llvm-6502/lib/CodeGen/PrologEpilogInserter.cpp
Rafael Espindola 83dd2ae095 Remove the --shrink-wrap option.
It had no tests, was unused and was "experimental at best".

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193749 91177308-0d34-0410-b5e6-96231b3b80d8
2013-10-31 14:07:59 +00:00

867 lines
33 KiB
C++

//===-- PrologEpilogInserter.cpp - Insert Prolog/Epilog code in function --===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass is responsible for finalizing the functions frame layout, saving
// callee saved registers, and for emitting prolog & epilog code for the
// function.
//
// This pass must be run after register allocation. After this pass is
// executed, it is illegal to construct MO_FrameIndex operands.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "pei"
#include "PrologEpilogInserter.h"
#include "llvm/ADT/IndexedMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetFrameLowering.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include <climits>
using namespace llvm;
char PEI::ID = 0;
char &llvm::PrologEpilogCodeInserterID = PEI::ID;
static cl::opt<unsigned>
WarnStackSize("warn-stack-size", cl::Hidden, cl::init((unsigned)-1),
cl::desc("Warn for stack size bigger than the given"
" number"));
INITIALIZE_PASS_BEGIN(PEI, "prologepilog",
"Prologue/Epilogue Insertion", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
INITIALIZE_PASS_END(PEI, "prologepilog",
"Prologue/Epilogue Insertion & Frame Finalization",
false, false)
STATISTIC(NumScavengedRegs, "Number of frame index regs scavenged");
STATISTIC(NumBytesStackSpace,
"Number of bytes used for stack in all functions");
void PEI::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
AU.addPreserved<MachineLoopInfo>();
AU.addPreserved<MachineDominatorTree>();
AU.addRequired<TargetPassConfig>();
MachineFunctionPass::getAnalysisUsage(AU);
}
bool PEI::isReturnBlock(MachineBasicBlock* MBB) {
return (MBB && !MBB->empty() && MBB->back().isReturn());
}
/// Compute the set of return blocks
void PEI::calculateSets(MachineFunction &Fn) {
// Sets used to compute spill, restore placement sets.
const std::vector<CalleeSavedInfo> &CSI =
Fn.getFrameInfo()->getCalleeSavedInfo();
// If no CSRs used, we are done.
if (CSI.empty())
return;
// Save refs to entry and return blocks.
EntryBlock = Fn.begin();
for (MachineFunction::iterator MBB = Fn.begin(), E = Fn.end();
MBB != E; ++MBB)
if (isReturnBlock(MBB))
ReturnBlocks.push_back(MBB);
return;
}
/// runOnMachineFunction - Insert prolog/epilog code and replace abstract
/// frame indexes with appropriate references.
///
bool PEI::runOnMachineFunction(MachineFunction &Fn) {
const Function* F = Fn.getFunction();
const TargetRegisterInfo *TRI = Fn.getTarget().getRegisterInfo();
const TargetFrameLowering *TFI = Fn.getTarget().getFrameLowering();
assert(!Fn.getRegInfo().getNumVirtRegs() && "Regalloc must assign all vregs");
RS = TRI->requiresRegisterScavenging(Fn) ? new RegScavenger() : NULL;
FrameIndexVirtualScavenging = TRI->requiresFrameIndexScavenging(Fn);
// Calculate the MaxCallFrameSize and AdjustsStack variables for the
// function's frame information. Also eliminates call frame pseudo
// instructions.
calculateCallsInformation(Fn);
// Allow the target machine to make some adjustments to the function
// e.g. UsedPhysRegs before calculateCalleeSavedRegisters.
TFI->processFunctionBeforeCalleeSavedScan(Fn, RS);
// Scan the function for modified callee saved registers and insert spill code
// for any callee saved registers that are modified.
calculateCalleeSavedRegisters(Fn);
// Determine placement of CSR spill/restore code:
// place all spills in the entry block, all restores in return blocks.
calculateSets(Fn);
// Add the code to save and restore the callee saved registers
if (!F->hasFnAttribute(Attribute::Naked))
insertCSRSpillsAndRestores(Fn);
// Allow the target machine to make final modifications to the function
// before the frame layout is finalized.
