mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-15 20:29:48 +00:00
ab849adec4
VSX is an ISA extension supported on the POWER7 and later cores that enhances floating-point vector and scalar capabilities. Among other things, this adds <2 x double> support and generally helps to reduce register pressure. The interesting part of this ISA feature is the register configuration: there are 64 new 128-bit vector registers, the 32 of which are super-registers of the existing 32 scalar floating-point registers, and the second 32 of which overlap with the 32 Altivec vector registers. This makes things like vector insertion and extraction tricky: this can be free but only if we force a restriction to the right register subclass when needed. A new "minipass" PPCVSXCopy takes care of this (although it could do a more-optimal job of it; see the comment about unnecessary copies below). Please note that, currently, VSX is not enabled by default when targeting anything because it is not yet ready for that. The assembler and disassembler are fully implemented and tested. However: - CodeGen support causes miscompiles; test-suite runtime failures: MultiSource/Benchmarks/FreeBench/distray/distray MultiSource/Benchmarks/McCat/08-main/main MultiSource/Benchmarks/Olden/voronoi/voronoi MultiSource/Benchmarks/mafft/pairlocalalign MultiSource/Benchmarks/tramp3d-v4/tramp3d-v4 SingleSource/Benchmarks/CoyoteBench/almabench SingleSource/Benchmarks/Misc/matmul_f64_4x4 - The lowering currently falls back to using Altivec instructions far more than it should. Worse, there are some things that are scalarized through the stack that shouldn't be. - A lot of unnecessary copies make it past the optimizers, and this needs to be fixed. - Many more regression tests are needed. Normally, I'd fix these things prior to committing, but there are some students and other contributors who would like to work this, and so it makes sense to move this development process upstream where it can be subject to the regular code-review procedures. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203768 91177308-0d34-0410-b5e6-96231b3b80d8
2158 lines
84 KiB
C++
2158 lines
84 KiB
C++
//===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines a pattern matching instruction selector for PowerPC,
|
|
// converting from a legalized dag to a PPC dag.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "ppc-codegen"
|
|
#include "PPC.h"
|
|
#include "MCTargetDesc/PPCPredicates.h"
|
|
#include "PPCTargetMachine.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/SelectionDAG.h"
|
|
#include "llvm/CodeGen/SelectionDAGISel.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/GlobalAlias.h"
|
|
#include "llvm/IR/GlobalValue.h"
|
|
#include "llvm/IR/GlobalVariable.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
using namespace llvm;
|
|
|
|
// FIXME: Remove this once the bug has been fixed!
|
|
cl::opt<bool> ANDIGlueBug("expose-ppc-andi-glue-bug",
|
|
cl::desc("expose the ANDI glue bug on PPC"), cl::Hidden);
|
|
|
|
namespace llvm {
|
|
void initializePPCDAGToDAGISelPass(PassRegistry&);
|
|
}
|
|
|
|
namespace {
|
|
//===--------------------------------------------------------------------===//
|
|
/// PPCDAGToDAGISel - PPC specific code to select PPC machine
|
|
/// instructions for SelectionDAG operations.
|
|
///
|
|
class PPCDAGToDAGISel : public SelectionDAGISel {
|
|
const PPCTargetMachine &TM;
|
|
const PPCTargetLowering &PPCLowering;
|
|
const PPCSubtarget &PPCSubTarget;
|
|
unsigned GlobalBaseReg;
|
|
public:
|
|
explicit PPCDAGToDAGISel(PPCTargetMachine &tm)
|
|
: SelectionDAGISel(tm), TM(tm),
|
|
PPCLowering(*TM.getTargetLowering()),
|
|
PPCSubTarget(*TM.getSubtargetImpl()) {
|
|
initializePPCDAGToDAGISelPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
virtual bool runOnMachineFunction(MachineFunction &MF) {
|
|
// Make sure we re-emit a set of the global base reg if necessary
|
|
GlobalBaseReg = 0;
|
|
SelectionDAGISel::runOnMachineFunction(MF);
|
|
|
|
if (!PPCSubTarget.isSVR4ABI())
|
|
InsertVRSaveCode(MF);
|
|
|
|
return true;
|
|
}
|
|
|
|
virtual void PostprocessISelDAG();
|
|
|
|
/// getI32Imm - Return a target constant with the specified value, of type
|
|
/// i32.
|
|
inline SDValue getI32Imm(unsigned Imm) {
|
|
return CurDAG->getTargetConstant(Imm, MVT::i32);
|
|
}
|
|
|
|
/// getI64Imm - Return a target constant with the specified value, of type
|
|
/// i64.
|
|
inline SDValue getI64Imm(uint64_t Imm) {
|
|
return CurDAG->getTargetConstant(Imm, MVT::i64);
|
|
}
|
|
|
|
/// getSmallIPtrImm - Return a target constant of pointer type.
|
|
inline SDValue getSmallIPtrImm(unsigned Imm) {
|
|
return CurDAG->getTargetConstant(Imm, PPCLowering.getPointerTy());
|
|
}
|
|
|
|
/// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s
|
|
/// with any number of 0s on either side. The 1s are allowed to wrap from
|
|
/// LSB to MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs.
|
|
/// 0x0F0F0000 is not, since all 1s are not contiguous.
|
|
static bool isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME);
|
|
|
|
|
|
/// isRotateAndMask - Returns true if Mask and Shift can be folded into a
|
|
/// rotate and mask opcode and mask operation.
|
|
static bool isRotateAndMask(SDNode *N, unsigned Mask, bool isShiftMask,
|
|
unsigned &SH, unsigned &MB, unsigned &ME);
|
|
|
|
/// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
|
|
/// base register. Return the virtual register that holds this value.
|
|
SDNode *getGlobalBaseReg();
|
|
|
|
// Select - Convert the specified operand from a target-independent to a
|
|
// target-specific node if it hasn't already been changed.
|
|
SDNode *Select(SDNode *N);
|
|
|
|
SDNode *SelectBitfieldInsert(SDNode *N);
|
|
|
|
/// SelectCC - Select a comparison of the specified values with the
|
|
/// specified condition code, returning the CR# of the expression.
|
|
SDValue SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC, SDLoc dl);
|
|
|
|
/// SelectAddrImm - Returns true if the address N can be represented by
|
|
/// a base register plus a signed 16-bit displacement [r+imm].
|
|
bool SelectAddrImm(SDValue N, SDValue &Disp,
|
|
SDValue &Base) {
|
|
return PPCLowering.SelectAddressRegImm(N, Disp, Base, *CurDAG, false);
|
|
}
|
|
|
|
/// SelectAddrImmOffs - Return true if the operand is valid for a preinc
|
|
/// immediate field. Note that the operand at this point is already the
|
|
/// result of a prior SelectAddressRegImm call.
|
|
bool SelectAddrImmOffs(SDValue N, SDValue &Out) const {
|
|
if (N.getOpcode() == ISD::TargetConstant ||
|
|
N.getOpcode() == ISD::TargetGlobalAddress) {
|
|
Out = N;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// SelectAddrIdx - Given the specified addressed, check to see if it can be
|
|
/// represented as an indexed [r+r] operation. Returns false if it can
|
|
/// be represented by [r+imm], which are preferred.
|
|
bool SelectAddrIdx(SDValue N, SDValue &Base, SDValue &Index) {
|
|
return PPCLowering.SelectAddressRegReg(N, Base, Index, *CurDAG);
|
|
}
|
|
|
|
/// SelectAddrIdxOnly - Given the specified addressed, force it to be
|
|
/// represented as an indexed [r+r] operation.
|
|
bool SelectAddrIdxOnly(SDValue N, SDValue &Base, SDValue &Index) {
|
|
return PPCLowering.SelectAddressRegRegOnly(N, Base, Index, *CurDAG);
|
|
}
|
|
|
|
/// SelectAddrImmX4 - Returns true if the address N can be represented by
|
|
/// a base register plus a signed 16-bit displacement that is a multiple of 4.
|
|
/// Suitable for use by STD and friends.
|
|
bool SelectAddrImmX4(SDValue N, SDValue &Disp, SDValue &Base) {
|
|
return PPCLowering.SelectAddressRegImm(N, Disp, Base, *CurDAG, true);
|
|
}
|
|
|
|
// Select an address into a single register.
|
|
bool SelectAddr(SDValue N, SDValue &Base) {
|
|
Base = N;
|
|
return true;
|
|
}
|
|
|
|
/// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
|
|
/// inline asm expressions. It is always correct to compute the value into
|
|
/// a register. The case of adding a (possibly relocatable) constant to a
|
|
/// register can be improved, but it is wrong to substitute Reg+Reg for
|
|
/// Reg in an asm, because the load or store opcode would have to change.
|
|
virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
|
|
char ConstraintCode,
|
|
std::vector<SDValue> &OutOps) {
|
|
OutOps.push_back(Op);
|
|
return false;
|
|
}
|
|
|
|
void InsertVRSaveCode(MachineFunction &MF);
|
|
|
|
virtual const char *getPassName() const {
|
|
return "PowerPC DAG->DAG Pattern Instruction Selection";
|
|
}
|
|
|
|
// Include the pieces autogenerated from the target description.
|
|
#include "PPCGenDAGISel.inc"
|
|
|
|
private:
|
|
SDNode *SelectSETCC(SDNode *N);
|
|
|
|
void PeepholePPC64();
|
|
void PeepholdCROps();
|
|
|
|
bool AllUsersSelectZero(SDNode *N);
|
|
void SwapAllSelectUsers(SDNode *N);
|
|
};
|
|
}
|
|
|
|
/// InsertVRSaveCode - Once the entire function has been instruction selected,
|
|
/// all virtual registers are created and all machine instructions are built,
|
|
/// check to see if we need to save/restore VRSAVE. If so, do it.
|
|
void PPCDAGToDAGISel::InsertVRSaveCode(MachineFunction &Fn) {
|
|
// Check to see if this function uses vector registers, which means we have to
|
|
// save and restore the VRSAVE register and update it with the regs we use.
|
|
//
|
|
// In this case, there will be virtual registers of vector type created
|
|
// by the scheduler. Detect them now.
|
|
bool HasVectorVReg = false;
|
|
for (unsigned i = 0, e = RegInfo->getNumVirtRegs(); i != e; ++i) {
|
|
unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
|
|
if (RegInfo->getRegClass(Reg) == &PPC::VRRCRegClass) {
|
|
HasVectorVReg = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!HasVectorVReg) return; // nothing to do.
|
|
|
|
// If we have a vector register, we want to emit code into the entry and exit
|
|
// blocks to save and restore the VRSAVE register. We do this here (instead
|
|
// of marking all vector instructions as clobbering VRSAVE) for two reasons:
|
|
//
|
|
// 1. This (trivially) reduces the load on the register allocator, by not
|
|
// having to represent the live range of the VRSAVE register.
|
|
// 2. This (more significantly) allows us to create a temporary virtual
|
|
// register to hold the saved VRSAVE value, allowing this temporary to be
|
|
// register allocated, instead of forcing it to be spilled to the stack.
|
|
|
|
// Create two vregs - one to hold the VRSAVE register that is live-in to the
|
|
// function and one for the value after having bits or'd into it.
|
|
unsigned InVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
|
|
unsigned UpdatedVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
|
|
|
|
const TargetInstrInfo &TII = *TM.getInstrInfo();
|
|
MachineBasicBlock &EntryBB = *Fn.begin();
|
|
DebugLoc dl;
|
|
// Emit the following code into the entry block:
|
|
// InVRSAVE = MFVRSAVE
|
|
// UpdatedVRSAVE = UPDATE_VRSAVE InVRSAVE
|
|
// MTVRSAVE UpdatedVRSAVE
|
|
MachineBasicBlock::iterator IP = EntryBB.begin(); // Insert Point
|
|
BuildMI(EntryBB, IP, dl, TII.get(PPC::MFVRSAVE), InVRSAVE);
|
|
BuildMI(EntryBB, IP, dl, TII.get(PPC::UPDATE_VRSAVE),
|
|
UpdatedVRSAVE).addReg(InVRSAVE);
|
|
BuildMI(EntryBB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(UpdatedVRSAVE);
|
|
|
|
// Find all return blocks, outputting a restore in each epilog.
