mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-19 04:32:19 +00:00
5401ba7099
This is to be consistent with StringSet and ultimately with the standard library's associative container insert function. This lead to updating SmallSet::insert to return pair<iterator, bool>, and then to update SmallPtrSet::insert to return pair<iterator, bool>, and then to update all the existing users of those functions... git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222334 91177308-0d34-0410-b5e6-96231b3b80d8
693 lines
22 KiB
C++
693 lines
22 KiB
C++
//===- StratifiedSets.h - Abstract stratified sets implementation. --------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_ADT_STRATIFIEDSETS_H
|
|
#define LLVM_ADT_STRATIFIEDSETS_H
|
|
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include <bitset>
|
|
#include <cassert>
|
|
#include <cmath>
|
|
#include <limits>
|
|
#include <type_traits>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
namespace llvm {
|
|
// \brief An index into Stratified Sets.
|
|
typedef unsigned StratifiedIndex;
|
|
// NOTE: ^ This can't be a short -- bootstrapping clang has a case where
|
|
// ~1M sets exist.
|
|
|
|
// \brief Container of information related to a value in a StratifiedSet.
|
|
struct StratifiedInfo {
|
|
StratifiedIndex Index;
|
|
// For field sensitivity, etc. we can tack attributes on to this struct.
|
|
};
|
|
|
|
// The number of attributes that StratifiedAttrs should contain. Attributes are
|
|
// described below, and 32 was an arbitrary choice because it fits nicely in 32
|
|
// bits (because we use a bitset for StratifiedAttrs).
|
|
static const unsigned NumStratifiedAttrs = 32;
|
|
|
|
// These are attributes that the users of StratifiedSets/StratifiedSetBuilders
|
|
// may use for various purposes. These also have the special property of that
|
|
// they are merged down. So, if set A is above set B, and one decides to set an
|
|
// attribute in set A, then the attribute will automatically be set in set B.
|
|
typedef std::bitset<NumStratifiedAttrs> StratifiedAttrs;
|
|
|
|
// \brief A "link" between two StratifiedSets.
|
|
struct StratifiedLink {
|
|
// \brief This is a value used to signify "does not exist" where
|
|
// the StratifiedIndex type is used. This is used instead of
|
|
// Optional<StratifiedIndex> because Optional<StratifiedIndex> would
|
|
// eat up a considerable amount of extra memory, after struct
|
|
// padding/alignment is taken into account.
|
|
static const StratifiedIndex SetSentinel;
|
|
|
|
// \brief The index for the set "above" current
|
|
StratifiedIndex Above;
|
|
|
|
// \brief The link for the set "below" current
|
|
StratifiedIndex Below;
|
|
|
|
// \brief Attributes for these StratifiedSets.
|
|
StratifiedAttrs Attrs;
|
|
|
|
StratifiedLink() : Above(SetSentinel), Below(SetSentinel) {}
|
|
|
|
bool hasBelow() const { return Below != SetSentinel; }
|
|
bool hasAbove() const { return Above != SetSentinel; }
|
|
|
|
void clearBelow() { Below = SetSentinel; }
|
|
void clearAbove() { Above = SetSentinel; }
|
|
};
|
|
|
|
// \brief These are stratified sets, as described in "Fast algorithms for
|
|
// Dyck-CFL-reachability with applications to Alias Analysis" by Zhang Q, Lyu M
|
|
// R, Yuan H, and Su Z. -- in short, this is meant to represent different sets
|
|
// of Value*s. If two Value*s are in the same set, or if both sets have
|
|
// overlapping attributes, then the Value*s are said to alias.
|
|
//
|
|
// Sets may be related by position, meaning that one set may be considered as
|
|
// above or below another. In CFL Alias Analysis, this gives us an indication
|
|
// of how two variables are related; if the set of variable A is below a set
|
|
// containing variable B, then at some point, a variable that has interacted
|
|
// with B (or B itself) was either used in order to extract the variable A, or
|
|
// was used as storage of variable A.
|
|
//
|
|
// Sets may also have attributes (as noted above). These attributes are
|
|
// generally used for noting whether a variable in the set has interacted with
|
|
// a variable whose origins we don't quite know (i.e. globals/arguments), or if
|
|
// the variable may have had operations performed on it (modified in a function
|
|
// call). All attributes that exist in a set A must exist in all sets marked as
|
|
// below set A.