TFI->processFunctionBeforeFrameFinalized(Fn, RS);
// Calculate actual frame offsets for all abstract stack objects...
calculateFrameObjectOffsets(Fn);
// Add prolog and epilog code to the function. This function is required
// to align the stack frame as necessary for any stack variables or
// called functions. Because of this, calculateCalleeSavedRegisters()
// must be called before this function in order to set the AdjustsStack
// and MaxCallFrameSize variables.
if (!F->hasFnAttribute(Attribute::Naked))
insertPrologEpilogCode(Fn);
// Replace all MO_FrameIndex operands with physical register references
// and actual offsets.
//
replaceFrameIndices(Fn);
// If register scavenging is needed, as we've enabled doing it as a
// post-pass, scavenge the virtual registers that frame index elimiation
// inserted.
if (TRI->requiresRegisterScavenging(Fn) && FrameIndexVirtualScavenging)
scavengeFrameVirtualRegs(Fn);
// Clear any vregs created by virtual scavenging.
Fn.getRegInfo().clearVirtRegs();
// Warn on stack size when we exceeds the given limit.
MachineFrameInfo *MFI = Fn.getFrameInfo();
if (WarnStackSize.getNumOccurrences() > 0 &&
WarnStackSize < MFI->getStackSize())
errs() << "warning: Stack size limit exceeded (" << MFI->getStackSize()
<< ") in " << Fn.getName() << ".\n";
delete RS;
ReturnBlocks.clear();
return true;
}
/// calculateCallsInformation - Calculate the MaxCallFrameSize and AdjustsStack
/// variables for the function's frame information and eliminate call frame
/// pseudo instructions.
void PEI::calculateCallsInformation(MachineFunction &Fn) {
const TargetInstrInfo &TII = *Fn.getTarget().getInstrInfo();
const TargetFrameLowering *TFI = Fn.getTarget().getFrameLowering();
MachineFrameInfo *MFI = Fn.getFrameInfo();
unsigned MaxCallFrameSize = 0;
bool AdjustsStack = MFI->adjustsStack();
// Get the function call frame set-up and tear-down instruction opcode
int FrameSetupOpcode = TII.getCallFrameSetupOpcode();
int FrameDestroyOpcode = TII.getCallFrameDestroyOpcode();
// Early exit for targets which have no call frame setup/destroy pseudo
// instructions.
if (FrameSetupOpcode == -1 && FrameDestroyOpcode == -1)
return;
std::vector<MachineBasicBlock::iterator> FrameSDOps;
for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB)
for (MachineBasicBlock::iterator I = BB->begin(); I != BB->end(); ++I)
if (I->getOpcode() == FrameSetupOpcode ||
I->getOpcode() == FrameDestroyOpcode) {
assert(I->getNumOperands() >= 1 && "Call Frame Setup/Destroy Pseudo"
" instructions should have a single immediate argument!");
unsigned Size = I->getOperand(0).getImm();
if (Size > MaxCallFrameSize) MaxCallFrameSize = Size;
AdjustsStack = true;
FrameSDOps.push_back(I);
} else if (I->isInlineAsm()) {
// Some inline asm's need a stack frame, as indicated by operand 1.
unsigned ExtraInfo = I->getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
AdjustsStack = true;
}
MFI->setAdjustsStack(AdjustsStack);
MFI->setMaxCallFrameSize(MaxCallFrameSize);
for (std::vector<MachineBasicBlock::iterator>::iterator
i = FrameSDOps.begin(), e = FrameSDOps.end(); i != e; ++i) {
MachineBasicBlock::iterator I = *i;
// If call frames are not being included as part of the stack frame, and
// the target doesn't indicate otherwise, remove the call frame pseudos
// here. The sub/add sp instruction pairs are still inserted, but we don't
// need to track the SP adjustment for frame index elimination.
if (TFI->canSimplifyCallFramePseudos(Fn))
TFI->eliminateCallFramePseudoInstr(Fn, *I->getParent(), I);
}
}
/// calculateCalleeSavedRegisters - Scan the function for modified callee saved
/// registers.
void PEI::calculateCalleeSavedRegisters(MachineFunction &F) {
const TargetRegisterInfo *RegInfo = F.getTarget().getRegisterInfo();
const TargetFrameLowering *TFI = F.getTarget().getFrameLowering();
MachineFrameInfo *MFI = F.getFrameInfo();
// Get the callee saved register list...
const uint16_t *CSRegs = RegInfo->getCalleeSavedRegs(&F);
// These are used to keep track the callee-save area. Initialize them.
