
|
|
Op.getOperand(2), // LHS
|
|
Op.getOperand(3), // RHS
|
|
DAG.getConstant(CompareOpc, MVT::i32)
|
|
};
|
|
std::vector<EVT> VTs;
|
|
VTs.push_back(Op.getOperand(2).getValueType());
|
|
VTs.push_back(MVT::Flag);
|
|
SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
|
|
|
|
// Now that we have the comparison, emit a copy from the CR to a GPR.
|
|
// This is flagged to the above dot comparison.
|
|
SDValue Flags = DAG.getNode(PPCISD::MFCR, dl, MVT::i32,
|
|
DAG.getRegister(PPC::CR6, MVT::i32),
|
|
CompNode.getValue(1));
|
|
|
|
// Unpack the result based on how the target uses it.
|
|
unsigned BitNo; // Bit # of CR6.
|
|
bool InvertBit; // Invert result?
|
|
switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
|
|
default: // Can't happen, don't crash on invalid number though.
|
|
case 0: // Return the value of the EQ bit of CR6.
|
|
BitNo = 0; InvertBit = false;
|
|
break;
|
|
case 1: // Return the inverted value of the EQ bit of CR6.
|
|
BitNo = 0; InvertBit = true;
|
|
break;
|
|
case 2: // Return the value of the LT bit of CR6.
|
|
BitNo = 2; InvertBit = false;
|
|
break;
|
|
case 3: // Return the inverted value of the LT bit of CR6.
|
|
BitNo = 2; InvertBit = true;
|
|
break;
|
|
}
|
|
|
|
// Shift the bit into the low position.
|
|
Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
|
|
DAG.getConstant(8-(3-BitNo), MVT::i32));
|
|
// Isolate the bit.
|
|
Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
|
|
DAG.getConstant(1, MVT::i32));
|
|
|
|
// If we are supposed to, toggle the bit.
|
|
if (InvertBit)
|
|
Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
|
|
DAG.getConstant(1, MVT::i32));
|
|
return Flags;
|
|
}
|
|
|
|
SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
|
|
SelectionDAG &DAG) {
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
// Create a stack slot that is 16-byte aligned.
|
|
MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
|
|
int FrameIdx = FrameInfo->CreateStackObject(16, 16);
|
|
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
|
|
SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
|
|
|
|
// Store the input value into Value#0 of the stack slot.
|
|
SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
|
|
Op.getOperand(0), FIdx, NULL, 0);
|
|
// Load it out.
|
|
return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, NULL, 0);
|
|
}
|
|
|
|
SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) {
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
if (Op.getValueType() == MVT::v4i32) {
|
|
SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
|
|
|
|
SDValue Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG, dl);
|
|
SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
|
|
|
|
SDValue RHSSwap = // = vrlw RHS, 16
|
|
BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
|
|
|
|
// Shrinkify inputs to v8i16.
|
|
LHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, LHS);
|
|
RHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, RHS);
|
|
RHSSwap = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, RHSSwap);
|
|
|
|
// Low parts multiplied together, generating 32-bit results (we ignore the
|
|
// top parts).
|
|
SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
|
|
LHS, RHS, DAG, dl, MVT::v4i32);
|
|
|
|
SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
|
|
LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
|
|
// Shift the high parts up 16 bits.
|
|
HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
|
|
Neg16, DAG, dl);
|
|
return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
|
|
} else if (Op.getValueType() == MVT::v8i16) {
|
|
SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
|
|
|
|
SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
|
|
|
|
return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
|
|
LHS, RHS, Zero, DAG, dl);
|
|
} else if (Op.getValueType() == MVT::v16i8) {
|
|
SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
|
|
|
|
// Multiply the even 8-bit parts, producing 16-bit sums.
|
|
SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
|
|
LHS, RHS, DAG, dl, MVT::v8i16);
|
|
EvenParts = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, EvenParts);
|
|
|
|
// Multiply the odd 8-bit parts, producing 16-bit sums.
|
|
SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
|
|
LHS, RHS, DAG, dl, MVT::v8i16);
|
|
OddParts = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, OddParts);
|
|
|
|
// Merge the results together.
|
|
int Ops[16];
|
|
for (unsigned i = 0; i != 8; ++i) {
|
|
Ops[i*2 ] = 2*i+1;
|
|
Ops[i*2+1] = 2*i+1+16;
|
|
}
|
|
return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
|
|
} else {
|
|
llvm_unreachable("Unknown mul to lower!");
|
|
}
|
|
}
|
|
|
|
/// LowerOperation - Provide custom lowering hooks for some operations.
|
|
///
|
|
SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
|
|
switch (Op.getOpcode()) {
|
|
default: llvm_unreachable("Wasn't expecting to be able to lower this!");
|
|
case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
|
|
case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
|
|
case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
|
|
case ISD::JumpTable: return LowerJumpTable(Op, DAG);
|
|
case ISD::SETCC: return LowerSETCC(Op, DAG);
|
|
case ISD::TRAMPOLINE: return LowerTRAMPOLINE(Op, DAG);
|
|
case ISD::VASTART:
|
|
return LowerVASTART(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
|
|
VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
|
|
|
|
case ISD::VAARG:
|
|
return LowerVAARG(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
|
|
VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
|
|
|
|
case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
|
|
case ISD::DYNAMIC_STACKALLOC:
|
|
return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
|
|
|
|
case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
|
|
case ISD::FP_TO_UINT:
|
|
case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG,
|
|
Op.getDebugLoc());
|
|
case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
|
|
case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG);
|
|
|
|
// Lower 64-bit shifts.
|
|
case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG);
|
|
case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG);
|
|
case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG);
|
|
|
|
// Vector-related lowering.
|
|
case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
|
|
case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
|
|
case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
|
|
case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
|
|
case ISD::MUL: return LowerMUL(Op, DAG);
|
|
|
|
// Frame & Return address.