|
|
template <typename T> class StratifiedSets {
|
|
public:
|
|
StratifiedSets() {}
|
|
|
|
StratifiedSets(DenseMap<T, StratifiedInfo> Map,
|
|
std::vector<StratifiedLink> Links)
|
|
: Values(std::move(Map)), Links(std::move(Links)) {}
|
|
|
|
StratifiedSets(StratifiedSets<T> &&Other) { *this = std::move(Other); }
|
|
|
|
StratifiedSets &operator=(StratifiedSets<T> &&Other) {
|
|
Values = std::move(Other.Values);
|
|
Links = std::move(Other.Links);
|
|
return *this;
|
|
}
|
|
|
|
Optional<StratifiedInfo> find(const T &Elem) const {
|
|
auto Iter = Values.find(Elem);
|
|
if (Iter == Values.end()) {
|
|
return NoneType();
|
|
}
|
|
return Iter->second;
|
|
}
|
|
|
|
const StratifiedLink &getLink(StratifiedIndex Index) const {
|
|
assert(inbounds(Index));
|
|
return Links[Index];
|
|
}
|
|
|
|
private:
|
|
DenseMap<T, StratifiedInfo> Values;
|
|
std::vector<StratifiedLink> Links;
|
|
|
|
bool inbounds(StratifiedIndex Idx) const { return Idx < Links.size(); }
|
|
};
|
|
|
|
// \brief Generic Builder class that produces StratifiedSets instances.
|
|
//
|
|
// The goal of this builder is to efficiently produce correct StratifiedSets
|
|
// instances. To this end, we use a few tricks:
|
|
// > Set chains (A method for linking sets together)
|
|
// > Set remaps (A method for marking a set as an alias [irony?] of another)
|
|
//
|
|
// ==== Set chains ====
|
|
// This builder has a notion of some value A being above, below, or with some
|
|
// other value B:
|
|
// > The `A above B` relationship implies that there is a reference edge going
|
|
// from A to B. Namely, it notes that A can store anything in B's set.
|
|
// > The `A below B` relationship is the opposite of `A above B`. It implies
|
|
// that there's a dereference edge going from A to B.
|
|
// > The `A with B` relationship states that there's an assignment edge going
|
|
// from A to B, and that A and B should be treated as equals.
|
|
//
|
|
// As an example, take the following code snippet:
|
|
//
|
|
// %a = alloca i32, align 4
|
|
// %ap = alloca i32*, align 8
|
|
// %app = alloca i32**, align 8
|
|
// store %a, %ap
|
|
// store %ap, %app
|
|
// %aw = getelementptr %ap, 0
|
|
//
|
|
// Given this, the follow relations exist:
|
|
// - %a below %ap & %ap above %a
|
|
// - %ap below %app & %app above %ap
|
|
// - %aw with %ap & %ap with %aw
|
|
//
|
|
// These relations produce the following sets:
|
|
// [{%a}, {%ap, %aw}, {%app}]
|
|
//
|
|
// ...Which states that the only MayAlias relationship in the above program is
|
|
// between %ap and %aw.
|
|
//
|
|
// Life gets more complicated when we actually have logic in our programs. So,
|
|
// we either must remove this logic from our programs, or make consessions for
|
|
// it in our AA algorithms. In this case, we have decided to select the latter
|
|
// option.
|
|
//
|
|
// First complication: Conditionals
|
|
// Motivation:
|
|
// %ad = alloca int, align 4
|
|
// %a = alloca int*, align 8
|
|
// %b = alloca int*, align 8
|
|
// %bp = alloca int**, align 8
|
|
// %c = call i1 @SomeFunc()
|
|
// %k = select %c, %ad, %bp
|
|
// store %ad, %a
|
|
// store %b, %bp
|
|
//
|
|
// %k has 'with' edges to both %a and %b, which ordinarily would not be linked
|
|
// together. So, we merge the set that contains %a with the set that contains
|
|
// %b. We then recursively merge the set above %a with the set above %b, and
|
|
// the set below %a with the set below %b, etc. Ultimately, the sets for this
|
|
// program would end up like: {%ad}, {%a, %b, %k}, {%bp}, where {%ad} is below
|
|
// {%a, %b, %c} is below {%ad}.