MinCSFrameIndex = INT_MAX;
MaxCSFrameIndex = 0;
// Early exit for targets which have no callee saved registers.
if (CSRegs == 0 || CSRegs[0] == 0)
return;
// In Naked functions we aren't going to save any registers.
if (F.getFunction()->hasFnAttribute(Attribute::Naked))
return;
std::vector<CalleeSavedInfo> CSI;
for (unsigned i = 0; CSRegs[i]; ++i) {
unsigned Reg = CSRegs[i];
// Functions which call __builtin_unwind_init get all their registers saved.
if (F.getRegInfo().isPhysRegUsed(Reg) || F.getMMI().callsUnwindInit()) {
// If the reg is modified, save it!
CSI.push_back(CalleeSavedInfo(Reg));
}
}
if (CSI.empty())
return; // Early exit if no callee saved registers are modified!
unsigned NumFixedSpillSlots;
const TargetFrameLowering::SpillSlot *FixedSpillSlots =
TFI->getCalleeSavedSpillSlots(NumFixedSpillSlots);
// Now that we know which registers need to be saved and restored, allocate
// stack slots for them.
for (std::vector<CalleeSavedInfo>::iterator
I = CSI.begin(), E = CSI.end(); I != E; ++I) {
unsigned Reg = I->getReg();
const TargetRegisterClass *RC = RegInfo->getMinimalPhysRegClass(Reg);
int FrameIdx;
if (RegInfo->hasReservedSpillSlot(F, Reg, FrameIdx)) {
I->setFrameIdx(FrameIdx);
continue;
}
// Check to see if this physreg must be spilled to a particular stack slot
// on this target.
const TargetFrameLowering::SpillSlot *FixedSlot = FixedSpillSlots;
while (FixedSlot != FixedSpillSlots+NumFixedSpillSlots &&
FixedSlot->Reg != Reg)
++FixedSlot;
if (FixedSlot == FixedSpillSlots + NumFixedSpillSlots) {
// Nope, just spill it anywhere convenient.
unsigned Align = RC->getAlignment();
unsigned StackAlign = TFI->getStackAlignment();
// We may not be able to satisfy the desired alignment specification of
// the TargetRegisterClass if the stack alignment is smaller. Use the
// min.
Align = std::min(Align, StackAlign);
FrameIdx = MFI->CreateStackObject(RC->getSize(), Align, true);
if ((unsigned)FrameIdx < MinCSFrameIndex) MinCSFrameIndex = FrameIdx;
if ((unsigned)FrameIdx > MaxCSFrameIndex) MaxCSFrameIndex = FrameIdx;
} else {
// Spill it to the stack where we must.
FrameIdx = MFI->CreateFixedObject(RC->getSize(), FixedSlot->Offset, true);
}
I->setFrameIdx(FrameIdx);
}
MFI->setCalleeSavedInfo(CSI);
}
/// insertCSRSpillsAndRestores - Insert spill and restore code for
/// callee saved registers used in the function.
///
void PEI::insertCSRSpillsAndRestores(MachineFunction &Fn) {
// Get callee saved register information.
MachineFrameInfo *MFI = Fn.getFrameInfo();
const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
MFI->setCalleeSavedInfoValid(true);
// Early exit if no callee saved registers are modified!
if (CSI.empty())
return;
const TargetInstrInfo &TII = *Fn.getTarget().getInstrInfo();
const TargetFrameLowering *TFI = Fn.getTarget().getFrameLowering();
const TargetRegisterInfo *TRI = Fn.getTarget().getRegisterInfo();
MachineBasicBlock::iterator I;
// Spill using target interface.