|
|
case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
|
|
case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
|
|
SmallVectorImpl<SDValue>&Results,
|
|
SelectionDAG &DAG) {
|
|
DebugLoc dl = N->getDebugLoc();
|
|
switch (N->getOpcode()) {
|
|
default:
|
|
assert(false && "Do not know how to custom type legalize this operation!");
|
|
return;
|
|
case ISD::FP_ROUND_INREG: {
|
|
assert(N->getValueType(0) == MVT::ppcf128);
|
|
assert(N->getOperand(0).getValueType() == MVT::ppcf128);
|
|
SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
|
|
MVT::f64, N->getOperand(0),
|
|
DAG.getIntPtrConstant(0));
|
|
SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
|
|
MVT::f64, N->getOperand(0),
|
|
DAG.getIntPtrConstant(1));
|
|
|
|
// This sequence changes FPSCR to do round-to-zero, adds the two halves
|
|
// of the long double, and puts FPSCR back the way it was. We do not
|
|
// actually model FPSCR.
|
|
std::vector<EVT> NodeTys;
|
|
SDValue Ops[4], Result, MFFSreg, InFlag, FPreg;
|
|
|
|
NodeTys.push_back(MVT::f64); // Return register
|
|
NodeTys.push_back(MVT::Flag); // Returns a flag for later insns
|
|
Result = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
|
|
MFFSreg = Result.getValue(0);
|
|
InFlag = Result.getValue(1);
|
|
|
|
NodeTys.clear();
|
|
NodeTys.push_back(MVT::Flag); // Returns a flag
|
|
Ops[0] = DAG.getConstant(31, MVT::i32);
|
|
Ops[1] = InFlag;
|
|
Result = DAG.getNode(PPCISD::MTFSB1, dl, NodeTys, Ops, 2);
|
|
InFlag = Result.getValue(0);
|
|
|
|
NodeTys.clear();
|
|
NodeTys.push_back(MVT::Flag); // Returns a flag
|
|
Ops[0] = DAG.getConstant(30, MVT::i32);
|
|
Ops[1] = InFlag;
|
|
Result = DAG.getNode(PPCISD::MTFSB0, dl, NodeTys, Ops, 2);
|
|
InFlag = Result.getValue(0);
|
|
|
|
NodeTys.clear();
|
|
NodeTys.push_back(MVT::f64); // result of add
|
|
NodeTys.push_back(MVT::Flag); // Returns a flag
|
|
Ops[0] = Lo;
|
|
Ops[1] = Hi;
|
|
Ops[2] = InFlag;
|
|
Result = DAG.getNode(PPCISD::FADDRTZ, dl, NodeTys, Ops, 3);
|
|
FPreg = Result.getValue(0);
|
|
InFlag = Result.getValue(1);
|
|
|
|
NodeTys.clear();
|
|
NodeTys.push_back(MVT::f64);
|
|
Ops[0] = DAG.getConstant(1, MVT::i32);
|
|
Ops[1] = MFFSreg;
|
|
Ops[2] = FPreg;
|
|
Ops[3] = InFlag;
|
|
Result = DAG.getNode(PPCISD::MTFSF, dl, NodeTys, Ops, 4);
|
|
FPreg = Result.getValue(0);
|
|
|
|
// We know the low half is about to be thrown away, so just use something
|
|
// convenient.
|
|
Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
|
|
FPreg, FPreg));
|
|
return;
|
|
}
|
|
case ISD::FP_TO_SINT:
|
|
Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
|
|
return;
|
|
}
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Other Lowering Code
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
MachineBasicBlock *
|
|
PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
|
|
bool is64bit, unsigned BinOpcode) const {
|
|
// This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
|
|
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
|
|
|
|
const BasicBlock *LLVM_BB = BB->getBasicBlock();
|
|
MachineFunction *F = BB->getParent();
|
|
MachineFunction::iterator It = BB;
|
|
++It;
|
|
|
|
unsigned dest = MI->getOperand(0).getReg();
|
|
unsigned ptrA = MI->getOperand(1).getReg();
|
|
unsigned ptrB = MI->getOperand(2).getReg();
|
|
unsigned incr = MI->getOperand(3).getReg();
|
|
DebugLoc dl = MI->getDebugLoc();
|
|
|
|
MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
F->insert(It, loopMBB);
|
|
F->insert(It, exitMBB);
|
|
exitMBB->transferSuccessors(BB);
|
|
|
|
MachineRegisterInfo &RegInfo = F->getRegInfo();
|
|
unsigned TmpReg = (!BinOpcode) ? incr :
|
|
RegInfo.createVirtualRegister(
|
|
is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
|
|
(const TargetRegisterClass *) &PPC::GPRCRegClass);
|
|
|
|
// thisMBB:
|
|
// ...
|
|
// fallthrough --> loopMBB
|
|
BB->addSuccessor(loopMBB);
|
|
|
|
// loopMBB:
|
|
// l[wd]arx dest, ptr
|
|
// add r0, dest, incr
|
|
// st[wd]cx. r0, ptr
|
|
// bne- loopMBB
|
|
// fallthrough --> exitMBB
|
|
BB = loopMBB;
|
|
BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
|
|
.addReg(ptrA).addReg(ptrB);
|
|
if (BinOpcode)
|
|
BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
|
|
BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
|
|
.addReg(TmpReg).addReg(ptrA).addReg(ptrB);
|
|
BuildMI(BB, dl, TII->get(PPC::BCC))
|
|
.addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
|
|
BB->addSuccessor(loopMBB);
|
|
BB->addSuccessor(exitMBB);
|
|
|
|
// exitMBB:
|
|
// ...
|
|
BB = exitMBB;
|
|
return BB;
|
|
}
|
|
|
|
MachineBasicBlock *
|
|
PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
|
|
MachineBasicBlock *BB,
|
|
bool is8bit, // operation
|
|
unsigned BinOpcode) const {
|
|
// This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
|
|
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
|
|
// In 64 bit mode we have to use 64 bits for addresses, even though the
|
|
// lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address
|
|
// registers without caring whether they're 32 or 64, but here we're
|
|
// doing actual arithmetic on the addresses.