|
|
//
|
|
// Second complication: Arbitrary casts
|
|
// Motivation:
|
|
// %ip = alloca int*, align 8
|
|
// %ipp = alloca int**, align 8
|
|
// %i = bitcast ipp to int
|
|
// store %ip, %ipp
|
|
// store %i, %ip
|
|
//
|
|
// This is impossible to construct with any of the rules above, because a set
|
|
// containing both {%i, %ipp} is supposed to exist, the set with %i is supposed
|
|
// to be below the set with %ip, and the set with %ip is supposed to be below
|
|
// the set with %ipp. Because we don't allow circular relationships like this,
|
|
// we merge all concerned sets into one. So, the above code would generate a
|
|
// single StratifiedSet: {%ip, %ipp, %i}.
|
|
//
|
|
// ==== Set remaps ====
|
|
// More of an implementation detail than anything -- when merging sets, we need
|
|
// to update the numbers of all of the elements mapped to those sets. Rather
|
|
// than doing this at each merge, we note in the BuilderLink structure that a
|
|
// remap has occurred, and use this information so we can defer renumbering set
|
|
// elements until build time.
|
|
template <typename T> class StratifiedSetsBuilder {
|
|
// \brief Represents a Stratified Set, with information about the Stratified
|
|
// Set above it, the set below it, and whether the current set has been
|
|
// remapped to another.
|
|
struct BuilderLink {
|
|
const StratifiedIndex Number;
|
|
|
|
BuilderLink(StratifiedIndex N) : Number(N) {
|
|
Remap = StratifiedLink::SetSentinel;
|
|
}
|
|
|
|
bool hasAbove() const {
|
|
assert(!isRemapped());
|
|
return Link.hasAbove();
|
|
}
|
|
|
|
bool hasBelow() const {
|
|
assert(!isRemapped());
|
|
return Link.hasBelow();
|
|
}
|
|
|
|
void setBelow(StratifiedIndex I) {
|
|
assert(!isRemapped());
|
|
Link.Below = I;
|
|
}
|
|
|
|
void setAbove(StratifiedIndex I) {
|
|
assert(!isRemapped());
|
|
Link.Above = I;
|
|
}
|
|
|
|
void clearBelow() {
|
|
assert(!isRemapped());
|
|
Link.clearBelow();
|
|
}
|
|
|
|
void clearAbove() {
|
|
assert(!isRemapped());
|
|
Link.clearAbove();
|
|
}
|
|
|
|
StratifiedIndex getBelow() const {
|
|
assert(!isRemapped());
|
|
assert(hasBelow());
|
|
return Link.Below;
|
|
}
|
|
|
|
StratifiedIndex getAbove() const {
|
|
assert(!isRemapped());
|
|
assert(hasAbove());
|
|
return Link.Above;
|
|
}
|
|
|
|
StratifiedAttrs &getAttrs() {
|
|
assert(!isRemapped());
|
|
return Link.Attrs;
|
|
}
|
|
|
|
void setAttr(unsigned index) {
|
|
assert(!isRemapped());
|
|
assert(index < NumStratifiedAttrs);
|
|
Link.Attrs.set(index);
|
|
}
|
|
|
|
void setAttrs(const StratifiedAttrs &other) {
|
|
assert(!isRemapped());
|
|
Link.Attrs |= other;
|
|
}
|
|
|
|
bool isRemapped() const { return Remap != StratifiedLink::SetSentinel; }
|
|
|
|
// \brief For initial remapping to another set
|
|
void remapTo(StratifiedIndex Other) {
|
|
assert(!isRemapped());
|
|
Remap = Other;
|
|
}
|
|
|
|
StratifiedIndex getRemapIndex() const {
|
|
assert(isRemapped());
|
|
return Remap;
|
|
}
|
|
|
|
// \brief Should only be called when we're already remapped.
|
|
void updateRemap(StratifiedIndex Other) {
|
|
assert(isRemapped());
|
|
Remap = Other;
|
|
}
|
|
|
|
// \brief Prefer the above functions to calling things directly on what's
|
|
// returned from this -- they guard against unexpected calls when the
|
|
// current BuilderLink is remapped.