|
|
for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
|
|
if (!BB->empty() && BB->back().isReturn()) {
|
|
IP = BB->end(); --IP;
|
|
|
|
// Skip over all terminator instructions, which are part of the return
|
|
// sequence.
|
|
MachineBasicBlock::iterator I2 = IP;
|
|
while (I2 != BB->begin() && (--I2)->isTerminator())
|
|
IP = I2;
|
|
|
|
// Emit: MTVRSAVE InVRSave
|
|
BuildMI(*BB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(InVRSAVE);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/// getGlobalBaseReg - Output the instructions required to put the
|
|
/// base address to use for accessing globals into a register.
|
|
///
|
|
SDNode *PPCDAGToDAGISel::getGlobalBaseReg() {
|
|
if (!GlobalBaseReg) {
|
|
const TargetInstrInfo &TII = *TM.getInstrInfo();
|
|
// Insert the set of GlobalBaseReg into the first MBB of the function
|
|
MachineBasicBlock &FirstMBB = MF->front();
|
|
MachineBasicBlock::iterator MBBI = FirstMBB.begin();
|
|
DebugLoc dl;
|
|
|
|
if (PPCLowering.getPointerTy() == MVT::i32) {
|
|
GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::GPRC_NOR0RegClass);
|
|
BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
|
|
BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
|
|
} else {
|
|
GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::G8RC_NOX0RegClass);
|
|
BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR8));
|
|
BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR8), GlobalBaseReg);
|
|
}
|
|
}
|
|
return CurDAG->getRegister(GlobalBaseReg,
|
|
PPCLowering.getPointerTy()).getNode();
|
|
}
|
|
|
|
/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
|
|
/// or 64-bit immediate, and if the value can be accurately represented as a
|
|
/// sign extension from a 16-bit value. If so, this returns true and the
|
|
/// immediate.
|
|
static bool isIntS16Immediate(SDNode *N, short &Imm) {
|
|
if (N->getOpcode() != ISD::Constant)
|
|
return false;
|
|
|
|
Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
|
|
if (N->getValueType(0) == MVT::i32)
|
|
return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
|
|
else
|
|
return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
|
|
}
|
|
|
|
static bool isIntS16Immediate(SDValue Op, short &Imm) {
|
|
return isIntS16Immediate(Op.getNode(), Imm);
|
|
}
|
|
|
|
|
|
/// isInt32Immediate - This method tests to see if the node is a 32-bit constant
|
|
/// operand. If so Imm will receive the 32-bit value.
|
|
static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
|
|
if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
|
|
Imm = cast<ConstantSDNode>(N)->getZExtValue();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// isInt64Immediate - This method tests to see if the node is a 64-bit constant
|
|
/// operand. If so Imm will receive the 64-bit value.
|
|
static bool isInt64Immediate(SDNode *N, uint64_t &Imm) {
|
|
if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) {
|
|
Imm = cast<ConstantSDNode>(N)->getZExtValue();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// isInt32Immediate - This method tests to see if a constant operand.
|
|
// If so Imm will receive the 32 bit value.
|
|
static bool isInt32Immediate(SDValue N, unsigned &Imm) {
|
|
return isInt32Immediate(N.getNode(), Imm);
|
|
}
|
|
|
|
|
|
// isOpcWithIntImmediate - This method tests to see if the node is a specific
|
|
// opcode and that it has a immediate integer right operand.
|
|
// If so Imm will receive the 32 bit value.
|
|
static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
|
|
return N->getOpcode() == Opc
|
|
&& isInt32Immediate(N->getOperand(1).getNode(), Imm);
|
|
}
|
|
|
|
bool PPCDAGToDAGISel::isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME) {
|
|
if (!Val)
|
|
return false;
|
|
|
|
if (isShiftedMask_32(Val)) {
|
|
// look for the first non-zero bit
|
|
MB = countLeadingZeros(Val);
|
|
// look for the first zero bit after the run of ones
|
|
ME = countLeadingZeros((Val - 1) ^ Val);
|
|
return true;
|
|
} else {
|
|
Val = ~Val; // invert mask
|
|
if (isShiftedMask_32(Val)) {
|
|
// effectively look for the first zero bit
|
|
ME = countLeadingZeros(Val) - 1;
|
|
// effectively look for the first one bit after the run of zeros
|
|
MB = countLeadingZeros((Val - 1) ^ Val) + 1;
|
|
return true;
|
|
}
|
|
}
|
|
// no run present
|
|
return false;
|
|
}
|
|
|
|
bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask,
|
|
bool isShiftMask, unsigned &SH,
|
|
unsigned &MB, unsigned &ME) {
|
|
// Don't even go down this path for i64, since different logic will be
|
|
// necessary for rldicl/rldicr/rldimi.
|
|
if (N->getValueType(0) != MVT::i32)
|
|
return false;
|
|
|
|
unsigned Shift = 32;
|
|
unsigned Indeterminant = ~0; // bit mask marking indeterminant results
|
|
unsigned Opcode = N->getOpcode();
|
|
if (N->getNumOperands() != 2 ||
|
|
!isInt32Immediate(N->getOperand(1).getNode(), Shift) || (Shift > 31))
|
|
return false;
|
|
|
|
if (Opcode == ISD::SHL) {
|
|
// apply shift left to mask if it comes first
|
|
if (isShiftMask) Mask = Mask << Shift;
|
|
// determine which bits are made indeterminant by shift
|
|
Indeterminant = ~(0xFFFFFFFFu << Shift);
|
|
} else if (Opcode == ISD::SRL) {
|
|
// apply shift right to mask if it comes first
|
|
if (isShiftMask) Mask = Mask >> Shift;
|
|
// determine which bits are made indeterminant by shift
|
|
Indeterminant = ~(0xFFFFFFFFu >> Shift);
|
|
// adjust for the left rotate
|
|
Shift = 32 - Shift;
|
|
} else if (Opcode == ISD::ROTL) {
|
|
Indeterminant = 0;
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
// if the mask doesn't intersect any Indeterminant bits
|
|
if (Mask && !(Mask & Indeterminant)) {
|
|
SH = Shift & 31;
|
|
// make sure the mask is still a mask (wrap arounds may not be)
|
|
return isRunOfOnes(Mask, MB, ME);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// SelectBitfieldInsert - turn an or of two masked values into
|
|
/// the rotate left word immediate then mask insert (rlwimi) instruction.
|
|
SDNode *PPCDAGToDAGISel::SelectBitfieldInsert(SDNode *N) {
|
|
SDValue Op0 = N->getOperand(0);
|
|
SDValue Op1 = N->getOperand(1);
|
|
SDLoc dl(N);
|
|
|
|
APInt LKZ, LKO, RKZ, RKO;
|
|
CurDAG->ComputeMaskedBits(Op0, LKZ, LKO);
|
|
CurDAG->ComputeMaskedBits(Op1, RKZ, RKO);
|
|
|
|
unsigned TargetMask = LKZ.getZExtValue();
|
|
unsigned InsertMask = RKZ.getZExtValue();
|
|
|
|
if ((TargetMask | InsertMask) == 0xFFFFFFFF) {
|
|
unsigned Op0Opc = Op0.getOpcode();
|
|
unsigned Op1Opc = Op1.getOpcode();
|
|
unsigned Value, SH = 0;
|
|
TargetMask = ~TargetMask;
|
|
InsertMask = ~InsertMask;
|
|
|
|
// If the LHS has a foldable shift and the RHS does not, then swap it to the
|
|
// RHS so that we can fold the shift into the insert.
|
|
if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) {
|
|
if (Op0.getOperand(0).getOpcode() == ISD::SHL ||
|
|
Op0.getOperand(0).getOpcode() == ISD::SRL) {
|
|
if (Op1.getOperand(0).getOpcode() != ISD::SHL &&
|
|
Op1.getOperand(0).getOpcode() != ISD::SRL) {
|
|
std::swap(Op0, Op1);
|
|
std::swap(Op0Opc, Op1Opc);
|
|
std::swap(TargetMask, InsertMask);
|
|
}
|
|
}
|
|
} else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) {
|
|
if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL &&
|
|
Op1.getOperand(0).getOpcode() != ISD::SRL) {
|
|
std::swap(Op0, Op1);
|
|
std::swap(Op0Opc, Op1Opc);
|
|
std::swap(TargetMask, InsertMask);
|
|
}
|
|
}
|
|
|
|
unsigned MB, ME;
|
|
if (isRunOfOnes(InsertMask, MB, ME)) {
|
|
SDValue Tmp1, Tmp2;
|
|
|
|
if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) &&
|
|
isInt32Immediate(Op1.getOperand(1), Value)) {
|
|
Op1 = Op1.getOperand(0);
|
|
SH = (Op1Opc == ISD::SHL) ? Value : 32 - Value;
|
|
}
|
|
if (Op1Opc == ISD::AND) {
|
|
unsigned SHOpc = Op1.getOperand(0).getOpcode();
|
|
if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) &&
|
|
isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) {
|
|
// Note that Value must be in range here (less than 32) because
|
|
// otherwise there would not be any bits set in InsertMask.
|
|
Op1 = Op1.getOperand(0).getOperand(0);
|
|
SH = (SHOpc == ISD::SHL) ? Value : 32 - Value;
|
|
}
|
|
}
|
|
|
|
SH &= 31;
|
|
SDValue Ops[] = { Op0, Op1, getI32Imm(SH), getI32Imm(MB),
|
|
getI32Imm(ME) };
|
|
return CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/// SelectCC - Select a comparison of the specified values with the specified
|
|
/// condition code, returning the CR# of the expression.
|
|
SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS,
|
|
ISD::CondCode CC, SDLoc dl) {
|
|
// Always select the LHS.
|
|
unsigned Opc;
|
|
|
|
if (LHS.getValueType() == MVT::i32) {
|
|
unsigned Imm;
|
|
if (CC == ISD::SETEQ || CC == ISD::SETNE) {
|
|
if (isInt32Immediate(RHS, Imm)) {
|
|
// SETEQ/SETNE comparison with 16-bit immediate, fold it.
|
|
if (isUInt<16>(Imm))
|
|
return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
|
|
getI32Imm(Imm & 0xFFFF)), 0);
|
|
// If this is a 16-bit signed immediate, fold it.
|
|
if (isInt<16>((int)Imm))
|
|
return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
|
|
getI32Imm(Imm & 0xFFFF)), 0);
|
|
|
|
// For non-equality comparisons, the default code would materialize the
|
|
// constant, then compare against it, like this:
|
|
// lis r2, 4660
|
|
// ori r2, r2, 22136
|
|
// cmpw cr0, r3, r2
|
|
// Since we are just comparing for equality, we can emit this instead:
|
|
// xoris r0,r3,0x1234
|
|
// cmplwi cr0,r0,0x5678
|
|
// beq cr0,L6
|
|
SDValue Xor(CurDAG->getMachineNode(PPC::XORIS, dl, MVT::i32, LHS,
|
|
getI32Imm(Imm >> 16)), 0);
|
|
return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, Xor,
|
|
getI32Imm(Imm & 0xFFFF)), 0);
|
|
}
|
|
Opc = PPC::CMPLW;
|
|
} else if (ISD::isUnsignedIntSetCC(CC)) {
|
|
if (isInt32Immediate(RHS, Imm) && isUInt<16>(Imm))
|
|
return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
|
|
getI32Imm(Imm & 0xFFFF)), 0);
|
|
Opc = PPC::CMPLW;
|
|
} else {
|
|
short SImm;
|
|
if (isIntS16Immediate(RHS, SImm))
|
|
return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
|
|
getI32Imm((int)SImm & 0xFFFF)),
|
|
0);
|
|
Opc = PPC::CMPW;
|
|
}
|
|
} else if (LHS.getValueType() == MVT::i64) {
|
|
uint64_t Imm;
|
|
if (CC == ISD::SETEQ || CC == ISD::SETNE) {
|
|
if (isInt64Immediate(RHS.getNode(), Imm)) {
|
|
// SETEQ/SETNE comparison with 16-bit immediate, fold it.
|
|
if (isUInt<16>(Imm))
|
|
return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
|
|
getI32Imm(Imm & 0xFFFF)), 0);
|
|
// If this is a 16-bit signed immediate, fold it.