|
|
bool is64bit = PPCSubTarget.isPPC64();
|
|
|
|
const BasicBlock *LLVM_BB = BB->getBasicBlock();
|
|
MachineFunction *F = BB->getParent();
|
|
MachineFunction::iterator It = BB;
|
|
++It;
|
|
|
|
unsigned dest = MI->getOperand(0).getReg();
|
|
unsigned ptrA = MI->getOperand(1).getReg();
|
|
unsigned ptrB = MI->getOperand(2).getReg();
|
|
unsigned incr = MI->getOperand(3).getReg();
|
|
DebugLoc dl = MI->getDebugLoc();
|
|
|
|
MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
F->insert(It, loopMBB);
|
|
F->insert(It, exitMBB);
|
|
exitMBB->transferSuccessors(BB);
|
|
|
|
MachineRegisterInfo &RegInfo = F->getRegInfo();
|
|
const TargetRegisterClass *RC =
|
|
is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
|
|
(const TargetRegisterClass *) &PPC::GPRCRegClass;
|
|
unsigned PtrReg = RegInfo.createVirtualRegister(RC);
|
|
unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
|
|
unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
|
|
unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
|
|
unsigned MaskReg = RegInfo.createVirtualRegister(RC);
|
|
unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
|
|
unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
|
|
unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
|
|
unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
|
|
unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
|
|
unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
|
|
unsigned Ptr1Reg;
|
|
unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
|
|
|
|
// thisMBB:
|
|
// ...
|
|
// fallthrough --> loopMBB
|
|
BB->addSuccessor(loopMBB);
|
|
|
|
// The 4-byte load must be aligned, while a char or short may be
|
|
// anywhere in the word. Hence all this nasty bookkeeping code.
|
|
// add ptr1, ptrA, ptrB [copy if ptrA==0]
|
|
// rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
|
|
// xori shift, shift1, 24 [16]
|
|
// rlwinm ptr, ptr1, 0, 0, 29
|
|
// slw incr2, incr, shift
|
|
// li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
|
|
// slw mask, mask2, shift
|
|
// loopMBB:
|
|
// lwarx tmpDest, ptr
|
|
// add tmp, tmpDest, incr2
|
|
// andc tmp2, tmpDest, mask
|
|
// and tmp3, tmp, mask
|
|
// or tmp4, tmp3, tmp2
|
|
// stwcx. tmp4, ptr
|
|
// bne- loopMBB
|
|
// fallthrough --> exitMBB
|
|
// srw dest, tmpDest, shift
|
|
|
|
if (ptrA!=PPC::R0) {
|
|
Ptr1Reg = RegInfo.createVirtualRegister(RC);
|
|
BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
|
|
.addReg(ptrA).addReg(ptrB);
|
|
} else {
|
|
Ptr1Reg = ptrB;
|
|
}
|
|
BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
|
|
.addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
|
|
BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
|
|
.addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
|
|
if (is64bit)
|
|
BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
|
|
.addReg(Ptr1Reg).addImm(0).addImm(61);
|
|
else
|
|
BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
|
|
.addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
|
|
BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
|
|
.addReg(incr).addReg(ShiftReg);
|
|
if (is8bit)
|
|
BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
|
|
else {
|
|
BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
|
|
BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
|
|
}
|
|
BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
|
|
.addReg(Mask2Reg).addReg(ShiftReg);
|
|
|
|
BB = loopMBB;
|
|
BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
|
|
.addReg(PPC::R0).addReg(PtrReg);
|
|
if (BinOpcode)
|
|
BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
|
|
.addReg(Incr2Reg).addReg(TmpDestReg);
|
|
BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
|
|
.addReg(TmpDestReg).addReg(MaskReg);
|
|
BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
|
|
.addReg(TmpReg).addReg(MaskReg);
|
|
BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
|
|
.addReg(Tmp3Reg).addReg(Tmp2Reg);
|
|
BuildMI(BB, dl, TII->get(PPC::STWCX))
|
|
.addReg(Tmp4Reg).addReg(PPC::R0).addReg(PtrReg);
|
|
BuildMI(BB, dl, TII->get(PPC::BCC))
|
|
.addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
|
|
BB->addSuccessor(loopMBB);
|
|
BB->addSuccessor(exitMBB);
|
|
|
|
// exitMBB:
|
|
// ...
|
|
BB = exitMBB;
|
|
BuildMI(BB, dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg).addReg(ShiftReg);
|
|
return BB;
|
|
}
|
|
|
|
MachineBasicBlock *
|
|
PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
|
|
MachineBasicBlock *BB,
|
|
DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
|
|
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
|
|
|
|
// To "insert" these instructions we actually have to insert their
|
|
// control-flow patterns.
|
|
const BasicBlock *LLVM_BB = BB->getBasicBlock();
|
|
MachineFunction::iterator It = BB;
|
|
++It;
|
|
|
|
MachineFunction *F = BB->getParent();
|
|
|
|
if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
|
|
MI->getOpcode() == PPC::SELECT_CC_I8 ||
|
|
MI->getOpcode() == PPC::SELECT_CC_F4 ||
|
|
MI->getOpcode() == PPC::SELECT_CC_F8 ||
|
|
MI->getOpcode() == PPC::SELECT_CC_VRRC) {
|
|
|
|
// The incoming instruction knows the destination vreg to set, the
|
|
// condition code register to branch on, the true/false values to
|
|
// select between, and a branch opcode to use.
|
|
|
|
// thisMBB:
|
|
// ...
|
|
// TrueVal = ...
|
|
// cmpTY ccX, r1, r2
|
|
// bCC copy1MBB
|
|
// fallthrough --> copy0MBB
|
|
MachineBasicBlock *thisMBB = BB;
|
|
MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
unsigned SelectPred = MI->getOperand(4).getImm();
|
|
DebugLoc dl = MI->getDebugLoc();
|
|
BuildMI(BB, dl, TII->get(PPC::BCC))
|
|
.addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
|
|
F->insert(It, copy0MBB);
|
|
F->insert(It, sinkMBB);
|
|
// Update machine-CFG edges by first adding all successors of the current
|
|
// block to the new block which will contain the Phi node for the select.
|
|
// Also inform sdisel of the edge changes.