|
|
const StratifiedLink &getLink() const { return Link; }
|
|
|
|
private:
|
|
StratifiedLink Link;
|
|
StratifiedIndex Remap;
|
|
};
|
|
|
|
// \brief This function performs all of the set unioning/value renumbering
|
|
// that we've been putting off, and generates a vector<StratifiedLink> that
|
|
// may be placed in a StratifiedSets instance.
|
|
void finalizeSets(std::vector<StratifiedLink> &StratLinks) {
|
|
DenseMap<StratifiedIndex, StratifiedIndex> Remaps;
|
|
for (auto &Link : Links) {
|
|
if (Link.isRemapped()) {
|
|
continue;
|
|
}
|
|
|
|
StratifiedIndex Number = StratLinks.size();
|
|
Remaps.insert(std::make_pair(Link.Number, Number));
|
|
StratLinks.push_back(Link.getLink());
|
|
}
|
|
|
|
for (auto &Link : StratLinks) {
|
|
if (Link.hasAbove()) {
|
|
auto &Above = linksAt(Link.Above);
|
|
auto Iter = Remaps.find(Above.Number);
|
|
assert(Iter != Remaps.end());
|
|
Link.Above = Iter->second;
|
|
}
|
|
|
|
if (Link.hasBelow()) {
|
|
auto &Below = linksAt(Link.Below);
|
|
auto Iter = Remaps.find(Below.Number);
|
|
assert(Iter != Remaps.end());
|
|
Link.Below = Iter->second;
|
|
}
|
|
}
|
|
|
|
for (auto &Pair : Values) {
|
|
auto &Info = Pair.second;
|
|
auto &Link = linksAt(Info.Index);
|
|
auto Iter = Remaps.find(Link.Number);
|
|
assert(Iter != Remaps.end());
|
|
Info.Index = Iter->second;
|
|
}
|
|
}
|
|
|
|
// \brief There's a guarantee in StratifiedLink where all bits set in a
|
|
// Link.externals will be set in all Link.externals "below" it.
|
|
static void propagateAttrs(std::vector<StratifiedLink> &Links) {
|
|
const auto getHighestParentAbove = [&Links](StratifiedIndex Idx) {
|
|
const auto *Link = &Links[Idx];
|
|
while (Link->hasAbove()) {
|
|
Idx = Link->Above;
|
|
Link = &Links[Idx];
|
|
}
|
|
return Idx;
|
|
};
|
|
|
|
SmallSet<StratifiedIndex, 16> Visited;
|
|
for (unsigned I = 0, E = Links.size(); I < E; ++I) {
|
|
auto CurrentIndex = getHighestParentAbove(I);
|
|
if (!Visited.insert(CurrentIndex).second) {
|
|
continue;
|
|
}
|
|
|
|
while (Links[CurrentIndex].hasBelow()) {
|
|
auto &CurrentBits = Links[CurrentIndex].Attrs;
|
|
auto NextIndex = Links[CurrentIndex].Below;
|
|
auto &NextBits = Links[NextIndex].Attrs;
|
|
NextBits |= CurrentBits;
|
|
CurrentIndex = NextIndex;
|
|
}
|
|
}
|
|
}
|
|
|
|
public:
|
|
// \brief Builds a StratifiedSet from the information we've been given since
|
|
// either construction or the prior build() call.
|
|
StratifiedSets<T> build() {
|
|
std::vector<StratifiedLink> StratLinks;
|
|
finalizeSets(StratLinks);
|
|
propagateAttrs(StratLinks);
|
|
Links.clear();
|
|
return StratifiedSets<T>(std::move(Values), std::move(StratLinks));
|
|
}
|
|
|
|
std::size_t size() const { return Values.size(); }
|
|
std::size_t numSets() const { return Links.size(); }
|
|
|
|
bool has(const T &Elem) const { return get(Elem).hasValue(); }
|
|
|
|
bool add(const T &Main) {
|
|
if (get(Main).hasValue())
|
|
return false;
|
|
|
|
auto NewIndex = getNewUnlinkedIndex();
|
|
return addAtMerging(Main, NewIndex);
|
|
}
|
|
|
|
// \brief Restructures the stratified sets as necessary to make "ToAdd" in a
|
|
// set above "Main". There are some cases where this is not possible (see
|
|
// above), so we merge them such that ToAdd and Main are in the same set.
