mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-30 02:32:08 +00:00
5ae99fe3bf
* ctor doesn't take TM argument * handle direct ESP references correctly! git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@5179 91177308-0d34-0410-b5e6-96231b3b80d8
304 lines
11 KiB
C++
304 lines
11 KiB
C++
//===-- X86/MachineCodeEmitter.cpp - Convert X86 code to machine code -----===//
|
|
//
|
|
// This file contains the pass that transforms the X86 machine instructions into
|
|
// actual executable machine code.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "X86TargetMachine.h"
|
|
#include "X86.h"
|
|
#include "llvm/PassManager.h"
|
|
#include "llvm/CodeGen/MachineCodeEmitter.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/Value.h"
|
|
|
|
namespace {
|
|
class Emitter : public MachineFunctionPass {
|
|
const X86InstrInfo *II;
|
|
MachineCodeEmitter &MCE;
|
|
public:
|
|
|
|
Emitter(MachineCodeEmitter &mce) : II(0), MCE(mce) {}
|
|
|
|
bool runOnMachineFunction(MachineFunction &MF);
|
|
|
|
virtual const char *getPassName() const {
|
|
return "X86 Machine Code Emitter";
|
|
}
|
|
|
|
private:
|
|
void emitBasicBlock(MachineBasicBlock &MBB);
|
|
void emitInstruction(MachineInstr &MI);
|
|
|
|
void emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeField);
|
|
void emitSIBByte(unsigned SS, unsigned Index, unsigned Base);
|
|
void emitConstant(unsigned Val, unsigned Size);
|
|
|
|
void emitMemModRMByte(const MachineInstr &MI,
|
|
unsigned Op, unsigned RegOpcodeField);
|
|
|
|
};
|
|
}
|
|
|
|
|
|
/// addPassesToEmitMachineCode - Add passes to the specified pass manager to get
|
|
/// machine code emitted. This uses a MAchineCodeEmitter object to handle
|
|
/// actually outputting the machine code and resolving things like the address
|
|
/// of functions. This method should returns true if machine code emission is
|
|
/// not supported.
|
|
///
|
|
bool X86TargetMachine::addPassesToEmitMachineCode(PassManager &PM,
|
|
MachineCodeEmitter &MCE) {
|
|
PM.add(new Emitter(MCE));
|
|
return false;
|
|
}
|
|
|
|
bool Emitter::runOnMachineFunction(MachineFunction &MF) {
|
|
II = &((X86TargetMachine&)MF.getTarget()).getInstrInfo();
|
|
|
|
MCE.startFunction(MF);
|
|
for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
|
|
emitBasicBlock(*I);
|
|
MCE.finishFunction(MF);
|
|
return false;
|
|
}
|
|
|
|
void Emitter::emitBasicBlock(MachineBasicBlock &MBB) {
|
|
MCE.startBasicBlock(MBB);
|
|
for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; ++I)
|
|
emitInstruction(**I);
|
|
}
|
|
|
|
|
|
namespace N86 { // Native X86 Register numbers...
|
|
enum {
|
|
EAX = 0, ECX = 1, EDX = 2, EBX = 3, ESP = 4, EBP = 5, ESI = 6, EDI = 7
|
|
};
|
|
}
|
|
|
|
|
|
// getX86RegNum - This function maps LLVM register identifiers to their X86
|
|
// specific numbering, which is used in various places encoding instructions.
|
|
//
|
|
static unsigned getX86RegNum(unsigned RegNo) {
|
|
switch(RegNo) {
|
|
case X86::EAX: case X86::AX: case X86::AL: return N86::EAX;
|
|
case X86::ECX: case X86::CX: case X86::CL: return N86::ECX;
|
|
case X86::EDX: case X86::DX: case X86::DL: return N86::EDX;
|
|
case X86::EBX: case X86::BX: case X86::BL: return N86::EBX;
|
|
case X86::ESP: case X86::SP: case X86::AH: return N86::ESP;
|
|
case X86::EBP: case X86::BP: case X86::CH: return N86::EBP;
|
|
case X86::ESI: case X86::SI: case X86::DH: return N86::ESI;
|
|
case X86::EDI: case X86::DI: case X86::BH: return N86::EDI;
|
|
default:
|
|
assert(RegNo >= MRegisterInfo::FirstVirtualRegister &&
|
|
"Unknown physical register!");
|
|
assert(0 && "Register allocator hasn't allocated reg correctly yet!");
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
|
|
unsigned RM) {
|
|
assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
|
|
return RM | (RegOpcode << 3) | (Mod << 6);
|
|
}
|
|
|
|
void Emitter::emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeFld){
|
|
MCE.emitByte(ModRMByte(3, RegOpcodeFld, getX86RegNum(ModRMReg)));
|
|
}
|
|
|
|
void Emitter::emitSIBByte(unsigned SS, unsigned Index, unsigned Base) {
|
|
// SIB byte is in the same format as the ModRMByte...