|
|
for (MachineBasicBlock::succ_iterator I = BB->succ_begin(),
|
|
E = BB->succ_end(); I != E; ++I) {
|
|
EM->insert(std::make_pair(*I, sinkMBB));
|
|
sinkMBB->addSuccessor(*I);
|
|
}
|
|
// Next, remove all successors of the current block, and add the true
|
|
// and fallthrough blocks as its successors.
|
|
while (!BB->succ_empty())
|
|
BB->removeSuccessor(BB->succ_begin());
|
|
// Next, add the true and fallthrough blocks as its successors.
|
|
BB->addSuccessor(copy0MBB);
|
|
BB->addSuccessor(sinkMBB);
|
|
|
|
// copy0MBB:
|
|
// %FalseValue = ...
|
|
// # fallthrough to sinkMBB
|
|
BB = copy0MBB;
|
|
|
|
// Update machine-CFG edges
|
|
BB->addSuccessor(sinkMBB);
|
|
|
|
// sinkMBB:
|
|
// %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
|
|
// ...
|
|
BB = sinkMBB;
|
|
BuildMI(BB, dl, TII->get(PPC::PHI), MI->getOperand(0).getReg())
|
|
.addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
|
|
.addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
|
|
}
|
|
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
|
|
BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
|
|
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
|
|
BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
|
|
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
|
|
BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4);
|
|
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
|
|
BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8);
|
|
|
|
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
|
|
BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
|
|
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
|
|
BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
|
|
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
|
|
BB = EmitAtomicBinary(MI, BB, false, PPC::AND);
|
|
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
|
|
BB = EmitAtomicBinary(MI, BB, true, PPC::AND8);
|
|
|
|
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
|
|
BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
|
|
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
|
|
BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
|
|
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
|
|
BB = EmitAtomicBinary(MI, BB, false, PPC::OR);
|
|
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
|
|
BB = EmitAtomicBinary(MI, BB, true, PPC::OR8);
|
|
|
|
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
|
|
BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
|
|
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
|
|
BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
|
|
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
|
|
BB = EmitAtomicBinary(MI, BB, false, PPC::XOR);
|
|
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
|
|
BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8);
|
|
|
|
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
|
|
BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ANDC);
|
|
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
|
|
BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ANDC);
|
|
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
|
|
BB = EmitAtomicBinary(MI, BB, false, PPC::ANDC);
|
|
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
|
|
BB = EmitAtomicBinary(MI, BB, true, PPC::ANDC8);
|
|
|
|
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
|
|
BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
|
|
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
|
|
BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
|
|
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
|
|
BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF);
|
|
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
|
|
BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8);
|
|
|
|
else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8)
|
|
BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
|
|
else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16)
|
|
BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
|
|
else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32)
|
|
BB = EmitAtomicBinary(MI, BB, false, 0);
|
|
else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64)
|
|
BB = EmitAtomicBinary(MI, BB, true, 0);
|
|
|
|
else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
|
|
MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) {
|
|
bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
|
|
|
|
unsigned dest = MI->getOperand(0).getReg();
|
|
unsigned ptrA = MI->getOperand(1).getReg();
|
|
unsigned ptrB = MI->getOperand(2).getReg();
|
|
unsigned oldval = MI->getOperand(3).getReg();
|
|
unsigned newval = MI->getOperand(4).getReg();
|
|
DebugLoc dl = MI->getDebugLoc();
|
|
|
|
MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
F->insert(It, loop1MBB);
|
|
F->insert(It, loop2MBB);
|
|
F->insert(It, midMBB);
|
|
F->insert(It, exitMBB);
|
|
exitMBB->transferSuccessors(BB);
|
|
|
|
// thisMBB:
|
|
// ...
|
|
// fallthrough --> loopMBB
|
|
BB->addSuccessor(loop1MBB);
|
|
|
|
// loop1MBB:
|
|
// l[wd]arx dest, ptr
|
|
// cmp[wd] dest, oldval
|
|
// bne- midMBB
|
|
// loop2MBB:
|
|
// st[wd]cx. newval, ptr
|
|
// bne- loopMBB
|
|
// b exitBB
|
|
// midMBB:
|
|
// st[wd]cx. dest, ptr
|
|
// exitBB:
|
|
BB = loop1MBB;
|
|
BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
|
|
.addReg(ptrA).addReg(ptrB);
|
|
BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
|
|
.addReg(oldval).addReg(dest);
|
|
BuildMI(BB, dl, TII->get(PPC::BCC))
|
|
.addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
|
|
BB->addSuccessor(loop2MBB);
|
|
BB->addSuccessor(midMBB);
|
|
|
|
BB = loop2MBB;
|
|
BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
|
|
.addReg(newval).addReg(ptrA).addReg(ptrB);
|
|
BuildMI(BB, dl, TII->get(PPC::BCC))
|
|
.addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
|
|
BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
|
|
BB->addSuccessor(loop1MBB);
|
|
BB->addSuccessor(exitMBB);
|
|
|
|
BB = midMBB;
|
|
BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
|
|
.addReg(dest).addReg(ptrA).addReg(ptrB);
|
|
BB->addSuccessor(exitMBB);
|
|
|
|
// exitMBB:
|
|
// ...
|
|
BB = exitMBB;
|
|
} else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
|
|
MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
|
|
// We must use 64-bit registers for addresses when targeting 64-bit,
|
|
// since we're actually doing arithmetic on them. Other registers
|
|
// can be 32-bit.