|
|
bool addAbove(const T &Main, const T &ToAdd) {
|
|
assert(has(Main));
|
|
auto Index = *indexOf(Main);
|
|
if (!linksAt(Index).hasAbove())
|
|
addLinkAbove(Index);
|
|
|
|
auto Above = linksAt(Index).getAbove();
|
|
return addAtMerging(ToAdd, Above);
|
|
}
|
|
|
|
// \brief Restructures the stratified sets as necessary to make "ToAdd" in a
|
|
// set below "Main". There are some cases where this is not possible (see
|
|
// above), so we merge them such that ToAdd and Main are in the same set.
|
|
bool addBelow(const T &Main, const T &ToAdd) {
|
|
assert(has(Main));
|
|
auto Index = *indexOf(Main);
|
|
if (!linksAt(Index).hasBelow())
|
|
addLinkBelow(Index);
|
|
|
|
auto Below = linksAt(Index).getBelow();
|
|
return addAtMerging(ToAdd, Below);
|
|
}
|
|
|
|
bool addWith(const T &Main, const T &ToAdd) {
|
|
assert(has(Main));
|
|
auto MainIndex = *indexOf(Main);
|
|
return addAtMerging(ToAdd, MainIndex);
|
|
}
|
|
|
|
void noteAttribute(const T &Main, unsigned AttrNum) {
|
|
assert(has(Main));
|
|
assert(AttrNum < StratifiedLink::SetSentinel);
|
|
auto *Info = *get(Main);
|
|
auto &Link = linksAt(Info->Index);
|
|
Link.setAttr(AttrNum);
|
|
}
|
|
|
|
void noteAttributes(const T &Main, const StratifiedAttrs &NewAttrs) {
|
|
assert(has(Main));
|
|
auto *Info = *get(Main);
|
|
auto &Link = linksAt(Info->Index);
|
|
Link.setAttrs(NewAttrs);
|
|
}
|
|
|
|
StratifiedAttrs getAttributes(const T &Main) {
|
|
assert(has(Main));
|
|
auto *Info = *get(Main);
|
|
auto *Link = &linksAt(Info->Index);
|
|
auto Attrs = Link->getAttrs();
|
|
while (Link->hasAbove()) {
|
|
Link = &linksAt(Link->getAbove());
|
|
Attrs |= Link->getAttrs();
|
|
}
|
|
|
|
return Attrs;
|
|
}
|
|
|
|
bool getAttribute(const T &Main, unsigned AttrNum) {
|
|
assert(AttrNum < StratifiedLink::SetSentinel);
|
|
auto Attrs = getAttributes(Main);
|
|
return Attrs[AttrNum];
|
|
}
|
|
|
|
// \brief Gets the attributes that have been applied to the set that Main
|
|
// belongs to. It ignores attributes in any sets above the one that Main
|
|
// resides in.
|
|
StratifiedAttrs getRawAttributes(const T &Main) {
|
|
assert(has(Main));
|
|
auto *Info = *get(Main);
|
|
auto &Link = linksAt(Info->Index);
|
|
return Link.getAttrs();
|
|
}
|
|
|
|
// \brief Gets an attribute from the attributes that have been applied to the
|
|
// set that Main belongs to. It ignores attributes in any sets above the one
|
|
// that Main resides in.
|
|
bool getRawAttribute(const T &Main, unsigned AttrNum) {
|
|
assert(AttrNum < StratifiedLink::SetSentinel);
|
|
auto Attrs = getRawAttributes(Main);
|
|
return Attrs[AttrNum];
|
|
}
|
|
|
|
private:
|
|
DenseMap<T, StratifiedInfo> Values;
|
|
std::vector<BuilderLink> Links;
|
|
|
|
// \brief Adds the given element at the given index, merging sets if
|
|
// necessary.