I = EntryBlock->begin();
if (!TFI->spillCalleeSavedRegisters(*EntryBlock, I, CSI, TRI)) {
for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
// Add the callee-saved register as live-in.
// It's killed at the spill.
EntryBlock->addLiveIn(CSI[i].getReg());
// Insert the spill to the stack frame.
unsigned Reg = CSI[i].getReg();
const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
TII.storeRegToStackSlot(*EntryBlock, I, Reg, true, CSI[i].getFrameIdx(),
RC, TRI);
}
}
// Restore using target interface.
for (unsigned ri = 0, re = ReturnBlocks.size(); ri != re; ++ri) {
MachineBasicBlock *MBB = ReturnBlocks[ri];
I = MBB->end();
--I;
// Skip over all terminator instructions, which are part of the return
// sequence.
MachineBasicBlock::iterator I2 = I;
while (I2 != MBB->begin() && (--I2)->isTerminator())
I = I2;
bool AtStart = I == MBB->begin();
MachineBasicBlock::iterator BeforeI = I;
if (!AtStart)
--BeforeI;
// Restore all registers immediately before the return and any
// terminators that precede it.
if (!TFI->restoreCalleeSavedRegisters(*MBB, I, CSI, TRI)) {
for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
unsigned Reg = CSI[i].getReg();
const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
TII.loadRegFromStackSlot(*MBB, I, Reg, CSI[i].getFrameIdx(), RC, TRI);
assert(I != MBB->begin() &&
"loadRegFromStackSlot didn't insert any code!");
// Insert in reverse order. loadRegFromStackSlot can insert
// multiple instructions.
if (AtStart)
I = MBB->begin();
else {
I = BeforeI;
++I;
}
}
}
}
}
/// AdjustStackOffset - Helper function used to adjust the stack frame offset.
static inline void
AdjustStackOffset(MachineFrameInfo *MFI, int FrameIdx,
bool StackGrowsDown, int64_t &Offset,
unsigned &MaxAlign) {
// If the stack grows down, add the object size to find the lowest address.
if (StackGrowsDown)
Offset += MFI->getObjectSize(FrameIdx);
unsigned Align = MFI->getObjectAlignment(FrameIdx);
// If the alignment of this object is greater than that of the stack, then
// increase the stack alignment to match.
MaxAlign = std::max(MaxAlign, Align);
// Adjust to alignment boundary.
Offset = (Offset + Align - 1) / Align * Align;
if (StackGrowsDown) {
DEBUG(dbgs() << "alloc FI(" << FrameIdx << ") at SP[" << -Offset << "]\n");
MFI->setObjectOffset(FrameIdx, -Offset); // Set the computed offset
} else {
DEBUG(dbgs() << "alloc FI(" << FrameIdx << ") at SP[" << Offset << "]\n");
MFI->setObjectOffset(FrameIdx, Offset);
Offset += MFI->getObjectSize(FrameIdx);
}
}
/// calculateFrameObjectOffsets - Calculate actual frame offsets for all of the
/// abstract stack objects.
///
void PEI::calculateFrameObjectOffsets(MachineFunction &Fn) {
const TargetFrameLowering &TFI = *Fn.getTarget().getFrameLowering();
bool StackGrowsDown =
TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown;
// Loop over all of the stack objects, assigning sequential addresses...
MachineFrameInfo *MFI = Fn.getFrameInfo();
// Start at the beginning of the local area.
// The Offset is the distance from the stack top in the direction
// of stack growth -- so it's always nonnegative.
int LocalAreaOffset = TFI.getOffsetOfLocalArea();
if (StackGrowsDown)
LocalAreaOffset = -LocalAreaOffset;
assert(LocalAreaOffset >= 0
&& "Local area offset should be in direction of stack growth");
int64_t Offset = LocalAreaOffset;
// If there are fixed sized objects that are preallocated in the local area,
// non-fixed objects can't be allocated right at the start of local area.
// We currently don't support filling in holes in between fixed sized
// objects, so we adjust 'Offset' to point to the end of last fixed sized
// preallocated object.
for (int i = MFI->getObjectIndexBegin(); i != 0; ++i) {
int64_t FixedOff;
if (StackGrowsDown) {
// The maximum distance from the stack pointer is at lower address of
// the object -- which is given by offset. For down growing stack
// the offset is negative, so we negate the offset to get the distance.