|
|
bool is64bit = PPCSubTarget.isPPC64();
|
|
bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
|
|
|
|
unsigned dest = MI->getOperand(0).getReg();
|
|
unsigned ptrA = MI->getOperand(1).getReg();
|
|
unsigned ptrB = MI->getOperand(2).getReg();
|
|
unsigned oldval = MI->getOperand(3).getReg();
|
|
unsigned newval = MI->getOperand(4).getReg();
|
|
DebugLoc dl = MI->getDebugLoc();
|
|
|
|
MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
F->insert(It, loop1MBB);
|
|
F->insert(It, loop2MBB);
|
|
F->insert(It, midMBB);
|
|
F->insert(It, exitMBB);
|
|
exitMBB->transferSuccessors(BB);
|
|
|
|
MachineRegisterInfo &RegInfo = F->getRegInfo();
|
|
const TargetRegisterClass *RC =
|
|
is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
|
|
(const TargetRegisterClass *) &PPC::GPRCRegClass;
|
|
unsigned PtrReg = RegInfo.createVirtualRegister(RC);
|
|
unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
|
|
unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
|
|
unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
|
|
unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
|
|
unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
|
|
unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
|
|
unsigned MaskReg = RegInfo.createVirtualRegister(RC);
|
|
unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
|
|
unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
|
|
unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
|
|
unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
|
|
unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
|
|
unsigned Ptr1Reg;
|
|
unsigned TmpReg = RegInfo.createVirtualRegister(RC);
|
|
// thisMBB:
|
|
// ...
|
|
// fallthrough --> loopMBB
|
|
BB->addSuccessor(loop1MBB);
|
|
|
|
// The 4-byte load must be aligned, while a char or short may be
|
|
// anywhere in the word. Hence all this nasty bookkeeping code.
|
|
// add ptr1, ptrA, ptrB [copy if ptrA==0]
|
|
// rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
|
|
// xori shift, shift1, 24 [16]
|
|
// rlwinm ptr, ptr1, 0, 0, 29
|
|
// slw newval2, newval, shift
|
|
// slw oldval2, oldval,shift
|
|
// li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
|
|
// slw mask, mask2, shift
|
|
// and newval3, newval2, mask
|
|
// and oldval3, oldval2, mask
|
|
// loop1MBB:
|
|
// lwarx tmpDest, ptr
|
|
// and tmp, tmpDest, mask
|
|
// cmpw tmp, oldval3
|
|
// bne- midMBB
|
|
// loop2MBB:
|
|
// andc tmp2, tmpDest, mask
|
|
// or tmp4, tmp2, newval3
|
|
// stwcx. tmp4, ptr
|
|
// bne- loop1MBB
|
|
// b exitBB
|
|
// midMBB:
|
|
// stwcx. tmpDest, ptr
|
|
// exitBB:
|
|
// srw dest, tmpDest, shift
|
|
if (ptrA!=PPC::R0) {
|
|
Ptr1Reg = RegInfo.createVirtualRegister(RC);
|
|
BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
|
|
.addReg(ptrA).addReg(ptrB);
|
|
} else {
|
|
Ptr1Reg = ptrB;
|
|
}
|
|
BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
|
|
.addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
|
|
BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
|
|
.addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
|
|
if (is64bit)
|
|
BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
|
|
.addReg(Ptr1Reg).addImm(0).addImm(61);
|
|
else
|
|
BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
|
|
.addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
|
|
BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
|
|
.addReg(newval).addReg(ShiftReg);
|
|
BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
|
|
.addReg(oldval).addReg(ShiftReg);
|
|
if (is8bit)
|
|
BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
|
|
else {
|
|
BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
|
|
BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
|
|
.addReg(Mask3Reg).addImm(65535);
|
|
}
|
|
BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
|
|
.addReg(Mask2Reg).addReg(ShiftReg);
|
|
BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
|
|
.addReg(NewVal2Reg).addReg(MaskReg);
|
|
BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
|
|
.addReg(OldVal2Reg).addReg(MaskReg);
|
|
|
|
BB = loop1MBB;
|
|
BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
|
|
.addReg(PPC::R0).addReg(PtrReg);
|
|
BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
|
|
.addReg(TmpDestReg).addReg(MaskReg);
|
|
BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
|
|
.addReg(TmpReg).addReg(OldVal3Reg);
|
|
BuildMI(BB, dl, TII->get(PPC::BCC))
|
|
.addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
|
|
BB->addSuccessor(loop2MBB);
|
|
BB->addSuccessor(midMBB);
|
|
|
|
BB = loop2MBB;
|
|
BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
|
|
.addReg(TmpDestReg).addReg(MaskReg);
|
|
BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
|
|
.addReg(Tmp2Reg).addReg(NewVal3Reg);
|
|
BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
|
|
.addReg(PPC::R0).addReg(PtrReg);
|
|
BuildMI(BB, dl, TII->get(PPC::BCC))
|
|
.addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
|
|
BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
|
|
BB->addSuccessor(loop1MBB);
|
|
BB->addSuccessor(exitMBB);
|
|
|
|
BB = midMBB;
|
|
BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
|
|
.addReg(PPC::R0).addReg(PtrReg);
|
|
BB->addSuccessor(exitMBB);
|
|
|
|
// exitMBB:
|
|
// ...
|
|
BB = exitMBB;
|
|
BuildMI(BB, dl, TII->get(PPC::SRW),dest).addReg(TmpReg).addReg(ShiftReg);
|
|
} else {
|
|
llvm_unreachable("Unexpected instr type to insert");
|
|
}
|
|
|
|
F->DeleteMachineInstr(MI); // The pseudo instruction is gone now.
|
|
return BB;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Target Optimization Hooks
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
|
|
DAGCombinerInfo &DCI) const {
|
|
TargetMachine &TM = getTargetMachine();
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
DebugLoc dl = N->getDebugLoc();
|
|
switch (N->getOpcode()) {
|
|
default: break;
|
|
case PPCISD::SHL:
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
|
|
if (C->getZExtValue() == 0) // 0 << V -> 0.
|
|
return N->getOperand(0);
|
|
}
|
|
break;
|
|
case PPCISD::SRL:
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
|
|
if (C->getZExtValue() == 0) // 0 >>u V -> 0.
|
|
return N->getOperand(0);
|
|
}
|
|
break;
|
|
case PPCISD::SRA:
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
|
|
if (C->getZExtValue() == 0 || // 0 >>s V -> 0.
|
|
C->isAllOnesValue()) // -1 >>s V -> -1.
|
|
return N->getOperand(0);
|
|
}
|
|
break;
|
|
|
|
case ISD::SINT_TO_FP:
|
|
if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
|
|
if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
|
|
// Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
|
|
// We allow the src/dst to be either f32/f64, but the intermediate
|
|
// type must be i64.