|
|
bool addAtMerging(const T &ToAdd, StratifiedIndex Index) {
|
|
StratifiedInfo Info = {Index};
|
|
auto Pair = Values.insert(std::make_pair(ToAdd, Info));
|
|
if (Pair.second)
|
|
return true;
|
|
|
|
auto &Iter = Pair.first;
|
|
auto &IterSet = linksAt(Iter->second.Index);
|
|
auto &ReqSet = linksAt(Index);
|
|
|
|
// Failed to add where we wanted to. Merge the sets.
|
|
if (&IterSet != &ReqSet)
|
|
merge(IterSet.Number, ReqSet.Number);
|
|
|
|
return false;
|
|
}
|
|
|
|
// \brief Gets the BuilderLink at the given index, taking set remapping into
|
|
// account.
|
|
BuilderLink &linksAt(StratifiedIndex Index) {
|
|
auto *Start = &Links[Index];
|
|
if (!Start->isRemapped())
|
|
return *Start;
|
|
|
|
auto *Current = Start;
|
|
while (Current->isRemapped())
|
|
Current = &Links[Current->getRemapIndex()];
|
|
|
|
auto NewRemap = Current->Number;
|
|
|
|
// Run through everything that has yet to be updated, and update them to
|
|
// remap to NewRemap
|
|
Current = Start;
|
|
while (Current->isRemapped()) {
|
|
auto *Next = &Links[Current->getRemapIndex()];
|
|
Current->updateRemap(NewRemap);
|
|
Current = Next;
|
|
}
|
|
|
|
return *Current;
|
|
}
|
|
|
|
// \brief Merges two sets into one another. Assumes that these sets are not
|
|
// already one in the same
|
|
void merge(StratifiedIndex Idx1, StratifiedIndex Idx2) {
|
|
assert(inbounds(Idx1) && inbounds(Idx2));
|
|
assert(&linksAt(Idx1) != &linksAt(Idx2) &&
|
|
"Merging a set into itself is not allowed");
|
|
|
|
// CASE 1: If the set at `Idx1` is above or below `Idx2`, we need to merge
|
|
// both the
|
|
// given sets, and all sets between them, into one.
|
|
if (tryMergeUpwards(Idx1, Idx2))
|
|
return;
|
|
|
|
if (tryMergeUpwards(Idx2, Idx1))
|
|
return;
|
|
|
|
// CASE 2: The set at `Idx1` is not in the same chain as the set at `Idx2`.
|
|
// We therefore need to merge the two chains together.
|
|
mergeDirect(Idx1, Idx2);
|
|
}
|
|
|
|
// \brief Merges two sets assuming that the set at `Idx1` is unreachable from
|
|
// traversing above or below the set at `Idx2`.
|
|
void mergeDirect(StratifiedIndex Idx1, StratifiedIndex Idx2) {
|
|
assert(inbounds(Idx1) && inbounds(Idx2));
|
|
|
|
auto *LinksInto = &linksAt(Idx1);
|
|
auto *LinksFrom = &linksAt(Idx2);
|
|
// Merging everything above LinksInto then proceeding to merge everything
|
|
// below LinksInto becomes problematic, so we go as far "up" as possible!
|
|
while (LinksInto->hasAbove() && LinksFrom->hasAbove()) {
|
|
LinksInto = &linksAt(LinksInto->getAbove());
|
|
LinksFrom = &linksAt(LinksFrom->getAbove());
|
|
}
|
|
|
|
if (LinksFrom->hasAbove()) {
|
|
LinksInto->setAbove(LinksFrom->getAbove());
|
|
auto &NewAbove = linksAt(LinksInto->getAbove());
|
|
NewAbove.setBelow(LinksInto->Number);
|
|
}
|
|
|
|
// Merging strategy:
|
|
// > If neither has links below, stop.
|
|
// > If only `LinksInto` has links below, stop.
|
|
// > If only `LinksFrom` has links below, reset `LinksInto.Below` to
|
|
// match `LinksFrom.Below`
|
|
// > If both have links above, deal with those next.