|
|
if (isInt<16>(Imm))
|
|
return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
|
|
getI32Imm(Imm & 0xFFFF)), 0);
|
|
|
|
// For non-equality comparisons, the default code would materialize the
|
|
// constant, then compare against it, like this:
|
|
// lis r2, 4660
|
|
// ori r2, r2, 22136
|
|
// cmpd cr0, r3, r2
|
|
// Since we are just comparing for equality, we can emit this instead:
|
|
// xoris r0,r3,0x1234
|
|
// cmpldi cr0,r0,0x5678
|
|
// beq cr0,L6
|
|
if (isUInt<32>(Imm)) {
|
|
SDValue Xor(CurDAG->getMachineNode(PPC::XORIS8, dl, MVT::i64, LHS,
|
|
getI64Imm(Imm >> 16)), 0);
|
|
return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, Xor,
|
|
getI64Imm(Imm & 0xFFFF)), 0);
|
|
}
|
|
}
|
|
Opc = PPC::CMPLD;
|
|
} else if (ISD::isUnsignedIntSetCC(CC)) {
|
|
if (isInt64Immediate(RHS.getNode(), Imm) && isUInt<16>(Imm))
|
|
return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
|
|
getI64Imm(Imm & 0xFFFF)), 0);
|
|
Opc = PPC::CMPLD;
|
|
} else {
|
|
short SImm;
|
|
if (isIntS16Immediate(RHS, SImm))
|
|
return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
|
|
getI64Imm(SImm & 0xFFFF)),
|
|
0);
|
|
Opc = PPC::CMPD;
|
|
}
|
|
} else if (LHS.getValueType() == MVT::f32) {
|
|
Opc = PPC::FCMPUS;
|
|
} else {
|
|
assert(LHS.getValueType() == MVT::f64 && "Unknown vt!");
|
|
Opc = PPCSubTarget.hasVSX() ? PPC::XSCMPUDP : PPC::FCMPUD;
|
|
}
|
|
return SDValue(CurDAG->getMachineNode(Opc, dl, MVT::i32, LHS, RHS), 0);
|
|
}
|
|
|
|
static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC) {
|
|
switch (CC) {
|
|
case ISD::SETUEQ:
|
|
case ISD::SETONE:
|
|
case ISD::SETOLE:
|
|
case ISD::SETOGE:
|
|
llvm_unreachable("Should be lowered by legalize!");
|
|
default: llvm_unreachable("Unknown condition!");
|
|
case ISD::SETOEQ:
|
|
case ISD::SETEQ: return PPC::PRED_EQ;
|
|
case ISD::SETUNE:
|
|
case ISD::SETNE: return PPC::PRED_NE;
|
|
case ISD::SETOLT:
|
|
case ISD::SETLT: return PPC::PRED_LT;
|
|
case ISD::SETULE:
|
|
case ISD::SETLE: return PPC::PRED_LE;
|
|
case ISD::SETOGT:
|
|
case ISD::SETGT: return PPC::PRED_GT;
|
|
case ISD::SETUGE:
|
|
case ISD::SETGE: return PPC::PRED_GE;
|
|
case ISD::SETO: return PPC::PRED_NU;
|
|
case ISD::SETUO: return PPC::PRED_UN;
|
|
// These two are invalid for floating point. Assume we have int.
|
|
case ISD::SETULT: return PPC::PRED_LT;
|
|
case ISD::SETUGT: return PPC::PRED_GT;
|
|
}
|
|
}
|
|
|
|
/// getCRIdxForSetCC - Return the index of the condition register field
|
|
/// associated with the SetCC condition, and whether or not the field is
|
|
/// treated as inverted. That is, lt = 0; ge = 0 inverted.
|
|
static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert) {
|
|
Invert = false;
|
|
switch (CC) {
|
|
default: llvm_unreachable("Unknown condition!");
|
|
case ISD::SETOLT:
|
|
case ISD::SETLT: return 0; // Bit #0 = SETOLT
|
|
case ISD::SETOGT:
|
|
case ISD::SETGT: return 1; // Bit #1 = SETOGT
|
|
case ISD::SETOEQ:
|
|
case ISD::SETEQ: return 2; // Bit #2 = SETOEQ
|
|
case ISD::SETUO: return 3; // Bit #3 = SETUO
|
|
case ISD::SETUGE:
|
|
case ISD::SETGE: Invert = true; return 0; // !Bit #0 = SETUGE
|
|
case ISD::SETULE:
|
|
case ISD::SETLE: Invert = true; return 1; // !Bit #1 = SETULE
|
|
case ISD::SETUNE:
|
|
case ISD::SETNE: Invert = true; return 2; // !Bit #2 = SETUNE
|
|
case ISD::SETO: Invert = true; return 3; // !Bit #3 = SETO
|
|
case ISD::SETUEQ:
|
|
case ISD::SETOGE:
|
|
case ISD::SETOLE:
|
|
case ISD::SETONE:
|
|
llvm_unreachable("Invalid branch code: should be expanded by legalize");
|
|
// These are invalid for floating point. Assume integer.
|
|
case ISD::SETULT: return 0;
|
|
case ISD::SETUGT: return 1;
|
|
}
|
|
}
|
|
|
|
// getVCmpInst: return the vector compare instruction for the specified
|
|
// vector type and condition code. Since this is for altivec specific code,
|
|
// only support the altivec types (v16i8, v8i16, v4i32, and v4f32).
|
|
static unsigned int getVCmpInst(MVT::SimpleValueType VecVT, ISD::CondCode CC,
|
|
bool HasVSX) {
|
|
switch (CC) {
|
|
case ISD::SETEQ:
|
|
case ISD::SETUEQ:
|
|
case ISD::SETNE:
|
|
case ISD::SETUNE:
|
|
if (VecVT == MVT::v16i8)
|
|
return PPC::VCMPEQUB;
|
|
else if (VecVT == MVT::v8i16)
|
|
return PPC::VCMPEQUH;
|
|
else if (VecVT == MVT::v4i32)
|
|
return PPC::VCMPEQUW;
|
|
// v4f32 != v4f32 could be translate to unordered not equal
|
|
else if (VecVT == MVT::v4f32)
|
|
return HasVSX ? PPC::XVCMPEQSP : PPC::VCMPEQFP;
|
|
else if (VecVT == MVT::v2f64)
|
|
return PPC::XVCMPEQDP;
|
|
break;
|
|
case ISD::SETLT:
|
|
case ISD::SETGT:
|
|
case ISD::SETLE:
|
|
case ISD::SETGE:
|
|
if (VecVT == MVT::v16i8)
|
|
return PPC::VCMPGTSB;
|
|
else if (VecVT == MVT::v8i16)
|
|
return PPC::VCMPGTSH;
|
|
else if (VecVT == MVT::v4i32)
|
|
return PPC::VCMPGTSW;
|
|
else if (VecVT == MVT::v4f32)
|
|
return HasVSX ? PPC::XVCMPGTSP : PPC::VCMPGTFP;
|
|
else if (VecVT == MVT::v2f64)
|
|
return PPC::XVCMPGTDP;
|
|
break;
|
|
case ISD::SETULT:
|
|
case ISD::SETUGT:
|
|
case ISD::SETUGE:
|
|
case ISD::SETULE:
|
|
if (VecVT == MVT::v16i8)
|
|
return PPC::VCMPGTUB;
|
|
else if (VecVT == MVT::v8i16)
|
|
return PPC::VCMPGTUH;
|
|
else if (VecVT == MVT::v4i32)
|
|
return PPC::VCMPGTUW;
|
|
break;
|
|
case ISD::SETOEQ:
|
|
if (VecVT == MVT::v4f32)
|
|
return HasVSX ? PPC::XVCMPEQSP : PPC::VCMPEQFP;
|
|
else if (VecVT == MVT::v2f64)
|
|
return PPC::XVCMPEQDP;
|
|
break;
|
|
case ISD::SETOLT:
|
|
case ISD::SETOGT:
|
|
case ISD::SETOLE:
|
|
if (VecVT == MVT::v4f32)
|
|
return HasVSX ? PPC::XVCMPGTSP : PPC::VCMPGTFP;
|
|
else if (VecVT == MVT::v2f64)
|
|
return PPC::XVCMPGTDP;
|
|
break;
|
|
case ISD::SETOGE:
|
|
if (VecVT == MVT::v4f32)
|
|
return HasVSX ? PPC::XVCMPGESP : PPC::VCMPGEFP;
|
|
else if (VecVT == MVT::v2f64)
|
|
return PPC::XVCMPGEDP;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
llvm_unreachable("Invalid integer vector compare condition");
|
|
}
|
|
|
|
// getVCmpEQInst: return the equal compare instruction for the specified vector
|
|
// type. Since this is for altivec specific code, only support the altivec
|
|
// types (v16i8, v8i16, v4i32, and v4f32).
|
|
static unsigned int getVCmpEQInst(MVT::SimpleValueType VecVT, bool HasVSX) {
|
|
switch (VecVT) {
|
|
case MVT::v16i8:
|
|
return PPC::VCMPEQUB;
|
|
case MVT::v8i16:
|
|
return PPC::VCMPEQUH;
|
|
case MVT::v4i32:
|
|
return PPC::VCMPEQUW;
|
|
case MVT::v4f32:
|
|
return HasVSX ? PPC::XVCMPEQSP : PPC::VCMPEQFP;
|
|
case MVT::v2f64:
|
|
return PPC::XVCMPEQDP;
|
|
default:
|
|
llvm_unreachable("Invalid integer vector compare condition");
|
|
}
|
|
}
|
|
|
|
SDNode *PPCDAGToDAGISel::SelectSETCC(SDNode *N) {
|
|
SDLoc dl(N);
|
|
unsigned Imm;
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
|
|
EVT PtrVT = CurDAG->getTargetLoweringInfo().getPointerTy();
|
|
bool isPPC64 = (PtrVT == MVT::i64);
|
|
|
|
if (!PPCSubTarget.useCRBits() &&
|
|
isInt32Immediate(N->getOperand(1), Imm)) {
|
|
// We can codegen setcc op, imm very efficiently compared to a brcond.
|
|
// Check for those cases here.
|
|
// setcc op, 0
|
|
if (Imm == 0) {
|
|
SDValue Op = N->getOperand(0);
|
|
switch (CC) {
|
|
default: break;
|
|
case ISD::SETEQ: {
|
|
Op = SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Op), 0);
|
|
SDValue Ops[] = { Op, getI32Imm(27), getI32Imm(5), getI32Imm(31) };
|
|
return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
|
|
}
|
|
case ISD::SETNE: {
|
|
if (isPPC64) break;
|
|
SDValue AD =
|
|
SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
|
|
Op, getI32Imm(~0U)), 0);
|
|
return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op,
|
|
AD.getValue(1));
|
|
}
|
|
case ISD::SETLT: {
|
|
SDValue Ops[] = { Op, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
|
|
return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
|
|
}
|
|
case ISD::SETGT: {
|
|
SDValue T =
|
|
SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Op), 0);
|
|
T = SDValue(CurDAG->getMachineNode(PPC::ANDC, dl, MVT::i32, T, Op), 0);
|
|
SDValue Ops[] = { T, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
|
|
return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
|
|
}
|
|
}
|
|
} else if (Imm == ~0U) { // setcc op, -1
|
|
SDValue Op = N->getOperand(0);
|
|
switch (CC) {
|
|
default: break;
|
|
case ISD::SETEQ:
|
|
if (isPPC64) break;
|
|
Op = SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
|
|
Op, getI32Imm(1)), 0);
|
|
return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
|
|
SDValue(CurDAG->getMachineNode(PPC::LI, dl,
|
|
MVT::i32,
|
|
getI32Imm(0)), 0),
|
|
Op.getValue(1));
|
|
case ISD::SETNE: {
|
|
if (isPPC64) break;
|
|
Op = SDValue(CurDAG->getMachineNode(PPC::NOR, dl, MVT::i32, Op, Op), 0);
|
|
SDNode *AD = CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
|
|
Op, getI32Imm(~0U));
|
|
return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(AD, 0),
|
|
Op, SDValue(AD, 1));
|
|
}
|
|
case ISD::SETLT: {
|
|
SDValue AD = SDValue(CurDAG->getMachineNode(PPC::ADDI, dl, MVT::i32, Op,
|
|
getI32Imm(1)), 0);
|
|
SDValue AN = SDValue(CurDAG->getMachineNode(PPC::AND, dl, MVT::i32, AD,
|
|
Op), 0);
|
|
SDValue Ops[] = { AN, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
|
|
return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
|
|
}
|
|
case ISD::SETGT: {
|
|
SDValue Ops[] = { Op, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
|
|
Op = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops),
|
|
0);
|
|
return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op,
|
|
getI32Imm(1));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
SDValue LHS = N->getOperand(0);
|
|
SDValue RHS = N->getOperand(1);
|
|
|
|
// Altivec Vector compare instructions do not set any CR register by default and
|
|
// vector compare operations return the same type as the operands.