|
|
if (N->getOperand(0).getValueType() == MVT::i64 &&
|
|
N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
|
|
SDValue Val = N->getOperand(0).getOperand(0);
|
|
if (Val.getValueType() == MVT::f32) {
|
|
Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
|
|
DCI.AddToWorklist(Val.getNode());
|
|
}
|
|
|
|
Val = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Val);
|
|
DCI.AddToWorklist(Val.getNode());
|
|
Val = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Val);
|
|
DCI.AddToWorklist(Val.getNode());
|
|
if (N->getValueType(0) == MVT::f32) {
|
|
Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val,
|
|
DAG.getIntPtrConstant(0));
|
|
DCI.AddToWorklist(Val.getNode());
|
|
}
|
|
return Val;
|
|
} else if (N->getOperand(0).getValueType() == MVT::i32) {
|
|
// If the intermediate type is i32, we can avoid the load/store here
|
|
// too.
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case ISD::STORE:
|
|
// Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
|
|
if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
|
|
!cast<StoreSDNode>(N)->isTruncatingStore() &&
|
|
N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
|
|
N->getOperand(1).getValueType() == MVT::i32 &&
|
|
N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
|
|
SDValue Val = N->getOperand(1).getOperand(0);
|
|
if (Val.getValueType() == MVT::f32) {
|
|
Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
|
|
DCI.AddToWorklist(Val.getNode());
|
|
}
|
|
Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
|
|
DCI.AddToWorklist(Val.getNode());
|
|
|
|
Val = DAG.getNode(PPCISD::STFIWX, dl, MVT::Other, N->getOperand(0), Val,
|
|
N->getOperand(2), N->getOperand(3));
|
|
DCI.AddToWorklist(Val.getNode());
|
|
return Val;
|
|
}
|
|
|
|
// Turn STORE (BSWAP) -> sthbrx/stwbrx.
|
|
if (cast<StoreSDNode>(N)->isUnindexed() &&
|
|
N->getOperand(1).getOpcode() == ISD::BSWAP &&
|
|
N->getOperand(1).getNode()->hasOneUse() &&
|
|
(N->getOperand(1).getValueType() == MVT::i32 ||
|
|
N->getOperand(1).getValueType() == MVT::i16)) {
|
|
SDValue BSwapOp = N->getOperand(1).getOperand(0);
|
|
// Do an any-extend to 32-bits if this is a half-word input.
|
|
if (BSwapOp.getValueType() == MVT::i16)
|
|
BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
|
|
|
|
SDValue Ops[] = {
|
|
N->getOperand(0), BSwapOp, N->getOperand(2),
|
|
DAG.getValueType(N->getOperand(1).getValueType())
|
|
};
|
|
return
|
|
DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
|
|
Ops, array_lengthof(Ops),
|
|
cast<StoreSDNode>(N)->getMemoryVT(),
|
|
cast<StoreSDNode>(N)->getMemOperand());
|
|
}
|
|
break;
|
|
case ISD::BSWAP:
|
|
// Turn BSWAP (LOAD) -> lhbrx/lwbrx.
|
|
if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
|
|
N->getOperand(0).hasOneUse() &&
|
|
(N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
|
|
SDValue Load = N->getOperand(0);
|
|
LoadSDNode *LD = cast<LoadSDNode>(Load);
|
|
// Create the byte-swapping load.
|
|
SDValue Ops[] = {
|
|
LD->getChain(), // Chain
|
|
LD->getBasePtr(), // Ptr
|
|
DAG.getValueType(N->getValueType(0)) // VT
|
|
};
|
|
SDValue BSLoad =
|
|
DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
|
|
DAG.getVTList(MVT::i32, MVT::Other), Ops, 3,
|
|
LD->getMemoryVT(), LD->getMemOperand());
|
|
|
|
// If this is an i16 load, insert the truncate.
|
|
SDValue ResVal = BSLoad;
|
|
if (N->getValueType(0) == MVT::i16)
|
|
ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
|
|
|
|
// First, combine the bswap away. This makes the value produced by the
|
|
// load dead.
|
|
DCI.CombineTo(N, ResVal);
|
|
|
|
// Next, combine the load away, we give it a bogus result value but a real
|
|
// chain result. The result value is dead because the bswap is dead.
|
|
DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
|
|
|
|
// Return N so it doesn't get rechecked!
|
|
return SDValue(N, 0);
|
|
}
|
|
|
|
break;
|
|
case PPCISD::VCMP: {
|
|
// If a VCMPo node already exists with exactly the same operands as this
|
|
// node, use its result instead of this node (VCMPo computes both a CR6 and
|
|
// a normal output).
|
|
//
|
|
if (!N->getOperand(0).hasOneUse() &&
|
|
!N->getOperand(1).hasOneUse() &&
|
|
!N->getOperand(2).hasOneUse()) {
|
|
|
|
// Scan all of the users of the LHS, looking for VCMPo's that match.
|
|
SDNode *VCMPoNode = 0;
|
|
|
|
SDNode *LHSN = N->getOperand(0).getNode();
|
|
for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
|
|
UI != E; ++UI)
|
|
if (UI->getOpcode() == PPCISD::VCMPo &&
|
|
UI->getOperand(1) == N->getOperand(1) &&
|
|
UI->getOperand(2) == N->getOperand(2) &&
|
|
UI->getOperand(0) == N->getOperand(0)) {
|
|
VCMPoNode = *UI;
|
|
break;
|
|
}
|
|
|
|
// If there is no VCMPo node, or if the flag value has a single use, don't
|
|
// transform this.
|
|
if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
|
|
break;
|
|
|
|
// Look at the (necessarily single) use of the flag value. If it has a
|
|
// chain, this transformation is more complex. Note that multiple things
|
|
// could use the value result, which we should ignore.
|
|
SDNode *FlagUser = 0;
|
|
for (SDNode::use_iterator UI = VCMPoNode->use_begin();
|
|
FlagUser == 0; ++UI) {
|
|
assert(UI != VCMPoNode->use_end() && "Didn't find user!");
|
|
SDNode *User = *UI;
|
|
for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
|
|
if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
|
|
FlagUser = User;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If the user is a MFCR instruction, we know this is safe. Otherwise we
|
|
// give up for right now.
|
|
if (FlagUser->getOpcode() == PPCISD::MFCR)
|
|
return SDValue(VCMPoNode, 0);
|
|
}
|
|
break;
|
|
}
|
|
case ISD::BR_CC: {
|
|
// If this is a branch on an altivec predicate comparison, lower this so
|
|
// that we don't have to do a MFCR: instead, branch directly on CR6. This
|
|
// lowering is done pre-legalize, because the legalizer lowers the predicate
|
|
// compare down to code that is difficult to reassemble.