|
|
while (LinksInto->hasBelow() && LinksFrom->hasBelow()) {
|
|
auto &FromAttrs = LinksFrom->getAttrs();
|
|
LinksInto->setAttrs(FromAttrs);
|
|
|
|
// Remap needs to happen after getBelow(), but before
|
|
// assignment of LinksFrom
|
|
auto *NewLinksFrom = &linksAt(LinksFrom->getBelow());
|
|
LinksFrom->remapTo(LinksInto->Number);
|
|
LinksFrom = NewLinksFrom;
|
|
LinksInto = &linksAt(LinksInto->getBelow());
|
|
}
|
|
|
|
if (LinksFrom->hasBelow()) {
|
|
LinksInto->setBelow(LinksFrom->getBelow());
|
|
auto &NewBelow = linksAt(LinksInto->getBelow());
|
|
NewBelow.setAbove(LinksInto->Number);
|
|
}
|
|
|
|
LinksFrom->remapTo(LinksInto->Number);
|
|
}
|
|
|
|
// \brief Checks to see if lowerIndex is at a level lower than upperIndex.
|
|
// If so, it will merge lowerIndex with upperIndex (and all of the sets
|
|
// between) and return true. Otherwise, it will return false.
|
|
bool tryMergeUpwards(StratifiedIndex LowerIndex, StratifiedIndex UpperIndex) {
|
|
assert(inbounds(LowerIndex) && inbounds(UpperIndex));
|
|
auto *Lower = &linksAt(LowerIndex);
|
|
auto *Upper = &linksAt(UpperIndex);
|
|
if (Lower == Upper)
|
|
return true;
|
|
|
|
SmallVector<BuilderLink *, 8> Found;
|
|
auto *Current = Lower;
|
|
auto Attrs = Current->getAttrs();
|
|
while (Current->hasAbove() && Current != Upper) {
|
|
Found.push_back(Current);
|
|
Attrs |= Current->getAttrs();
|
|
Current = &linksAt(Current->getAbove());
|
|
}
|
|
|
|
if (Current != Upper)
|
|
return false;
|
|
|
|
Upper->setAttrs(Attrs);
|
|
|
|
if (Lower->hasBelow()) {
|
|
auto NewBelowIndex = Lower->getBelow();
|
|
Upper->setBelow(NewBelowIndex);
|
|
auto &NewBelow = linksAt(NewBelowIndex);
|
|
NewBelow.setAbove(UpperIndex);
|
|
} else {
|
|
Upper->clearBelow();
|
|
}
|
|
|
|
for (const auto &Ptr : Found)
|
|
Ptr->remapTo(Upper->Number);
|
|
|
|
return true;
|
|
}
|
|
|
|
Optional<const StratifiedInfo *> get(const T &Val) const {
|
|
auto Result = Values.find(Val);
|
|
if (Result == Values.end())
|
|
return NoneType();
|
|
return &Result->second;
|
|
}
|
|
|
|
Optional<StratifiedInfo *> get(const T &Val) {
|
|
auto Result = Values.find(Val);
|
|
if (Result == Values.end())
|
|
return NoneType();
|
|
return &Result->second;
|
|
}
|
|
|
|
Optional<StratifiedIndex> indexOf(const T &Val) {
|
|
auto MaybeVal = get(Val);
|
|
if (!MaybeVal.hasValue())
|
|
return NoneType();
|
|
auto *Info = *MaybeVal;
|
|
auto &Link = linksAt(Info->Index);
|
|
return Link.Number;
|
|
}
|
|
|
|
StratifiedIndex addLinkBelow(StratifiedIndex Set) {
|
|
auto At = addLinks();
|
|
Links[Set].setBelow(At);
|
|
Links[At].setAbove(Set);
|
|
return At;
|
|
}
|
|
|
|
StratifiedIndex addLinkAbove(StratifiedIndex Set) {
|
|
auto At = addLinks();
|
|
Links[At].setBelow(Set);
|
|
Links[Set].setAbove(At);
|
|
return At;
|
|
}
|
|
|
|
StratifiedIndex getNewUnlinkedIndex() { return addLinks(); }
|
|
|
|
StratifiedIndex addLinks() {
|
|
auto Link = Links.size();
|
|
Links.push_back(BuilderLink(Link));
|
|
return Link;
|
|
}
|
|
|
|
bool inbounds(StratifiedIndex N) const { return N < Links.size(); }
|
|
};
|
|
}
|
|
#endif // LLVM_ADT_STRATIFIEDSETS_H
|