|
|
if (LHS.getValueType().isVector()) {
|
|
EVT VecVT = LHS.getValueType();
|
|
MVT::SimpleValueType VT = VecVT.getSimpleVT().SimpleTy;
|
|
unsigned int VCmpInst = getVCmpInst(VT, CC, PPCSubTarget.hasVSX());
|
|
|
|
switch (CC) {
|
|
case ISD::SETEQ:
|
|
case ISD::SETOEQ:
|
|
case ISD::SETUEQ:
|
|
return CurDAG->SelectNodeTo(N, VCmpInst, VecVT, LHS, RHS);
|
|
case ISD::SETNE:
|
|
case ISD::SETONE:
|
|
case ISD::SETUNE: {
|
|
SDValue VCmp(CurDAG->getMachineNode(VCmpInst, dl, VecVT, LHS, RHS), 0);
|
|
return CurDAG->SelectNodeTo(N, PPC::VNOR, VecVT, VCmp, VCmp);
|
|
}
|
|
case ISD::SETLT:
|
|
case ISD::SETOLT:
|
|
case ISD::SETULT:
|
|
return CurDAG->SelectNodeTo(N, VCmpInst, VecVT, RHS, LHS);
|
|
case ISD::SETGT:
|
|
case ISD::SETOGT:
|
|
case ISD::SETUGT:
|
|
return CurDAG->SelectNodeTo(N, VCmpInst, VecVT, LHS, RHS);
|
|
case ISD::SETGE:
|
|
case ISD::SETOGE:
|
|
case ISD::SETUGE: {
|
|
// Small optimization: Altivec provides a 'Vector Compare Greater Than
|
|
// or Equal To' instruction (vcmpgefp), so in this case there is no
|
|
// need for extra logic for the equal compare.
|
|
if (VecVT.getSimpleVT().isFloatingPoint()) {
|
|
return CurDAG->SelectNodeTo(N, VCmpInst, VecVT, LHS, RHS);
|
|
} else {
|
|
SDValue VCmpGT(CurDAG->getMachineNode(VCmpInst, dl, VecVT, LHS, RHS), 0);
|
|
unsigned int VCmpEQInst = getVCmpEQInst(VT, PPCSubTarget.hasVSX());
|
|
SDValue VCmpEQ(CurDAG->getMachineNode(VCmpEQInst, dl, VecVT, LHS, RHS), 0);
|
|
return CurDAG->SelectNodeTo(N, PPC::VOR, VecVT, VCmpGT, VCmpEQ);
|
|
}
|
|
}
|
|
case ISD::SETLE:
|
|
case ISD::SETOLE:
|
|
case ISD::SETULE: {
|
|
SDValue VCmpLE(CurDAG->getMachineNode(VCmpInst, dl, VecVT, RHS, LHS), 0);
|
|
unsigned int VCmpEQInst = getVCmpEQInst(VT, PPCSubTarget.hasVSX());
|
|
SDValue VCmpEQ(CurDAG->getMachineNode(VCmpEQInst, dl, VecVT, LHS, RHS), 0);
|
|
return CurDAG->SelectNodeTo(N, PPC::VOR, VecVT, VCmpLE, VCmpEQ);
|
|
}
|
|
default:
|
|
llvm_unreachable("Invalid vector compare type: should be expanded by legalize");
|
|
}
|
|
}
|
|
|
|
if (PPCSubTarget.useCRBits())
|
|
return 0;
|
|
|
|
bool Inv;
|
|
unsigned Idx = getCRIdxForSetCC(CC, Inv);
|
|
SDValue CCReg = SelectCC(LHS, RHS, CC, dl);
|
|
SDValue IntCR;
|
|
|
|
// Force the ccreg into CR7.
|
|
SDValue CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32);
|
|
|
|
SDValue InFlag(0, 0); // Null incoming flag value.
|
|
CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, CR7Reg, CCReg,
|
|
InFlag).getValue(1);
|
|
|
|
IntCR = SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR7Reg,
|
|
CCReg), 0);
|
|
|
|
SDValue Ops[] = { IntCR, getI32Imm((32-(3-Idx)) & 31),
|
|
getI32Imm(31), getI32Imm(31) };
|
|
if (!Inv)
|
|
return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
|
|
|
|
// Get the specified bit.
|
|
SDValue Tmp =
|
|
SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
|
|
return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1));
|
|
}
|
|
|
|
|
|
// Select - Convert the specified operand from a target-independent to a
|
|
// target-specific node if it hasn't already been changed.
|
|
SDNode *PPCDAGToDAGISel::Select(SDNode *N) {
|
|
SDLoc dl(N);
|
|
if (N->isMachineOpcode()) {
|
|
N->setNodeId(-1);
|
|
return NULL; // Already selected.
|
|
}
|
|
|
|
switch (N->getOpcode()) {
|
|
default: break;
|
|
|
|
case ISD::Constant: {
|
|
if (N->getValueType(0) == MVT::i64) {
|
|
// Get 64 bit value.
|
|
int64_t Imm = cast<ConstantSDNode>(N)->getZExtValue();
|
|
// Assume no remaining bits.
|
|
unsigned Remainder = 0;
|
|
// Assume no shift required.
|
|
unsigned Shift = 0;
|
|
|
|
// If it can't be represented as a 32 bit value.
|
|
if (!isInt<32>(Imm)) {
|
|
Shift = countTrailingZeros<uint64_t>(Imm);
|
|
int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
|
|
|
|
// If the shifted value fits 32 bits.
|
|
if (isInt<32>(ImmSh)) {
|
|
// Go with the shifted value.
|
|
Imm = ImmSh;
|
|
} else {
|
|
// Still stuck with a 64 bit value.
|
|
Remainder = Imm;
|
|
Shift = 32;
|
|
Imm >>= 32;
|
|
}
|
|
}
|
|
|
|
// Intermediate operand.
|
|
SDNode *Result;
|
|
|
|
// Handle first 32 bits.
|
|
unsigned Lo = Imm & 0xFFFF;
|
|
unsigned Hi = (Imm >> 16) & 0xFFFF;
|
|
|
|
// Simple value.
|
|
if (isInt<16>(Imm)) {
|
|
// Just the Lo bits.
|
|
Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, getI32Imm(Lo));
|
|
} else if (Lo) {
|
|
// Handle the Hi bits.
|
|
unsigned OpC = Hi ? PPC::LIS8 : PPC::LI8;
|
|
Result = CurDAG->getMachineNode(OpC, dl, MVT::i64, getI32Imm(Hi));
|
|
// And Lo bits.
|
|
Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
|
|
SDValue(Result, 0), getI32Imm(Lo));
|
|
} else {
|
|
// Just the Hi bits.
|
|
Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, getI32Imm(Hi));
|
|
}
|
|
|
|
// If no shift, we're done.
|
|
if (!Shift) return Result;
|
|
|
|
// Shift for next step if the upper 32-bits were not zero.
|
|
if (Imm) {
|
|
Result = CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64,
|
|
SDValue(Result, 0),
|
|
getI32Imm(Shift),
|
|
getI32Imm(63 - Shift));
|
|
}
|
|
|
|
// Add in the last bits as required.
|
|
if ((Hi = (Remainder >> 16) & 0xFFFF)) {
|
|
Result = CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64,
|
|
SDValue(Result, 0), getI32Imm(Hi));
|
|
}
|
|
if ((Lo = Remainder & 0xFFFF)) {
|
|
Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
|
|
SDValue(Result, 0), getI32Imm(Lo));
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case ISD::SETCC: {
|
|
SDNode *SN = SelectSETCC(N);
|
|
if (SN)
|
|
return SN;
|
|
break;
|
|
}
|
|
case PPCISD::GlobalBaseReg:
|
|
return getGlobalBaseReg();
|
|
|
|
case ISD::FrameIndex: {
|
|
int FI = cast<FrameIndexSDNode>(N)->getIndex();
|
|
SDValue TFI = CurDAG->getTargetFrameIndex(FI, N->getValueType(0));
|
|
unsigned Opc = N->getValueType(0) == MVT::i32 ? PPC::ADDI : PPC::ADDI8;
|
|
if (N->hasOneUse())
|
|
return CurDAG->SelectNodeTo(N, Opc, N->getValueType(0), TFI,
|
|
getSmallIPtrImm(0));
|
|
return CurDAG->getMachineNode(Opc, dl, N->getValueType(0), TFI,
|
|
getSmallIPtrImm(0));
|
|
}
|
|
|
|
case PPCISD::MFOCRF: {
|
|
SDValue InFlag = N->getOperand(1);
|
|
return CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32,
|
|
N->getOperand(0), InFlag);
|
|
}
|
|
|
|
case ISD::SDIV: {
|
|
// FIXME: since this depends on the setting of the carry flag from the srawi
|
|
// we should really be making notes about that for the scheduler.
|
|
// FIXME: It sure would be nice if we could cheaply recognize the
|
|
// srl/add/sra pattern the dag combiner will generate for this as
|
|
// sra/addze rather than having to handle sdiv ourselves. oh well.
|
|
unsigned Imm;
|
|
if (isInt32Immediate(N->getOperand(1), Imm)) {
|
|
SDValue N0 = N->getOperand(0);
|
|
if ((signed)Imm > 0 && isPowerOf2_32(Imm)) {
|
|
SDNode *Op =
|
|
CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue,
|
|
N0, getI32Imm(Log2_32(Imm)));
|
|
return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
|
|
SDValue(Op, 0), SDValue(Op, 1));
|
|
} else if ((signed)Imm < 0 && isPowerOf2_32(-Imm)) {
|
|
SDNode *Op =
|
|
CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue,
|
|
N0, getI32Imm(Log2_32(-Imm)));
|
|
SDValue PT =
|
|
SDValue(CurDAG->getMachineNode(PPC::ADDZE, dl, MVT::i32,
|
|
SDValue(Op, 0), SDValue(Op, 1)),
|
|
0);
|
|
return CurDAG->SelectNodeTo(N, PPC::NEG, MVT::i32, PT);
|
|
}
|
|
}
|
|
|
|
// Other cases are autogenerated.
|
|
break;
|
|
}
|
|
|
|
case ISD::LOAD: {
|
|
// Handle preincrement loads.
|
|
LoadSDNode *LD = cast<LoadSDNode>(N);
|
|
EVT LoadedVT = LD->getMemoryVT();
|
|
|
|
// Normal loads are handled by code generated from the .td file.
|
|
if (LD->getAddressingMode() != ISD::PRE_INC)
|
|
break;
|
|
|
|
SDValue Offset = LD->getOffset();
|
|
if (Offset.getOpcode() == ISD::TargetConstant ||
|
|
Offset.getOpcode() == ISD::TargetGlobalAddress) {
|
|
|
|
unsigned Opcode;
|
|
bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
|
|
if (LD->getValueType(0) != MVT::i64) {
|
|
// Handle PPC32 integer and normal FP loads.