|
|
MCE.emitByte(ModRMByte(SS, Index, Base));
|
|
}
|
|
|
|
void Emitter::emitConstant(unsigned Val, unsigned Size) {
|
|
// Output the constant in little endian byte order...
|
|
for (unsigned i = 0; i != Size; ++i) {
|
|
MCE.emitByte(Val & 255);
|
|
Val >>= 8;
|
|
}
|
|
}
|
|
|
|
static bool isDisp8(int Value) {
|
|
return Value == (signed char)Value;
|
|
}
|
|
|
|
void Emitter::emitMemModRMByte(const MachineInstr &MI,
|
|
unsigned Op, unsigned RegOpcodeField) {
|
|
const MachineOperand &BaseReg = MI.getOperand(Op);
|
|
const MachineOperand &Scale = MI.getOperand(Op+1);
|
|
const MachineOperand &IndexReg = MI.getOperand(Op+2);
|
|
const MachineOperand &Disp = MI.getOperand(Op+3);
|
|
|
|
// Is a SIB byte needed?
|
|
if (IndexReg.getReg() == 0 && BaseReg.getReg() != X86::ESP) {
|
|
if (BaseReg.getReg() == 0) { // Just a displacement?
|
|
// Emit special case [disp32] encoding
|
|
MCE.emitByte(ModRMByte(0, RegOpcodeField, 5));
|
|
emitConstant(Disp.getImmedValue(), 4);
|
|
} else {
|
|
unsigned BaseRegNo = getX86RegNum(BaseReg.getReg());
|
|
if (Disp.getImmedValue() == 0 && BaseRegNo != N86::EBP) {
|
|
// Emit simple indirect register encoding... [EAX] f.e.
|
|
MCE.emitByte(ModRMByte(0, RegOpcodeField, BaseRegNo));
|
|
} else if (isDisp8(Disp.getImmedValue())) {
|
|
// Emit the disp8 encoding... [REG+disp8]
|
|
MCE.emitByte(ModRMByte(1, RegOpcodeField, BaseRegNo));
|
|
emitConstant(Disp.getImmedValue(), 1);
|
|
} else {
|
|
// Emit the most general non-SIB encoding: [REG+disp32]
|
|
MCE.emitByte(ModRMByte(2, RegOpcodeField, BaseRegNo));
|
|
emitConstant(Disp.getImmedValue(), 4);
|
|
}
|
|
}
|
|
|
|
} else { // We need a SIB byte, so start by outputting the ModR/M byte first
|
|
assert(IndexReg.getReg() != X86::ESP && "Cannot use ESP as index reg!");
|
|
|
|
bool ForceDisp32 = false;
|
|
bool ForceDisp8 = false;
|
|
if (BaseReg.getReg() == 0) {
|
|
// If there is no base register, we emit the special case SIB byte with
|
|
// MOD=0, BASE=5, to JUST get the index, scale, and displacement.
|
|
MCE.emitByte(ModRMByte(0, RegOpcodeField, 4));
|
|
ForceDisp32 = true;
|
|
} else if (Disp.getImmedValue() == 0 && BaseReg.getReg() != X86::EBP) {
|
|
// Emit no displacement ModR/M byte
|
|
MCE.emitByte(ModRMByte(0, RegOpcodeField, 4));
|
|
} else if (isDisp8(Disp.getImmedValue())) {
|
|
// Emit the disp8 encoding...
|
|
MCE.emitByte(ModRMByte(1, RegOpcodeField, 4));
|
|
ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
|
|
} else {
|
|
// Emit the normal disp32 encoding...
|
|
MCE.emitByte(ModRMByte(2, RegOpcodeField, 4));
|
|
}
|
|
|
|
// Calculate what the SS field value should be...
|
|
static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
|
|
unsigned SS = SSTable[Scale.getImmedValue()];
|
|
|
|
if (BaseReg.getReg() == 0) {
|
|
// Handle the SIB byte for the case where there is no base. The
|
|
// displacement has already been output.
|
|
assert(IndexReg.getReg() && "Index register must be specified!");
|
|
emitSIBByte(SS, getX86RegNum(IndexReg.getReg()), 5);
|
|
} else {
|
|
unsigned BaseRegNo = getX86RegNum(BaseReg.getReg());
|
|
unsigned IndexRegNo;
|
|
if (IndexReg.getReg())
|
|
IndexRegNo = getX86RegNum(IndexReg.getReg());
|
|
else
|
|
IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
|
|
emitSIBByte(SS, IndexRegNo, BaseRegNo);
|
|
}
|
|
|
|
// Do we need to output a displacement?