FixedOff = -MFI->getObjectOffset(i);
} else {
// The maximum distance from the start pointer is at the upper
// address of the object.
FixedOff = MFI->getObjectOffset(i) + MFI->getObjectSize(i);
}
if (FixedOff > Offset) Offset = FixedOff;
}
// First assign frame offsets to stack objects that are used to spill
// callee saved registers.
if (StackGrowsDown) {
for (unsigned i = MinCSFrameIndex; i <= MaxCSFrameIndex; ++i) {
// If the stack grows down, we need to add the size to find the lowest
// address of the object.
Offset += MFI->getObjectSize(i);
unsigned Align = MFI->getObjectAlignment(i);
// Adjust to alignment boundary
Offset = (Offset+Align-1)/Align*Align;
MFI->setObjectOffset(i, -Offset); // Set the computed offset
}
} else {
int MaxCSFI = MaxCSFrameIndex, MinCSFI = MinCSFrameIndex;
for (int i = MaxCSFI; i >= MinCSFI ; --i) {
unsigned Align = MFI->getObjectAlignment(i);
// Adjust to alignment boundary
Offset = (Offset+Align-1)/Align*Align;
MFI->setObjectOffset(i, Offset);
Offset += MFI->getObjectSize(i);
}
}
unsigned MaxAlign = MFI->getMaxAlignment();
// Make sure the special register scavenging spill slot is closest to the
// incoming stack pointer if a frame pointer is required and is closer
// to the incoming rather than the final stack pointer.
const TargetRegisterInfo *RegInfo = Fn.getTarget().getRegisterInfo();
bool EarlyScavengingSlots = (TFI.hasFP(Fn) &&
TFI.isFPCloseToIncomingSP() &&
RegInfo->useFPForScavengingIndex(Fn) &&
!RegInfo->needsStackRealignment(Fn));
if (RS && EarlyScavengingSlots) {
SmallVector<int, 2> SFIs;
RS->getScavengingFrameIndices(SFIs);
for (SmallVectorImpl<int>::iterator I = SFIs.begin(),
IE = SFIs.end(); I != IE; ++I)
AdjustStackOffset(MFI, *I, StackGrowsDown, Offset, MaxAlign);
}
// FIXME: Once this is working, then enable flag will change to a target
// check for whether the frame is large enough to want to use virtual
// frame index registers. Functions which don't want/need this optimization
// will continue to use the existing code path.
if (MFI->getUseLocalStackAllocationBlock()) {
unsigned Align = MFI->getLocalFrameMaxAlign();
// Adjust to alignment boundary.
Offset = (Offset + Align - 1) / Align * Align;
DEBUG(dbgs() << "Local frame base offset: " << Offset << "\n");
// Resolve offsets for objects in the local block.
for (unsigned i = 0, e = MFI->getLocalFrameObjectCount(); i != e; ++i) {
std::pair<int, int64_t> Entry = MFI->getLocalFrameObjectMap(i);
int64_t FIOffset = (StackGrowsDown ? -Offset : Offset) + Entry.second;
DEBUG(dbgs() << "alloc FI(" << Entry.first << ") at SP[" <<
FIOffset << "]\n");
MFI->setObjectOffset(Entry.first, FIOffset);
}
// Allocate the local block
Offset += MFI->getLocalFrameSize();
MaxAlign = std::max(Align, MaxAlign);
}
// Make sure that the stack protector comes before the local variables on the
// stack.