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
|
|
SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
|
|
int CompareOpc;
|
|
bool isDot;
|
|
|
|
if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
|
|
isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
|
|
getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
|
|
assert(isDot && "Can't compare against a vector result!");
|
|
|
|
// If this is a comparison against something other than 0/1, then we know
|
|
// that the condition is never/always true.
|
|
unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
|
|
if (Val != 0 && Val != 1) {
|
|
if (CC == ISD::SETEQ) // Cond never true, remove branch.
|
|
return N->getOperand(0);
|
|
// Always !=, turn it into an unconditional branch.
|
|
return DAG.getNode(ISD::BR, dl, MVT::Other,
|
|
N->getOperand(0), N->getOperand(4));
|
|
}
|
|
|
|
bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
|
|
|
|
// Create the PPCISD altivec 'dot' comparison node.
|
|
std::vector<EVT> VTs;
|
|
SDValue Ops[] = {
|
|
LHS.getOperand(2), // LHS of compare
|
|
LHS.getOperand(3), // RHS of compare
|
|
DAG.getConstant(CompareOpc, MVT::i32)
|
|
};
|
|
VTs.push_back(LHS.getOperand(2).getValueType());
|
|
VTs.push_back(MVT::Flag);
|
|
SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
|
|
|
|
// Unpack the result based on how the target uses it.
|
|
PPC::Predicate CompOpc;
|
|
switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
|
|
default: // Can't happen, don't crash on invalid number though.
|
|
case 0: // Branch on the value of the EQ bit of CR6.
|
|
CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
|
|
break;
|
|
case 1: // Branch on the inverted value of the EQ bit of CR6.
|
|
CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
|
|
break;
|
|
case 2: // Branch on the value of the LT bit of CR6.
|
|
CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
|
|
break;
|
|
case 3: // Branch on the inverted value of the LT bit of CR6.
|
|
CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
|
|
break;
|
|
}
|
|
|
|
return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
|
|
DAG.getConstant(CompOpc, MVT::i32),
|
|
DAG.getRegister(PPC::CR6, MVT::i32),
|
|
N->getOperand(4), CompNode.getValue(1));
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Inline Assembly Support
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
|
|
const APInt &Mask,
|
|
APInt &KnownZero,
|
|
APInt &KnownOne,
|
|
const SelectionDAG &DAG,
|
|
unsigned Depth) const {
|
|
KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
|
|
switch (Op.getOpcode()) {
|
|
default: break;
|
|
case PPCISD::LBRX: {
|
|
// lhbrx is known to have the top bits cleared out.
|
|
if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
|
|
KnownZero = 0xFFFF0000;
|
|
break;
|
|
}
|
|
case ISD::INTRINSIC_WO_CHAIN: {
|
|
switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
|
|
default: break;
|
|
case Intrinsic::ppc_altivec_vcmpbfp_p:
|
|
case Intrinsic::ppc_altivec_vcmpeqfp_p:
|
|
case Intrinsic::ppc_altivec_vcmpequb_p:
|
|
case Intrinsic::ppc_altivec_vcmpequh_p:
|
|
case Intrinsic::ppc_altivec_vcmpequw_p:
|
|
case Intrinsic::ppc_altivec_vcmpgefp_p:
|
|
case Intrinsic::ppc_altivec_vcmpgtfp_p:
|
|
case Intrinsic::ppc_altivec_vcmpgtsb_p:
|
|
case Intrinsic::ppc_altivec_vcmpgtsh_p:
|
|
case Intrinsic::ppc_altivec_vcmpgtsw_p:
|
|
case Intrinsic::ppc_altivec_vcmpgtub_p:
|
|
case Intrinsic::ppc_altivec_vcmpgtuh_p:
|
|
case Intrinsic::ppc_altivec_vcmpgtuw_p:
|
|
KnownZero = ~1U; // All bits but the low one are known to be zero.
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/// getConstraintType - Given a constraint, return the type of
|
|
/// constraint it is for this target.
|
|
PPCTargetLowering::ConstraintType
|
|
PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
|
|
if (Constraint.size() == 1) {
|
|
switch (Constraint[0]) {
|
|
default: break;
|
|
case 'b':
|
|
case 'r':
|
|
case 'f':
|
|
case 'v':
|
|
case 'y':
|
|
return C_RegisterClass;
|
|
}
|
|
}
|
|
return TargetLowering::getConstraintType(Constraint);
|
|
}
|
|
|
|
std::pair<unsigned, const TargetRegisterClass*>
|
|
PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
|
|
EVT VT) const {
|
|
if (Constraint.size() == 1) {
|
|
// GCC RS6000 Constraint Letters
|
|
switch (Constraint[0]) {
|
|
case 'b': // R1-R31
|
|
case 'r': // R0-R31
|
|
if (VT == MVT::i64 && PPCSubTarget.isPPC64())
|
|
return std::make_pair(0U, PPC::G8RCRegisterClass);
|
|
return std::make_pair(0U, PPC::GPRCRegisterClass);
|
|
case 'f':
|
|
if (VT == MVT::f32)
|
|
return std::make_pair(0U, PPC::F4RCRegisterClass);
|
|
else if (VT == MVT::f64)
|
|
return std::make_pair(0U, PPC::F8RCRegisterClass);
|
|
break;
|
|
case 'v':
|
|
return std::make_pair(0U, PPC::VRRCRegisterClass);
|
|
case 'y': // crrc
|
|
return std::make_pair(0U, PPC::CRRCRegisterClass);
|
|
}
|
|
}
|
|
|
|
return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
|
|
}
|
|
|
|
|
|
/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
|
|
/// vector. If it is invalid, don't add anything to Ops. If hasMemory is true
|
|
/// it means one of the asm constraint of the inline asm instruction being
|
|
/// processed is 'm'.