|
|
assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
|
|
switch (LoadedVT.getSimpleVT().SimpleTy) {
|
|
default: llvm_unreachable("Invalid PPC load type!");
|
|
case MVT::f64: Opcode = PPC::LFDU; break;
|
|
case MVT::f32: Opcode = PPC::LFSU; break;
|
|
case MVT::i32: Opcode = PPC::LWZU; break;
|
|
case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break;
|
|
case MVT::i1:
|
|
case MVT::i8: Opcode = PPC::LBZU; break;
|
|
}
|
|
} else {
|
|
assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
|
|
assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
|
|
switch (LoadedVT.getSimpleVT().SimpleTy) {
|
|
default: llvm_unreachable("Invalid PPC load type!");
|
|
case MVT::i64: Opcode = PPC::LDU; break;
|
|
case MVT::i32: Opcode = PPC::LWZU8; break;
|
|
case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break;
|
|
case MVT::i1:
|
|
case MVT::i8: Opcode = PPC::LBZU8; break;
|
|
}
|
|
}
|
|
|
|
SDValue Chain = LD->getChain();
|
|
SDValue Base = LD->getBasePtr();
|
|
SDValue Ops[] = { Offset, Base, Chain };
|
|
return CurDAG->getMachineNode(Opcode, dl, LD->getValueType(0),
|
|
PPCLowering.getPointerTy(),
|
|
MVT::Other, Ops);
|
|
} else {
|
|
unsigned Opcode;
|
|
bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
|
|
if (LD->getValueType(0) != MVT::i64) {
|
|
// Handle PPC32 integer and normal FP loads.
|
|
assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
|
|
switch (LoadedVT.getSimpleVT().SimpleTy) {
|
|
default: llvm_unreachable("Invalid PPC load type!");
|
|
case MVT::f64: Opcode = PPC::LFDUX; break;
|
|
case MVT::f32: Opcode = PPC::LFSUX; break;
|
|
case MVT::i32: Opcode = PPC::LWZUX; break;
|
|
case MVT::i16: Opcode = isSExt ? PPC::LHAUX : PPC::LHZUX; break;
|
|
case MVT::i1:
|
|
case MVT::i8: Opcode = PPC::LBZUX; break;
|
|
}
|
|
} else {
|
|
assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
|
|
assert((!isSExt || LoadedVT == MVT::i16 || LoadedVT == MVT::i32) &&
|
|
"Invalid sext update load");
|
|
switch (LoadedVT.getSimpleVT().SimpleTy) {
|
|
default: llvm_unreachable("Invalid PPC load type!");
|
|
case MVT::i64: Opcode = PPC::LDUX; break;
|
|
case MVT::i32: Opcode = isSExt ? PPC::LWAUX : PPC::LWZUX8; break;
|
|
case MVT::i16: Opcode = isSExt ? PPC::LHAUX8 : PPC::LHZUX8; break;
|
|
case MVT::i1:
|
|
case MVT::i8: Opcode = PPC::LBZUX8; break;
|
|
}
|
|
}
|
|
|
|
SDValue Chain = LD->getChain();
|
|
SDValue Base = LD->getBasePtr();
|
|
SDValue Ops[] = { Base, Offset, Chain };
|
|
return CurDAG->getMachineNode(Opcode, dl, LD->getValueType(0),
|
|
PPCLowering.getPointerTy(),
|
|
MVT::Other, Ops);
|
|
}
|
|
}
|
|
|
|
case ISD::AND: {
|
|
unsigned Imm, Imm2, SH, MB, ME;
|
|
uint64_t Imm64;
|
|
|
|
// If this is an and of a value rotated between 0 and 31 bits and then and'd
|
|
// with a mask, emit rlwinm
|
|
if (isInt32Immediate(N->getOperand(1), Imm) &&
|
|
isRotateAndMask(N->getOperand(0).getNode(), Imm, false, SH, MB, ME)) {
|
|
SDValue Val = N->getOperand(0).getOperand(0);
|
|
SDValue Ops[] = { Val, getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
|
|
return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
|
|
}
|
|
// If this is just a masked value where the input is not handled above, and
|
|
// is not a rotate-left (handled by a pattern in the .td file), emit rlwinm
|
|
if (isInt32Immediate(N->getOperand(1), Imm) &&
|
|
isRunOfOnes(Imm, MB, ME) &&
|
|
N->getOperand(0).getOpcode() != ISD::ROTL) {
|
|
SDValue Val = N->getOperand(0);
|
|
SDValue Ops[] = { Val, getI32Imm(0), getI32Imm(MB), getI32Imm(ME) };
|
|
return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
|
|
}
|
|
// If this is a 64-bit zero-extension mask, emit rldicl.
|
|
if (isInt64Immediate(N->getOperand(1).getNode(), Imm64) &&
|
|
isMask_64(Imm64)) {
|
|
SDValue Val = N->getOperand(0);
|
|
MB = 64 - CountTrailingOnes_64(Imm64);
|
|
SH = 0;
|
|
|
|
// If the operand is a logical right shift, we can fold it into this
|
|
// instruction: rldicl(rldicl(x, 64-n, n), 0, mb) -> rldicl(x, 64-n, mb)
|
|
// for n <= mb. The right shift is really a left rotate followed by a
|
|
// mask, and this mask is a more-restrictive sub-mask of the mask implied
|
|
// by the shift.
|
|
if (Val.getOpcode() == ISD::SRL &&
|
|
isInt32Immediate(Val.getOperand(1).getNode(), Imm) && Imm <= MB) {
|
|
assert(Imm < 64 && "Illegal shift amount");
|
|
Val = Val.getOperand(0);
|
|
SH = 64 - Imm;
|
|
}
|
|
|
|
SDValue Ops[] = { Val, getI32Imm(SH), getI32Imm(MB) };
|
|
return CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops, 3);
|
|
}
|
|
// AND X, 0 -> 0, not "rlwinm 32".
|
|
if (isInt32Immediate(N->getOperand(1), Imm) && (Imm == 0)) {
|
|
ReplaceUses(SDValue(N, 0), N->getOperand(1));
|
|
return NULL;
|
|
}
|
|
// ISD::OR doesn't get all the bitfield insertion fun.
|
|
// (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) is a bitfield insert
|
|
if (isInt32Immediate(N->getOperand(1), Imm) &&
|
|
N->getOperand(0).getOpcode() == ISD::OR &&
|
|
isInt32Immediate(N->getOperand(0).getOperand(1), Imm2)) {
|
|
unsigned MB, ME;
|
|
Imm = ~(Imm^Imm2);
|
|
if (isRunOfOnes(Imm, MB, ME)) {
|
|
SDValue Ops[] = { N->getOperand(0).getOperand(0),
|
|
N->getOperand(0).getOperand(1),
|
|
getI32Imm(0), getI32Imm(MB),getI32Imm(ME) };
|
|
return CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops);
|
|
}
|
|
}
|
|
|
|
// Other cases are autogenerated.
|
|
break;
|
|
}
|
|
case ISD::OR:
|
|
if (N->getValueType(0) == MVT::i32)
|
|
if (SDNode *I = SelectBitfieldInsert(N))
|
|
return I;
|
|
|
|
// Other cases are autogenerated.
|
|
break;
|
|
case ISD::SHL: {
|
|
unsigned Imm, SH, MB, ME;
|
|
if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
|
|
isRotateAndMask(N, Imm, true, SH, MB, ME)) {
|
|
SDValue Ops[] = { N->getOperand(0).getOperand(0),
|
|
getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
|
|
return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
|
|
}
|
|
|
|
// Other cases are autogenerated.
|
|
break;
|
|
}
|
|
case ISD::SRL: {
|
|
unsigned Imm, SH, MB, ME;
|
|
if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
|
|
isRotateAndMask(N, Imm, true, SH, MB, ME)) {
|
|
SDValue Ops[] = { N->getOperand(0).getOperand(0),
|
|
getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
|
|
return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
|
|
}
|
|
|
|
// Other cases are autogenerated.
|
|
break;
|
|
}
|
|
// FIXME: Remove this once the ANDI glue bug is fixed:
|
|
case PPCISD::ANDIo_1_EQ_BIT:
|
|
case PPCISD::ANDIo_1_GT_BIT: {
|
|
if (!ANDIGlueBug)
|
|
break;
|
|
|
|
EVT InVT = N->getOperand(0).getValueType();
|
|
assert((InVT == MVT::i64 || InVT == MVT::i32) &&
|
|
"Invalid input type for ANDIo_1_EQ_BIT");
|
|
|
|
unsigned Opcode = (InVT == MVT::i64) ? PPC::ANDIo8 : PPC::ANDIo;
|
|
SDValue AndI(CurDAG->getMachineNode(Opcode, dl, InVT, MVT::Glue,
|
|
N->getOperand(0),
|
|
CurDAG->getTargetConstant(1, InVT)), 0);
|
|
SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32);
|
|
SDValue SRIdxVal =
|
|
CurDAG->getTargetConstant(N->getOpcode() == PPCISD::ANDIo_1_EQ_BIT ?
|
|
PPC::sub_eq : PPC::sub_gt, MVT::i32);
|
|
|
|
return CurDAG->SelectNodeTo(N, TargetOpcode::EXTRACT_SUBREG, MVT::i1,
|
|
CR0Reg, SRIdxVal,
|
|
SDValue(AndI.getNode(), 1) /* glue */);
|
|
}
|
|
case ISD::SELECT_CC: {
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
|
|
EVT PtrVT = CurDAG->getTargetLoweringInfo().getPointerTy();
|
|
bool isPPC64 = (PtrVT == MVT::i64);
|
|
|
|
// If this is a select of i1 operands, we'll pattern match it.
|
|
if (PPCSubTarget.useCRBits() &&
|
|
N->getOperand(0).getValueType() == MVT::i1)
|
|
break;
|
|
|
|
// Handle the setcc cases here. select_cc lhs, 0, 1, 0, cc
|
|
if (!isPPC64)
|
|
if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
|
|
if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
|
|
if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
|
|
if (N1C->isNullValue() && N3C->isNullValue() &&
|
|
N2C->getZExtValue() == 1ULL && CC == ISD::SETNE &&
|
|
// FIXME: Implement this optzn for PPC64.
|
|
N->getValueType(0) == MVT::i32) {
|
|
SDNode *Tmp =
|
|
CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
|
|
N->getOperand(0), getI32Imm(~0U));
|
|
return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32,
|
|
SDValue(Tmp, 0), N->getOperand(0),
|
|
SDValue(Tmp, 1));
|
|
}
|
|
|
|
SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl);
|
|
|
|
if (N->getValueType(0) == MVT::i1) {
|
|
// An i1 select is: (c & t) | (!c & f).
|
|
bool Inv;
|
|
unsigned Idx = getCRIdxForSetCC(CC, Inv);
|
|
|
|
unsigned SRI;
|
|
switch (Idx) {
|
|
default: llvm_unreachable("Invalid CC index");
|
|
case 0: SRI = PPC::sub_lt; break;
|
|
case 1: SRI = PPC::sub_gt; break;
|
|
case 2: SRI = PPC::sub_eq; break;
|
|
case 3: SRI = PPC::sub_un; break;
|
|
}
|
|
|
|
SDValue CCBit = CurDAG->getTargetExtractSubreg(SRI, dl, MVT::i1, CCReg);
|
|
|
|
SDValue NotCCBit(CurDAG->getMachineNode(PPC::CRNOR, dl, MVT::i1,
|
|
CCBit, CCBit), 0);
|
|
SDValue C = Inv ? NotCCBit : CCBit,
|
|
NotC = Inv ? CCBit : NotCCBit;
|
|
|
|
SDValue CAndT(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1,
|
|
C, N->getOperand(2)), 0);
|
|
SDValue NotCAndF(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1,
|
|
NotC, N->getOperand(3)), 0);
|
|
|
|
return CurDAG->SelectNodeTo(N, PPC::CROR, MVT::i1, CAndT, NotCAndF);
|
|
}
|
|
|
|
unsigned BROpc = getPredicateForSetCC(CC);
|
|
|
|
unsigned SelectCCOp;
|
|
if (N->getValueType(0) == MVT::i32)
|
|
SelectCCOp = PPC::SELECT_CC_I4;
|
|
else if (N->getValueType(0) == MVT::i64)
|
|
SelectCCOp = PPC::SELECT_CC_I8;
|
|
else if (N->getValueType(0) == MVT::f32)
|
|
SelectCCOp = PPC::SELECT_CC_F4;
|
|
else if (N->getValueType(0) == MVT::f64)
|
|
SelectCCOp = PPC::SELECT_CC_F8;
|
|
else
|
|
SelectCCOp = PPC::SELECT_CC_VRRC;
|
|
|
|
SDValue Ops[] = { CCReg, N->getOperand(2), N->getOperand(3),
|
|
getI32Imm(BROpc) };
|
|
return CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops, 4);
|
|
}
|
|
case PPCISD::BDNZ:
|
|
case PPCISD::BDZ: {
|
|
bool IsPPC64 = PPCSubTarget.isPPC64();
|
|
SDValue Ops[] = { N->getOperand(1), N->getOperand(0) };
|
|
return CurDAG->SelectNodeTo(N, N->getOpcode() == PPCISD::BDNZ ?