|
|
if (Disp.getImmedValue() != 0 || ForceDisp32 || ForceDisp8) {
|
|
if (!ForceDisp32 && isDisp8(Disp.getImmedValue()))
|
|
emitConstant(Disp.getImmedValue(), 1);
|
|
else
|
|
emitConstant(Disp.getImmedValue(), 4);
|
|
}
|
|
}
|
|
}
|
|
|
|
unsigned sizeOfPtr (const MachineInstrDescriptor &Desc) {
|
|
switch (Desc.TSFlags & X86II::ArgMask) {
|
|
case X86II::Arg8: return 1;
|
|
case X86II::Arg16: return 2;
|
|
case X86II::Arg32: return 4;
|
|
case X86II::ArgF32: return 4;
|
|
case X86II::ArgF64: return 8;
|
|
case X86II::ArgF80: return 10;
|
|
default: assert(0 && "Memory size not set!");
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
|
|
void Emitter::emitInstruction(MachineInstr &MI) {
|
|
unsigned Opcode = MI.getOpcode();
|
|
const MachineInstrDescriptor &Desc = II->get(Opcode);
|
|
|
|
// Emit instruction prefixes if neccesary
|
|
if (Desc.TSFlags & X86II::OpSize) MCE.emitByte(0x66);// Operand size...
|
|
|
|
switch (Desc.TSFlags & X86II::Op0Mask) {
|
|
case X86II::TB:
|
|
MCE.emitByte(0x0F); // Two-byte opcode prefix
|
|
break;
|
|
case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB:
|
|
case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
|
|
MCE.emitByte(0xD8 + (Desc.TSFlags & X86II::Op0Mask)-X86II::D8);
|
|
break; // Two-byte opcode prefix
|
|
|
|
default: break; // No prefix!
|
|
}
|
|
|
|
unsigned char BaseOpcode = II->getBaseOpcodeFor(Opcode);
|
|
switch (Desc.TSFlags & X86II::FormMask) {
|
|
default: assert(0 && "Unknown FormMask value!");
|
|
case X86II::Pseudo:
|
|
std::cerr << "X86 Machine Code Emitter: Not emitting: " << MI;
|
|
break;
|
|
case X86II::RawFrm:
|
|
MCE.emitByte(BaseOpcode);
|
|
|
|
if (MI.getNumOperands() == 1) {
|
|
assert(MI.getOperand(0).getType() == MachineOperand::MO_PCRelativeDisp);
|
|
MCE.emitPCRelativeDisp(MI.getOperand(0).getVRegValue());
|
|
}
|
|
break;
|
|
case X86II::AddRegFrm:
|
|
MCE.emitByte(BaseOpcode + getX86RegNum(MI.getOperand(0).getReg()));
|
|
if (MI.getNumOperands() == 2 && (MI.getOperand(1).isImmediate() ||
|
|
MI.getOperand(1).getVRegValueOrNull())) {
|
|
unsigned Size = sizeOfPtr(Desc);
|
|
if (Value *V = MI.getOperand(1).getVRegValueOrNull()) {
|
|
assert(Size == 4 && "Don't know how to emit non-pointer values!");
|
|
MCE.emitGlobalAddress(cast<GlobalValue>(V));
|
|
} else {
|
|
emitConstant(MI.getOperand(1).getImmedValue(), Size);
|
|
}
|
|
}
|
|
break;
|
|
case X86II::MRMDestReg:
|
|
MCE.emitByte(BaseOpcode);
|
|
emitRegModRMByte(MI.getOperand(0).getReg(),
|
|
getX86RegNum(MI.getOperand(MI.getNumOperands()-1).getReg()));
|
|
break;
|
|
case X86II::MRMDestMem:
|
|
MCE.emitByte(BaseOpcode);
|
|
emitMemModRMByte(MI, 0, getX86RegNum(MI.getOperand(4).getReg()));
|
|
break;
|
|
case X86II::MRMSrcReg:
|
|
MCE.emitByte(BaseOpcode);
|
|
emitRegModRMByte(MI.getOperand(MI.getNumOperands()-1).getReg(),
|
|
getX86RegNum(MI.getOperand(0).getReg()));
|
|
break;
|
|
case X86II::MRMSrcMem:
|
|
MCE.emitByte(BaseOpcode);
|
|
emitMemModRMByte(MI, MI.getNumOperands()-4,
|
|
getX86RegNum(MI.getOperand(0).getReg()));
|
|
break;
|
|
|
|
case X86II::MRMS0r: case X86II::MRMS1r:
|
|
case X86II::MRMS2r: case X86II::MRMS3r:
|
|
case X86II::MRMS4r: case X86II::MRMS5r:
|
|
case X86II::MRMS6r: case X86II::MRMS7r:
|
|
MCE.emitByte(BaseOpcode);
|
|
emitRegModRMByte(MI.getOperand(0).getReg(),
|
|
(Desc.TSFlags & X86II::FormMask)-X86II::MRMS0r);
|
|
|
|
if (MI.getOperand(MI.getNumOperands()-1).isImmediate()) {
|
|
unsigned Size = sizeOfPtr(Desc);
|
|
emitConstant(MI.getOperand(MI.getNumOperands()-1).getImmedValue(), Size);
|
|
}
|
|
break;
|
|
}
|
|
}
|