SmallSet<int, 16> LargeStackObjs;
if (MFI->getStackProtectorIndex() >= 0) {
AdjustStackOffset(MFI, MFI->getStackProtectorIndex(), StackGrowsDown,
Offset, MaxAlign);
// Assign large stack objects first.
for (unsigned i = 0, e = MFI->getObjectIndexEnd(); i != e; ++i) {
if (MFI->isObjectPreAllocated(i) &&
MFI->getUseLocalStackAllocationBlock())
continue;
if (i >= MinCSFrameIndex && i <= MaxCSFrameIndex)
continue;
if (RS && RS->isScavengingFrameIndex((int)i))
continue;
if (MFI->isDeadObjectIndex(i))
continue;
if (MFI->getStackProtectorIndex() == (int)i)
continue;
if (!MFI->MayNeedStackProtector(i))
continue;
AdjustStackOffset(MFI, i, StackGrowsDown, Offset, MaxAlign);
LargeStackObjs.insert(i);
}
}
// Then assign frame offsets to stack objects that are not used to spill
// callee saved registers.
for (unsigned i = 0, e = MFI->getObjectIndexEnd(); i != e; ++i) {
if (MFI->isObjectPreAllocated(i) &&
MFI->getUseLocalStackAllocationBlock())
continue;
if (i >= MinCSFrameIndex && i <= MaxCSFrameIndex)
continue;
if (RS && RS->isScavengingFrameIndex((int)i))
continue;
if (MFI->isDeadObjectIndex(i))
continue;
if (MFI->getStackProtectorIndex() == (int)i)
continue;
if (LargeStackObjs.count(i))
continue;
AdjustStackOffset(MFI, i, StackGrowsDown, Offset, MaxAlign);
}
// Make sure the special register scavenging spill slot is closest to the
// stack pointer.
if (RS && !EarlyScavengingSlots) {
SmallVector<int, 2> SFIs;
RS->getScavengingFrameIndices(SFIs);
for (SmallVectorImpl<int>::iterator I = SFIs.begin(),
IE = SFIs.end(); I != IE; ++I)
AdjustStackOffset(MFI, *I, StackGrowsDown, Offset, MaxAlign);
}
if (!TFI.targetHandlesStackFrameRounding()) {
// If we have reserved argument space for call sites in the function
// immediately on entry to the current function, count it as part of the
// overall stack size.
if (MFI->adjustsStack() && TFI.hasReservedCallFrame(Fn))
Offset += MFI->getMaxCallFrameSize();
// Round up the size to a multiple of the alignment. If the function has
// any calls or alloca's, align to the target's StackAlignment value to
// ensure that the callee's frame or the alloca data is suitably aligned;
// otherwise, for leaf functions, align to the TransientStackAlignment
// value.
unsigned StackAlign;
if (MFI->adjustsStack() || MFI->hasVarSizedObjects() ||
(RegInfo->needsStackRealignment(Fn) && MFI->getObjectIndexEnd() != 0))
StackAlign = TFI.getStackAlignment();
else
StackAlign = TFI.getTransientStackAlignment();
// If the frame pointer is eliminated, all frame offsets will be relative to
// SP not FP. Align to MaxAlign so this works.
StackAlign = std::max(StackAlign, MaxAlign);
unsigned AlignMask = StackAlign - 1;
Offset = (Offset + AlignMask) & ~uint64_t(AlignMask);
}
// Update frame info to pretend that this is part of the stack...
int64_t StackSize = Offset - LocalAreaOffset;
MFI->setStackSize(StackSize);
NumBytesStackSpace += StackSize;
}
/// insertPrologEpilogCode - Scan the function for modified callee saved
/// registers, insert spill code for these callee saved registers, then add
/// prolog and epilog code to the function.
///
void PEI::insertPrologEpilogCode(MachineFunction &Fn) {
const TargetFrameLowering &TFI = *Fn.getTarget().getFrameLowering();
// Add prologue to the function...
TFI.emitPrologue(Fn);
// Add epilogue to restore the callee-save registers in each exiting block
for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) {
// If last instruction is a return instruction, add an epilogue
if (!I->empty() && I->back().isReturn())
TFI.emitEpilogue(Fn, *I);
}
// Emit additional code that is required to support segmented stacks, if
// we've been asked for it. This, when linked with a runtime with support
// for segmented stacks (libgcc is one), will result in allocating stack
// space in small chunks instead of one large contiguous block.
if (Fn.getTarget().Options.EnableSegmentedStacks)
TFI.adjustForSegmentedStacks(Fn);
// Emit additional code that is required to explicitly handle the stack in
// HiPE native code (if needed) when loaded in the Erlang/OTP runtime. The
// approach is rather similar to that of Segmented Stacks, but it uses a
// different conditional check and another BIF for allocating more stack
// space.
if (Fn.getFunction()->getCallingConv() == CallingConv::HiPE)
TFI.adjustForHiPEPrologue(Fn);
}
/// replaceFrameIndices - Replace all MO_FrameIndex operands with physical
/// register references and actual offsets.