|
|
void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, char Letter,
|
|
bool hasMemory,
|
|
std::vector<SDValue>&Ops,
|
|
SelectionDAG &DAG) const {
|
|
SDValue Result(0,0);
|
|
switch (Letter) {
|
|
default: break;
|
|
case 'I':
|
|
case 'J':
|
|
case 'K':
|
|
case 'L':
|
|
case 'M':
|
|
case 'N':
|
|
case 'O':
|
|
case 'P': {
|
|
ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
|
|
if (!CST) return; // Must be an immediate to match.
|
|
unsigned Value = CST->getZExtValue();
|
|
switch (Letter) {
|
|
default: llvm_unreachable("Unknown constraint letter!");
|
|
case 'I': // "I" is a signed 16-bit constant.
|
|
if ((short)Value == (int)Value)
|
|
Result = DAG.getTargetConstant(Value, Op.getValueType());
|
|
break;
|
|
case 'J': // "J" is a constant with only the high-order 16 bits nonzero.
|
|
case 'L': // "L" is a signed 16-bit constant shifted left 16 bits.
|
|
if ((short)Value == 0)
|
|
Result = DAG.getTargetConstant(Value, Op.getValueType());
|
|
break;
|
|
case 'K': // "K" is a constant with only the low-order 16 bits nonzero.
|
|
if ((Value >> 16) == 0)
|
|
Result = DAG.getTargetConstant(Value, Op.getValueType());
|
|
break;
|
|
case 'M': // "M" is a constant that is greater than 31.
|
|
if (Value > 31)
|
|
Result = DAG.getTargetConstant(Value, Op.getValueType());
|
|
break;
|
|
case 'N': // "N" is a positive constant that is an exact power of two.
|
|
if ((int)Value > 0 && isPowerOf2_32(Value))
|
|
Result = DAG.getTargetConstant(Value, Op.getValueType());
|
|
break;
|
|
case 'O': // "O" is the constant zero.
|
|
if (Value == 0)
|
|
Result = DAG.getTargetConstant(Value, Op.getValueType());
|
|
break;
|
|
case 'P': // "P" is a constant whose negation is a signed 16-bit constant.
|
|
if ((short)-Value == (int)-Value)
|
|
Result = DAG.getTargetConstant(Value, Op.getValueType());
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (Result.getNode()) {
|
|
Ops.push_back(Result);
|
|
return;
|
|
}
|
|
|
|
// Handle standard constraint letters.
|
|
TargetLowering::LowerAsmOperandForConstraint(Op, Letter, hasMemory, Ops, DAG);
|
|
}
|
|
|
|
// isLegalAddressingMode - Return true if the addressing mode represented
|
|
// by AM is legal for this target, for a load/store of the specified type.
|
|
bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
|
|
const Type *Ty) const {
|
|
// FIXME: PPC does not allow r+i addressing modes for vectors!
|
|
|
|
// PPC allows a sign-extended 16-bit immediate field.
|
|
if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
|
|
return false;
|
|
|
|
// No global is ever allowed as a base.
|
|
if (AM.BaseGV)
|
|
return false;
|
|
|
|
// PPC only support r+r,
|
|
switch (AM.Scale) {
|
|
case 0: // "r+i" or just "i", depending on HasBaseReg.
|
|
break;
|
|
case 1:
|
|
if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
|
|
return false;
|
|
// Otherwise we have r+r or r+i.
|
|
break;
|
|
case 2:
|
|
if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
|
|
return false;
|
|
// Allow 2*r as r+r.
|
|
break;
|
|
default:
|
|
// No other scales are supported.
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// isLegalAddressImmediate - Return true if the integer value can be used
|
|
/// as the offset of the target addressing mode for load / store of the
|
|
/// given type.
|
|
bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,const Type *Ty) const{
|
|
// PPC allows a sign-extended 16-bit immediate field.
|
|
return (V > -(1 << 16) && V < (1 << 16)-1);
|
|
}
|
|
|
|
bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
|
|
return false;
|
|
}
|
|
|
|
SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) {
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
// Depths > 0 not supported yet!
|
|
if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
|
|
return SDValue();
|
|
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
|
|
|
|
// Just load the return address off the stack.
|
|
SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
|
|
|
|
// Make sure the function really does not optimize away the store of the RA
|
|
// to the stack.
|
|
FuncInfo->setLRStoreRequired();
|
|
return DAG.getLoad(getPointerTy(), dl,
|
|
DAG.getEntryNode(), RetAddrFI, NULL, 0);
|
|
}
|
|
|
|
SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
// Depths > 0 not supported yet!
|
|
if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
|
|
return SDValue();
|
|
|
|
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
|
|
bool isPPC64 = PtrVT == MVT::i64;
|
|
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
bool is31 = (NoFramePointerElim || MFI->hasVarSizedObjects())
|
|
&& MFI->getStackSize();
|
|
|
|
if (isPPC64)
|
|
return DAG.getCopyFromReg(DAG.getEntryNode(), dl, is31 ? PPC::X31 : PPC::X1,
|
|
MVT::i64);
|
|
else
|
|
return DAG.getCopyFromReg(DAG.getEntryNode(), dl, is31 ? PPC::R31 : PPC::R1,
|
|
MVT::i32);
|
|
}
|
|
|
|
bool
|
|
PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
|
|
// The PowerPC target isn't yet aware of offsets.
|
|
return false;
|
|
}
|
|
|
|
EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size, unsigned Align,
|
|
bool isSrcConst, bool isSrcStr,
|
|
SelectionDAG &DAG) const {
|
|
if (this->PPCSubTarget.isPPC64()) {
|
|
return MVT::i64;
|
|
} else {
|
|
return MVT::i32;
|
|
}
|
|
}
|