|
|
(IsPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
|
|
(IsPPC64 ? PPC::BDZ8 : PPC::BDZ),
|
|
MVT::Other, Ops, 2);
|
|
}
|
|
case PPCISD::COND_BRANCH: {
|
|
// Op #0 is the Chain.
|
|
// Op #1 is the PPC::PRED_* number.
|
|
// Op #2 is the CR#
|
|
// Op #3 is the Dest MBB
|
|
// Op #4 is the Flag.
|
|
// Prevent PPC::PRED_* from being selected into LI.
|
|
SDValue Pred =
|
|
getI32Imm(cast<ConstantSDNode>(N->getOperand(1))->getZExtValue());
|
|
SDValue Ops[] = { Pred, N->getOperand(2), N->getOperand(3),
|
|
N->getOperand(0), N->getOperand(4) };
|
|
return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops, 5);
|
|
}
|
|
case ISD::BR_CC: {
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
|
|
unsigned PCC = getPredicateForSetCC(CC);
|
|
|
|
if (N->getOperand(2).getValueType() == MVT::i1) {
|
|
unsigned Opc;
|
|
bool Swap;
|
|
switch (PCC) {
|
|
default: llvm_unreachable("Unexpected Boolean-operand predicate");
|
|
case PPC::PRED_LT: Opc = PPC::CRANDC; Swap = true; break;
|
|
case PPC::PRED_LE: Opc = PPC::CRORC; Swap = true; break;
|
|
case PPC::PRED_EQ: Opc = PPC::CREQV; Swap = false; break;
|
|
case PPC::PRED_GE: Opc = PPC::CRORC; Swap = false; break;
|
|
case PPC::PRED_GT: Opc = PPC::CRANDC; Swap = false; break;
|
|
case PPC::PRED_NE: Opc = PPC::CRXOR; Swap = false; break;
|
|
}
|
|
|
|
SDValue BitComp(CurDAG->getMachineNode(Opc, dl, MVT::i1,
|
|
N->getOperand(Swap ? 3 : 2),
|
|
N->getOperand(Swap ? 2 : 3)), 0);
|
|
return CurDAG->SelectNodeTo(N, PPC::BC, MVT::Other,
|
|
BitComp, N->getOperand(4), N->getOperand(0));
|
|
}
|
|
|
|
SDValue CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC, dl);
|
|
SDValue Ops[] = { getI32Imm(PCC), CondCode,
|
|
N->getOperand(4), N->getOperand(0) };
|
|
return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops, 4);
|
|
}
|
|
case ISD::BRIND: {
|
|
// FIXME: Should custom lower this.
|
|
SDValue Chain = N->getOperand(0);
|
|
SDValue Target = N->getOperand(1);
|
|
unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8;
|
|
unsigned Reg = Target.getValueType() == MVT::i32 ? PPC::BCTR : PPC::BCTR8;
|
|
Chain = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, Target,
|
|
Chain), 0);
|
|
return CurDAG->SelectNodeTo(N, Reg, MVT::Other, Chain);
|
|
}
|
|
case PPCISD::TOC_ENTRY: {
|
|
assert (PPCSubTarget.isPPC64() && "Only supported for 64-bit ABI");
|
|
|
|
// For medium and large code model, we generate two instructions as
|
|
// described below. Otherwise we allow SelectCodeCommon to handle this,
|
|
// selecting one of LDtoc, LDtocJTI, and LDtocCPT.
|
|
CodeModel::Model CModel = TM.getCodeModel();
|
|
if (CModel != CodeModel::Medium && CModel != CodeModel::Large)
|
|
break;
|
|
|
|
// The first source operand is a TargetGlobalAddress or a
|
|
// TargetJumpTable. If it is an externally defined symbol, a symbol
|
|
// with common linkage, a function address, or a jump table address,
|
|
// or if we are generating code for large code model, we generate:
|
|
// LDtocL(<ga:@sym>, ADDIStocHA(%X2, <ga:@sym>))
|
|
// Otherwise we generate:
|
|
// ADDItocL(ADDIStocHA(%X2, <ga:@sym>), <ga:@sym>)
|
|
SDValue GA = N->getOperand(0);
|
|
SDValue TOCbase = N->getOperand(1);
|
|
SDNode *Tmp = CurDAG->getMachineNode(PPC::ADDIStocHA, dl, MVT::i64,
|
|
TOCbase, GA);
|
|
|
|
if (isa<JumpTableSDNode>(GA) || CModel == CodeModel::Large)
|
|
return CurDAG->getMachineNode(PPC::LDtocL, dl, MVT::i64, GA,
|
|
SDValue(Tmp, 0));
|
|
|
|
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) {
|
|
const GlobalValue *GValue = G->getGlobal();
|
|
const GlobalAlias *GAlias = dyn_cast<GlobalAlias>(GValue);
|
|
const GlobalValue *RealGValue = GAlias ?
|
|
GAlias->resolveAliasedGlobal(false) : GValue;
|
|
const GlobalVariable *GVar = dyn_cast<GlobalVariable>(RealGValue);
|
|
assert((GVar || isa<Function>(RealGValue)) &&
|
|
"Unexpected global value subclass!");
|
|
|
|
// An external variable is one without an initializer. For these,
|
|
// for variables with common linkage, and for Functions, generate
|
|
// the LDtocL form.
|
|
if (!GVar || !GVar->hasInitializer() || RealGValue->hasCommonLinkage() ||
|
|
RealGValue->hasAvailableExternallyLinkage())
|
|
return CurDAG->getMachineNode(PPC::LDtocL, dl, MVT::i64, GA,
|
|
SDValue(Tmp, 0));
|
|
}
|
|
|
|
return CurDAG->getMachineNode(PPC::ADDItocL, dl, MVT::i64,
|
|
SDValue(Tmp, 0), GA);
|
|
}
|
|
case PPCISD::VADD_SPLAT: {
|
|
// This expands into one of three sequences, depending on whether
|
|
// the first operand is odd or even, positive or negative.
|
|
assert(isa<ConstantSDNode>(N->getOperand(0)) &&
|
|
isa<ConstantSDNode>(N->getOperand(1)) &&
|
|
"Invalid operand on VADD_SPLAT!");
|
|
|
|
int Elt = N->getConstantOperandVal(0);
|
|
int EltSize = N->getConstantOperandVal(1);
|
|
unsigned Opc1, Opc2, Opc3;
|
|
EVT VT;
|
|
|
|
if (EltSize == 1) {
|
|
Opc1 = PPC::VSPLTISB;
|
|
Opc2 = PPC::VADDUBM;
|
|
Opc3 = PPC::VSUBUBM;
|
|
VT = MVT::v16i8;
|
|
} else if (EltSize == 2) {
|
|
Opc1 = PPC::VSPLTISH;
|
|
Opc2 = PPC::VADDUHM;
|
|
Opc3 = PPC::VSUBUHM;
|
|
VT = MVT::v8i16;
|
|
} else {
|
|
assert(EltSize == 4 && "Invalid element size on VADD_SPLAT!");
|
|
Opc1 = PPC::VSPLTISW;
|
|
Opc2 = PPC::VADDUWM;
|
|
Opc3 = PPC::VSUBUWM;
|
|
VT = MVT::v4i32;
|
|
}
|
|
|
|
if ((Elt & 1) == 0) {
|
|
// Elt is even, in the range [-32,-18] + [16,30].
|
|
//
|
|
// Convert: VADD_SPLAT elt, size
|
|
// Into: tmp = VSPLTIS[BHW] elt
|
|
// VADDU[BHW]M tmp, tmp
|
|
// Where: [BHW] = B for size = 1, H for size = 2, W for size = 4
|
|
SDValue EltVal = getI32Imm(Elt >> 1);
|
|
SDNode *Tmp = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
|
|
SDValue TmpVal = SDValue(Tmp, 0);
|
|
return CurDAG->getMachineNode(Opc2, dl, VT, TmpVal, TmpVal);
|
|
|
|
} else if (Elt > 0) {
|
|
// Elt is odd and positive, in the range [17,31].
|
|
//
|
|
// Convert: VADD_SPLAT elt, size
|
|
// Into: tmp1 = VSPLTIS[BHW] elt-16
|
|
// tmp2 = VSPLTIS[BHW] -16
|
|
// VSUBU[BHW]M tmp1, tmp2
|
|
SDValue EltVal = getI32Imm(Elt - 16);
|
|
SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
|
|
EltVal = getI32Imm(-16);
|
|
SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
|
|
return CurDAG->getMachineNode(Opc3, dl, VT, SDValue(Tmp1, 0),
|
|
SDValue(Tmp2, 0));
|
|
|
|
} else {
|
|
// Elt is odd and negative, in the range [-31,-17].
|
|
//
|
|
// Convert: VADD_SPLAT elt, size
|
|
// Into: tmp1 = VSPLTIS[BHW] elt+16
|
|
// tmp2 = VSPLTIS[BHW] -16
|
|
// VADDU[BHW]M tmp1, tmp2
|
|
SDValue EltVal = getI32Imm(Elt + 16);
|
|
SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
|
|
EltVal = getI32Imm(-16);
|
|
SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
|
|
return CurDAG->getMachineNode(Opc2, dl, VT, SDValue(Tmp1, 0),
|
|
SDValue(Tmp2, 0));
|
|
}
|
|
}
|
|
}
|
|
|
|
return SelectCode(N);
|
|
}
|
|
|
|
/// PostprocessISelDAG - Perform some late peephole optimizations
|
|
/// on the DAG representation.
|
|
void PPCDAGToDAGISel::PostprocessISelDAG() {
|
|
|
|
// Skip peepholes at -O0.
|
|
if (TM.getOptLevel() == CodeGenOpt::None)
|
|
return;
|
|
|
|
PeepholePPC64();
|
|
PeepholdCROps();
|
|
}
|
|
|
|
// Check if all users of this node will become isel where the second operand
|
|
// is the constant zero. If this is so, and if we can negate the condition,
|
|
// then we can flip the true and false operands. This will allow the zero to
|
|
// be folded with the isel so that we don't need to materialize a register
|
|
// containing zero.
|
|
bool PPCDAGToDAGISel::AllUsersSelectZero(SDNode *N) {
|
|
// If we're not using isel, then this does not matter.