///
void PEI::replaceFrameIndices(MachineFunction &Fn) {
if (!Fn.getFrameInfo()->hasStackObjects()) return; // Nothing to do?
// Store SPAdj at exit of a basic block.
SmallVector<int, 8> SPState;
SPState.resize(Fn.getNumBlockIDs());
SmallPtrSet<MachineBasicBlock*, 8> Reachable;
// Iterate over the reachable blocks in DFS order.
for (df_ext_iterator<MachineFunction*, SmallPtrSet<MachineBasicBlock*, 8> >
DFI = df_ext_begin(&Fn, Reachable), DFE = df_ext_end(&Fn, Reachable);
DFI != DFE; ++DFI) {
int SPAdj = 0;
// Check the exit state of the DFS stack predecessor.
if (DFI.getPathLength() >= 2) {
MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
assert(Reachable.count(StackPred) &&
"DFS stack predecessor is already visited.\n");
SPAdj = SPState[StackPred->getNumber()];
}
MachineBasicBlock *BB = *DFI;
replaceFrameIndices(BB, Fn, SPAdj);
SPState[BB->getNumber()] = SPAdj;
}
// Handle the unreachable blocks.
for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
if (Reachable.count(BB))
// Already handled in DFS traversal.
continue;
int SPAdj = 0;
replaceFrameIndices(BB, Fn, SPAdj);
}
}
void PEI::replaceFrameIndices(MachineBasicBlock *BB, MachineFunction &Fn,
int &SPAdj) {
const TargetMachine &TM = Fn.getTarget();
assert(TM.getRegisterInfo() && "TM::getRegisterInfo() must be implemented!");
const TargetInstrInfo &TII = *Fn.getTarget().getInstrInfo();
const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
const TargetFrameLowering *TFI = TM.getFrameLowering();
bool StackGrowsDown =
TFI->getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown;
int FrameSetupOpcode = TII.getCallFrameSetupOpcode();
int FrameDestroyOpcode = TII.getCallFrameDestroyOpcode();
if (RS && !FrameIndexVirtualScavenging) RS->enterBasicBlock(BB);
for (MachineBasicBlock::iterator I = BB->begin(); I != BB->end(); ) {
if (I->getOpcode() == FrameSetupOpcode ||
I->getOpcode() == FrameDestroyOpcode) {
// Remember how much SP has been adjusted to create the call
// frame.
int Size = I->getOperand(0).getImm();
if ((!StackGrowsDown && I->getOpcode() == FrameSetupOpcode) ||
(StackGrowsDown && I->getOpcode() == FrameDestroyOpcode))
Size = -Size;
SPAdj += Size;
MachineBasicBlock::iterator PrevI = BB->end();
if (I != BB->begin()) PrevI = prior(I);
TFI->eliminateCallFramePseudoInstr(Fn, *BB, I);
// Visit the instructions created by eliminateCallFramePseudoInstr().
if (PrevI == BB->end())
I = BB->begin(); // The replaced instr was the first in the block.
else
I = llvm::next(PrevI);
continue;
}
MachineInstr *MI = I;
bool DoIncr = true;
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
if (!MI->getOperand(i).isFI())
continue;
// Frame indicies in debug values are encoded in a target independent
// way with simply the frame index and offset rather than any
// target-specific addressing mode.
if (MI->isDebugValue()) {
assert(i == 0 && "Frame indicies can only appear as the first "
"operand of a DBG_VALUE machine instruction");
unsigned Reg;
MachineOperand &Offset = MI->getOperand(1);
Offset.setImm(Offset.getImm() +
TFI->getFrameIndexReference(
Fn, MI->getOperand(0).getIndex(), Reg));
MI->getOperand(0).ChangeToRegister(Reg, false /*isDef*/);
continue;
}
// Some instructions (e.g. inline asm instructions) can have
// multiple frame indices and/or cause eliminateFrameIndex
// to insert more than one instruction. We need the register
// scavenger to go through all of these instructions so that
// it can update its register information. We keep the
// iterator at the point before insertion so that we can
// revisit them in full.
bool AtBeginning = (I == BB->begin());
if (!AtBeginning) --I;
// If this instruction has a FrameIndex operand, we need to
// use that target machine register info object to eliminate
// it.
TRI.eliminateFrameIndex(MI, SPAdj, i,
FrameIndexVirtualScavenging ? NULL : RS);
// Reset the iterator if we were at the beginning of the BB.
if (AtBeginning) {
I = BB->begin();
DoIncr = false;
}
MI = 0;
break;
}
if (DoIncr && I != BB->end()) ++I;
// Update register states.
if (RS && !FrameIndexVirtualScavenging && MI) RS->forward(MI);
}
}
/// scavengeFrameVirtualRegs - Replace all frame index virtual registers
/// with physical registers. Use the register scavenger to find an
/// appropriate register to use.
///
/// FIXME: Iterating over the instruction stream is unnecessary. We can simply
/// iterate over the vreg use list, which at this point only contains machine
/// operands for which eliminateFrameIndex need a new scratch reg.
void PEI::scavengeFrameVirtualRegs(MachineFunction &Fn) {
// Run through the instructions and find any virtual registers.
for (MachineFunction::iterator BB = Fn.begin(),
E = Fn.end(); BB != E; ++BB) {
RS->enterBasicBlock(BB);
int SPAdj = 0;
// The instruction stream may change in the loop, so check BB->end()
// directly.
for (MachineBasicBlock::iterator I = BB->begin(); I != BB->end(); ) {
// We might end up here again with a NULL iterator if we scavenged a
// register for which we inserted spill code for definition by what was
// originally the first instruction in BB.
if (I == MachineBasicBlock::iterator(NULL))
I = BB->begin();
MachineInstr *MI = I;
MachineBasicBlock::iterator J = llvm::next(I);
MachineBasicBlock::iterator P = I == BB->begin() ?
MachineBasicBlock::iterator(NULL) : llvm::prior(I);
// RS should process this instruction before we might scavenge at this
// location. This is because we might be replacing a virtual register
// defined by this instruction, and if so, registers killed by this
// instruction are available, and defined registers are not.
RS->forward(I);
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
if (MI->getOperand(i).isReg()) {
MachineOperand &MO = MI->getOperand(i);
unsigned Reg = MO.getReg();
if (Reg == 0)
continue;
if (!TargetRegisterInfo::isVirtualRegister(Reg))
continue;
// When we first encounter a new virtual register, it
// must be a definition.
assert(MI->getOperand(i).isDef() &&
"frame index virtual missing def!");
// Scavenge a new scratch register
const TargetRegisterClass *RC = Fn.getRegInfo().getRegClass(Reg);
unsigned ScratchReg = RS->scavengeRegister(RC, J, SPAdj);
++NumScavengedRegs;
// Replace this reference to the virtual register with the
// scratch register.
assert (ScratchReg && "Missing scratch register!");
Fn.getRegInfo().replaceRegWith(Reg, ScratchReg);
// Because this instruction was processed by the RS before this
// register was allocated, make sure that the RS now records the
// register as being used.
RS->setUsed(ScratchReg);
}
}
// If the scavenger needed to use one of its spill slots, the
// spill code will have been inserted in between I and J. This is a
// problem because we need the spill code before I: Move I to just
// prior to J.
if (I != llvm::prior(J)) {
BB->splice(J, BB, I);
// Before we move I, we need to prepare the RS to visit I again.
// Specifically, RS will assert if it sees uses of registers that
// it believes are undefined. Because we have already processed
// register kills in I, when it visits I again, it will believe that
// those registers are undefined. To avoid this situation, unprocess
// the instruction I.
assert(RS->getCurrentPosition() == I &&
"The register scavenger has an unexpected position");
I = P;
RS->unprocess(P);
} else
++I;
}
}
}