|
|
if (!PPCSubTarget.hasISEL())
|
|
return false;
|
|
|
|
for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
|
|
UI != UE; ++UI) {
|
|
SDNode *User = *UI;
|
|
if (!User->isMachineOpcode())
|
|
return false;
|
|
if (User->getMachineOpcode() != PPC::SELECT_I4 &&
|
|
User->getMachineOpcode() != PPC::SELECT_I8)
|
|
return false;
|
|
|
|
SDNode *Op2 = User->getOperand(2).getNode();
|
|
if (!Op2->isMachineOpcode())
|
|
return false;
|
|
|
|
if (Op2->getMachineOpcode() != PPC::LI &&
|
|
Op2->getMachineOpcode() != PPC::LI8)
|
|
return false;
|
|
|
|
ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op2->getOperand(0));
|
|
if (!C)
|
|
return false;
|
|
|
|
if (!C->isNullValue())
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void PPCDAGToDAGISel::SwapAllSelectUsers(SDNode *N) {
|
|
SmallVector<SDNode *, 4> ToReplace;
|
|
for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
|
|
UI != UE; ++UI) {
|
|
SDNode *User = *UI;
|
|
assert((User->getMachineOpcode() == PPC::SELECT_I4 ||
|
|
User->getMachineOpcode() == PPC::SELECT_I8) &&
|
|
"Must have all select users");
|
|
ToReplace.push_back(User);
|
|
}
|
|
|
|
for (SmallVector<SDNode *, 4>::iterator UI = ToReplace.begin(),
|
|
UE = ToReplace.end(); UI != UE; ++UI) {
|
|
SDNode *User = *UI;
|
|
SDNode *ResNode =
|
|
CurDAG->getMachineNode(User->getMachineOpcode(), SDLoc(User),
|
|
User->getValueType(0), User->getOperand(0),
|
|
User->getOperand(2),
|
|
User->getOperand(1));
|
|
|
|
DEBUG(dbgs() << "CR Peephole replacing:\nOld: ");
|
|
DEBUG(User->dump(CurDAG));
|
|
DEBUG(dbgs() << "\nNew: ");
|
|
DEBUG(ResNode->dump(CurDAG));
|
|
DEBUG(dbgs() << "\n");
|
|
|
|
ReplaceUses(User, ResNode);
|
|
}
|
|
}
|
|
|
|
void PPCDAGToDAGISel::PeepholdCROps() {
|
|
bool IsModified;
|
|
do {
|
|
IsModified = false;
|
|
for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
|
|
E = CurDAG->allnodes_end(); I != E; ++I) {
|
|
MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(I);
|
|
if (!MachineNode || MachineNode->use_empty())
|
|
continue;
|
|
SDNode *ResNode = MachineNode;
|
|
|
|
bool Op1Set = false, Op1Unset = false,
|
|
Op1Not = false,
|
|
Op2Set = false, Op2Unset = false,
|
|
Op2Not = false;
|
|
|
|
unsigned Opcode = MachineNode->getMachineOpcode();
|
|
switch (Opcode) {
|
|
default: break;
|
|
case PPC::CRAND:
|
|
case PPC::CRNAND:
|
|
case PPC::CROR:
|
|
case PPC::CRXOR:
|
|
case PPC::CRNOR:
|
|
case PPC::CREQV:
|
|
case PPC::CRANDC:
|
|
case PPC::CRORC: {
|
|
SDValue Op = MachineNode->getOperand(1);
|
|
if (Op.isMachineOpcode()) {
|
|
if (Op.getMachineOpcode() == PPC::CRSET)
|
|
Op2Set = true;
|
|
else if (Op.getMachineOpcode() == PPC::CRUNSET)
|
|
Op2Unset = true;
|
|
else if (Op.getMachineOpcode() == PPC::CRNOR &&
|
|
Op.getOperand(0) == Op.getOperand(1))
|
|
Op2Not = true;
|
|
}
|
|
} // fallthrough
|
|
case PPC::BC:
|
|
case PPC::BCn:
|
|
case PPC::SELECT_I4:
|
|
case PPC::SELECT_I8:
|
|
case PPC::SELECT_F4:
|
|
case PPC::SELECT_F8:
|
|
case PPC::SELECT_VRRC: {
|
|
SDValue Op = MachineNode->getOperand(0);
|
|
if (Op.isMachineOpcode()) {
|
|
if (Op.getMachineOpcode() == PPC::CRSET)
|
|
Op1Set = true;
|
|
else if (Op.getMachineOpcode() == PPC::CRUNSET)
|
|
Op1Unset = true;
|
|
else if (Op.getMachineOpcode() == PPC::CRNOR &&
|
|
Op.getOperand(0) == Op.getOperand(1))
|
|
Op1Not = true;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
bool SelectSwap = false;
|
|
switch (Opcode) {
|
|
default: break;
|
|
case PPC::CRAND:
|
|
if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
|
|
// x & x = x
|
|
ResNode = MachineNode->getOperand(0).getNode();
|
|
else if (Op1Set)
|
|
// 1 & y = y
|
|
ResNode = MachineNode->getOperand(1).getNode();
|
|
else if (Op2Set)
|
|
// x & 1 = x
|
|
ResNode = MachineNode->getOperand(0).getNode();
|
|
else if (Op1Unset || Op2Unset)
|
|
// x & 0 = 0 & y = 0
|
|
ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
|
|
MVT::i1);
|
|
else if (Op1Not)
|
|
// ~x & y = andc(y, x)
|
|
ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
|
|
MVT::i1, MachineNode->getOperand(1),
|
|
MachineNode->getOperand(0).
|
|
getOperand(0));
|
|
else if (Op2Not)
|
|
// x & ~y = andc(x, y)
|
|
ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
|
|
MVT::i1, MachineNode->getOperand(0),
|
|
MachineNode->getOperand(1).
|
|
getOperand(0));
|
|
else if (AllUsersSelectZero(MachineNode))
|
|
ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode),
|
|
MVT::i1, MachineNode->getOperand(0),
|
|
MachineNode->getOperand(1)),
|
|
SelectSwap = true;
|
|
break;
|
|
case PPC::CRNAND:
|
|
if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
|
|
// nand(x, x) -> nor(x, x)
|
|
ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
|
|
MVT::i1, MachineNode->getOperand(0),
|
|
MachineNode->getOperand(0));
|
|
else if (Op1Set)
|
|
// nand(1, y) -> nor(y, y)
|
|
ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
|
|
MVT::i1, MachineNode->getOperand(1),
|
|
MachineNode->getOperand(1));
|
|
else if (Op2Set)
|
|
// nand(x, 1) -> nor(x, x)
|
|
ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
|
|
MVT::i1, MachineNode->getOperand(0),
|
|
MachineNode->getOperand(0));
|
|
else if (Op1Unset || Op2Unset)
|
|
// nand(x, 0) = nand(0, y) = 1
|
|
ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
|
|
MVT::i1);
|
|
else if (Op1Not)
|
|
// nand(~x, y) = ~(~x & y) = x | ~y = orc(x, y)
|
|
ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
|
|
MVT::i1, MachineNode->getOperand(0).
|
|
getOperand(0),
|
|
MachineNode->getOperand(1));
|
|
else if (Op2Not)
|
|
// nand(x, ~y) = ~x | y = orc(y, x)
|
|
ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
|
|
MVT::i1, MachineNode->getOperand(1).
|
|
getOperand(0),
|
|
MachineNode->getOperand(0));
|
|
else if (AllUsersSelectZero(MachineNode))
|
|
ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode),
|
|
MVT::i1, MachineNode->getOperand(0),
|
|
MachineNode->getOperand(1)),
|
|
SelectSwap = true;
|
|
break;
|
|
case PPC::CROR:
|
|
if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
|
|
// x | x = x
|
|
ResNode = MachineNode->getOperand(0).getNode();
|
|
else if (Op1Set || Op2Set)
|
|
// x | 1 = 1 | y = 1
|
|
ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
|
|
MVT::i1);
|
|
else if (Op1Unset)
|
|
// 0 | y = y
|
|
ResNode = MachineNode->getOperand(1).getNode();
|
|
else if (Op2Unset)
|
|
// x | 0 = x
|
|
ResNode = MachineNode->getOperand(0).getNode();
|
|
else if (Op1Not)
|
|
// ~x | y = orc(y, x)
|
|
ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
|
|
MVT::i1, MachineNode->getOperand(1),
|
|
MachineNode->getOperand(0).
|
|
getOperand(0));
|
|
else if (Op2Not)
|
|
// x | ~y = orc(x, y)
|
|
ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
|
|
MVT::i1, MachineNode->getOperand(0),
|
|
MachineNode->getOperand(1).
|
|
getOperand(0));
|
|
else if (AllUsersSelectZero(MachineNode))
|
|
ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
|
|
MVT::i1, MachineNode->getOperand(0),
|
|
MachineNode->getOperand(1)),
|
|
SelectSwap = true;
|
|
break;
|
|
case PPC::CRXOR:
|
|
if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
|
|
// xor(x, x) = 0
|
|
ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
|
|
MVT::i1);
|
|
else if (Op1Set)
|
|
// xor(1, y) -> nor(y, y)
|
|
ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
|
|
MVT::i1, MachineNode->getOperand(1),
|
|
MachineNode->getOperand(1));
|
|
else if (Op2Set)
|
|
// xor(x, 1) -> nor(x, x)
|
|
ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
|
|
MVT::i1, MachineNode->getOperand(0),
|
|
MachineNode->getOperand(0));
|
|
else if (Op1Unset)
|
|
// xor(0, y) = y
|
|
ResNode = MachineNode->getOperand(1).getNode();
|
|
else if (Op2Unset)
|
|
// xor(x, 0) = x
|
|
ResNode = MachineNode->getOperand(0).getNode();
|
|
else if (Op1Not)
|
|
// xor(~x, y) = eqv(x, y)
|
|
ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
|
|
MVT::i1, MachineNode->getOperand(0).
|
|
getOperand(0),
|
|
MachineNode->getOperand(1));
|
|
else if (Op2Not)
|
|
// xor(x, ~y) = eqv(x, y)
|
|
ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
|
|
MVT::i1, MachineNode->getOperand(0),
|
|
MachineNode->getOperand(1).
|
|
getOperand(0));
|
|
else if (AllUsersSelectZero(MachineNode))
|
|
ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
|
|
MVT::i1, MachineNode->getOperand(0),
|
|
MachineNode->getOperand(1)),
|
|
SelectSwap = true;
|
|
break;
|
|
case PPC::CRNOR:
|
|
if (Op1Set || Op2Set)
|
|
// nor(1, y) -> 0
|
|
ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
|
|
MVT::i1);
|
|
else if (Op1Unset)
|
|
// nor(0, y) = ~y -> nor(y, y)
|
|
ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
|
|
MVT::i1, MachineNode->getOperand(1),
|
|
MachineNode->getOperand(1));
|
|
else if (Op2Unset)
|
|
// nor(x, 0) = ~x
|
|
ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
|
|
MVT::i1, MachineNode->getOperand(0),
|
|
MachineNode->getOperand(0));
|
|
else if (Op1Not)
|
|
// nor(~x, y) = andc(x, y)
|
|
ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
|
|
MVT::i1, MachineNode->getOperand(0).
|
|
getOperand(0),
|
|
MachineNode->getOperand(1));
|
|
else if (Op2Not)
|
|
// nor(x, ~y) = andc(y, x)
|
|
ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
|
|
MVT::i1, MachineNode->getOperand(1).
|
|
getOperand(0),
|
|
MachineNode->getOperand(0));
|
|
else if (AllUsersSelectZero(MachineNode))
|
|
ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode),
|
|
MVT::i1, MachineNode->getOperand(0),
|
|
MachineNode->getOperand(1)),
|
|
SelectSwap = true;
|
|
break;
|
|
case PPC::CREQV:
|
|
if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
|
|
// eqv(x, x) = 1
|
|
ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
|
|
MVT::i1);
|
|
else if (Op1Set)
|
|
// eqv(1, y) = y
|
|
ResNode = MachineNode->getOperand(1).getNode();
|
|
else if (Op2Set)
|
|
// eqv(x, 1) = x
|
|
ResNode = MachineNode->getOperand(0).getNode();
|
|
else if (Op1Unset)
|
|
// eqv(0, y) = ~y -> nor(y, y)
|
|
ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
|
|
MVT::i1, MachineNode->getOperand(1),
|
|
MachineNode->getOperand(1));
|
|
else if (Op2Unset)
|
|
// eqv(x, 0) = ~x
|
|
ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
|
|
MVT::i1, MachineNode->getOperand(0),
|
|
MachineNode->getOperand(0));
|
|
else if (Op1Not)
|
|
// eqv(~x, y) = xor(x, y)
|
|
ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
|
|
MVT::i1, MachineNode->getOperand(0).
|
|
getOperand(0),
|
|
MachineNode->getOperand(1));
|
|
else if (Op2Not)
|
|
// eqv(x, ~y) = xor(x, y)
|
|
ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
|
|
MVT::i1, MachineNode->getOperand(0),
|
|
MachineNode->getOperand(1).
|
|
getOperand(0));
|
|
else if (AllUsersSelectZero(MachineNode))
|
|
ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
|
|
MVT::i1, MachineNode->getOperand(0),
|
|
MachineNode->getOperand(1)),
|
|
SelectSwap = true;
|
|
break;
|
|
case PPC::CRANDC:
|
|
if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
|
|
// andc(x, x) = 0
|
|
ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
|
|
MVT::i1);
|
|
else if (Op1Set)
|
|
// andc(1, y) = ~y
|
|
ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
|
|
MVT::i1, MachineNode->getOperand(1),
|
|
MachineNode->getOperand(1));
|
|
else if (Op1Unset || Op2Set)
|
|
// andc(0, y) = andc(x, 1) = 0
|
|
ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
|
|
MVT::i1);
|
|
else if (Op2Unset)
|
|
// andc(x, 0) = x
|
|
ResNode = MachineNode->getOperand(0).getNode();
|
|
else if (Op1Not)
|
|
// andc(~x, y) = ~(x | y) = nor(x, y)
|
|
ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
|
|
MVT::i1, MachineNode->getOperand(0).
|
|
getOperand(0),
|
|
MachineNode->getOperand(1));
|
|
else if (Op2Not)
|
|
// andc(x, ~y) = x & y
|
|
ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode),
|
|
MVT::i1, MachineNode->getOperand(0),
|
|
MachineNode->getOperand(1).
|
|
getOperand(0));
|
|
else if (AllUsersSelectZero(MachineNode))
|
|
ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
|
|
MVT::i1, MachineNode->getOperand(1),
|
|
MachineNode->getOperand(0)),
|
|
SelectSwap = true;
|
|
break;
|
|
case PPC::CRORC:
|
|
if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
|
|
// orc(x, x) = 1
|
|
ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
|
|
MVT::i1);
|
|
else if (Op1Set || Op2Unset)
|
|
// orc(1, y) = orc(x, 0) = 1
|
|
ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
|
|
MVT::i1);
|
|
else if (Op2Set)
|
|
// orc(x, 1) = x
|
|
ResNode = MachineNode->getOperand(0).getNode();
|
|
else if (Op1Unset)
|
|
// orc(0, y) = ~y
|
|
ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
|
|
MVT::i1, MachineNode->getOperand(1),
|
|
MachineNode->getOperand(1));
|
|
else if (Op1Not)
|
|
// orc(~x, y) = ~(x & y) = nand(x, y)
|
|
ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode),
|
|
MVT::i1, MachineNode->getOperand(0).
|
|
getOperand(0),
|
|
MachineNode->getOperand(1));
|
|
else if (Op2Not)
|
|
// orc(x, ~y) = x | y
|
|
ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode),
|
|
MVT::i1, MachineNode->getOperand(0),
|
|
MachineNode->getOperand(1).
|
|
getOperand(0));
|
|
else if (AllUsersSelectZero(MachineNode))
|
|
ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
|
|
MVT::i1, MachineNode->getOperand(1),
|
|
MachineNode->getOperand(0)),
|
|
SelectSwap = true;
|
|
break;
|
|
case PPC::SELECT_I4:
|
|
case PPC::SELECT_I8:
|
|
case PPC::SELECT_F4:
|
|
case PPC::SELECT_F8:
|
|
case PPC::SELECT_VRRC:
|
|
if (Op1Set)
|
|
ResNode = MachineNode->getOperand(1).getNode();
|
|
else if (Op1Unset)
|
|
ResNode = MachineNode->getOperand(2).getNode();
|
|
else if (Op1Not)
|
|
ResNode = CurDAG->getMachineNode(MachineNode->getMachineOpcode(),
|
|
SDLoc(MachineNode),
|
|
MachineNode->getValueType(0),
|
|
MachineNode->getOperand(0).
|
|
getOperand(0),
|
|
MachineNode->getOperand(2),
|
|
MachineNode->getOperand(1));
|
|
break;
|
|
case PPC::BC:
|
|
case PPC::BCn:
|
|
if (Op1Not)
|
|
ResNode = CurDAG->getMachineNode(Opcode == PPC::BC ? PPC::BCn :
|
|
PPC::BC,
|
|
SDLoc(MachineNode),
|
|
MVT::Other,
|
|
MachineNode->getOperand(0).
|
|
getOperand(0),
|
|
MachineNode->getOperand(1),
|
|
MachineNode->getOperand(2));
|
|
// FIXME: Handle Op1Set, Op1Unset here too.
|
|
break;
|
|
}
|
|
|
|
// If we're inverting this node because it is used only by selects that
|
|
// we'd like to swap, then swap the selects before the node replacement.
|
|
if (SelectSwap)
|
|
SwapAllSelectUsers(MachineNode);
|
|
|
|
if (ResNode != MachineNode) {
|
|
DEBUG(dbgs() << "CR Peephole replacing:\nOld: ");
|
|
DEBUG(MachineNode->dump(CurDAG));
|
|
DEBUG(dbgs() << "\nNew: ");
|
|
DEBUG(ResNode->dump(CurDAG));
|
|
DEBUG(dbgs() << "\n");
|
|
|
|
ReplaceUses(MachineNode, ResNode);
|
|
IsModified = true;
|
|
}
|
|
}
|
|
if (IsModified)
|
|
CurDAG->RemoveDeadNodes();
|
|
} while (IsModified);
|
|
}
|
|
|
|
void PPCDAGToDAGISel::PeepholePPC64() {
|
|
// These optimizations are currently supported only for 64-bit SVR4.
|
|
if (PPCSubTarget.isDarwin() || !PPCSubTarget.isPPC64())
|
|
return;
|
|
|
|
SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode());
|
|
++Position;
|
|
|
|
while (Position != CurDAG->allnodes_begin()) {
|
|
SDNode *N = --Position;
|
|
// Skip dead nodes and any non-machine opcodes.
|
|
if (N->use_empty() || !N->isMachineOpcode())
|
|
continue;
|
|
|
|
unsigned FirstOp;
|
|
unsigned StorageOpcode = N->getMachineOpcode();
|
|
|
|
switch (StorageOpcode) {
|
|
default: continue;
|
|
|
|
case PPC::LBZ:
|
|
case PPC::LBZ8:
|
|
case PPC::LD:
|
|
case PPC::LFD:
|
|
case PPC::LFS:
|
|
case PPC::LHA:
|
|
case PPC::LHA8:
|
|
case PPC::LHZ:
|
|
case PPC::LHZ8:
|
|
case PPC::LWA:
|
|
case PPC::LWZ:
|
|
case PPC::LWZ8:
|
|
FirstOp = 0;
|
|
break;
|
|
|
|
case PPC::STB:
|
|
case PPC::STB8:
|
|
case PPC::STD:
|
|
case PPC::STFD:
|
|
case PPC::STFS:
|
|
case PPC::STH:
|
|
case PPC::STH8:
|
|
case PPC::STW:
|
|
case PPC::STW8:
|
|
FirstOp = 1;
|
|
break;
|
|
}
|
|
|
|
// If this is a load or store with a zero offset, we may be able to
|
|
// fold an add-immediate into the memory operation.
|
|
if (!isa<ConstantSDNode>(N->getOperand(FirstOp)) ||
|
|
N->getConstantOperandVal(FirstOp) != 0)
|
|
continue;
|
|
|
|
SDValue Base = N->getOperand(FirstOp + 1);
|
|
if (!Base.isMachineOpcode())
|
|
continue;
|
|
|
|
unsigned Flags = 0;
|
|
bool ReplaceFlags = true;
|
|
|
|
// When the feeding operation is an add-immediate of some sort,
|
|
// determine whether we need to add relocation information to the
|
|
// target flags on the immediate operand when we fold it into the
|
|
// load instruction.
|
|
//
|
|
// For something like ADDItocL, the relocation information is
|
|
// inferred from the opcode; when we process it in the AsmPrinter,
|
|
// we add the necessary relocation there. A load, though, can receive
|
|
// relocation from various flavors of ADDIxxx, so we need to carry
|
|
// the relocation information in the target flags.
|
|
switch (Base.getMachineOpcode()) {
|
|
default: continue;
|
|
|
|
case PPC::ADDI8:
|
|
case PPC::ADDI:
|
|
// In some cases (such as TLS) the relocation information
|
|
// is already in place on the operand, so copying the operand
|
|
// is sufficient.
|
|
ReplaceFlags = false;
|
|
// For these cases, the immediate may not be divisible by 4, in
|
|
// which case the fold is illegal for DS-form instructions. (The
|
|
// other cases provide aligned addresses and are always safe.)
|
|
if ((StorageOpcode == PPC::LWA ||
|
|
StorageOpcode == PPC::LD ||
|
|
StorageOpcode == PPC::STD) &&
|
|
(!isa<ConstantSDNode>(Base.getOperand(1)) ||
|
|
Base.getConstantOperandVal(1) % 4 != 0))
|
|
continue;
|
|
break;
|
|
case PPC::ADDIdtprelL:
|
|
Flags = PPCII::MO_DTPREL_LO;
|
|
break;
|
|
case PPC::ADDItlsldL:
|
|
Flags = PPCII::MO_TLSLD_LO;
|
|
break;
|
|
case PPC::ADDItocL:
|
|
Flags = PPCII::MO_TOC_LO;
|
|
break;
|
|
}
|
|
|
|
// We found an opportunity. Reverse the operands from the add
|
|
// immediate and substitute them into the load or store. If
|
|
// needed, update the target flags for the immediate operand to
|
|
// reflect the necessary relocation information.
|
|
DEBUG(dbgs() << "Folding add-immediate into mem-op:\nBase: ");
|
|
DEBUG(Base->dump(CurDAG));
|
|
DEBUG(dbgs() << "\nN: ");
|
|
DEBUG(N->dump(CurDAG));
|
|
DEBUG(dbgs() << "\n");
|
|
|
|
SDValue ImmOpnd = Base.getOperand(1);
|
|
|
|
// If the relocation information isn't already present on the
|
|
// immediate operand, add it now.
|
|
if (ReplaceFlags) {
|
|
if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) {
|
|
SDLoc dl(GA);
|
|
const GlobalValue *GV = GA->getGlobal();
|
|
// We can't perform this optimization for data whose alignment
|
|
// is insufficient for the instruction encoding.
|
|
if (GV->getAlignment() < 4 &&
|
|
(StorageOpcode == PPC::LD || StorageOpcode == PPC::STD ||
|
|
StorageOpcode == PPC::LWA)) {
|
|
DEBUG(dbgs() << "Rejected this candidate for alignment.\n\n");
|
|
continue;
|
|
}
|
|
ImmOpnd = CurDAG->getTargetGlobalAddress(GV, dl, MVT::i64, 0, Flags);
|
|
} else if (ConstantPoolSDNode *CP =
|
|
dyn_cast<ConstantPoolSDNode>(ImmOpnd)) {
|
|
const Constant *C = CP->getConstVal();
|
|
ImmOpnd = CurDAG->getTargetConstantPool(C, MVT::i64,
|
|
CP->getAlignment(),
|
|
0, Flags);
|
|
}
|
|
}
|
|
|
|
if (FirstOp == 1) // Store
|
|
(void)CurDAG->UpdateNodeOperands(N, N->getOperand(0), ImmOpnd,
|
|
Base.getOperand(0), N->getOperand(3));
|
|
else // Load
|
|
(void)CurDAG->UpdateNodeOperands(N, ImmOpnd, Base.getOperand(0),
|
|
N->getOperand(2));
|
|
|
|
// The add-immediate may now be dead, in which case remove it.
|
|
if (Base.getNode()->use_empty())
|
|
CurDAG->RemoveDeadNode(Base.getNode());
|
|
}
|
|
}
|
|
|
|
|
|
/// createPPCISelDag - This pass converts a legalized DAG into a
|
|
/// PowerPC-specific DAG, ready for instruction scheduling.
|
|
///
|
|
FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM) {
|
|
return new PPCDAGToDAGISel(TM);
|
|
}
|
|
|
|
static void initializePassOnce(PassRegistry &Registry) {
|
|
const char *Name = "PowerPC DAG->DAG Pattern Instruction Selection";
|
|
PassInfo *PI = new PassInfo(Name, "ppc-codegen", &SelectionDAGISel::ID, 0,
|
|
false, false);
|
|
Registry.registerPass(*PI, true);
|
|
}
|
|
|
|
void llvm::initializePPCDAGToDAGISelPass(PassRegistry &Registry) {
|
|
CALL_ONCE_INITIALIZATION(initializePassOnce);
|
|
}
|
|
|