llvm-6502/lib/Transforms/Utils/BasicBlockUtils.cpp
Hal Finkel fc3b7bbf49 UpdatePHINodes in BasicBlockUtils should not crash on duplicate predecessors
UpdatePHINodes has an optimization to reuse an existing PHI node, where it
first deletes all of its entries and then replaces them. Unfortunately, in the
case where we had duplicate predecessors (which are allowed so long as the
associated PHI entries have the same value), the loop removing the existing PHI
entries from the to-be-reused PHI would assert (if that PHI was not the one
which had the duplicates).

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@192001 91177308-0d34-0410-b5e6-96231b3b80d8
2013-10-04 23:41:05 +00:00

772 lines
29 KiB
C++

//===-- BasicBlockUtils.cpp - BasicBlock Utilities -------------------------==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This family of functions perform manipulations on basic blocks, and
// instructions contained within basic blocks.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/ValueHandle.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/Local.h"
#include <algorithm>
using namespace llvm;
/// DeleteDeadBlock - Delete the specified block, which must have no
/// predecessors.
void llvm::DeleteDeadBlock(BasicBlock *BB) {
assert((pred_begin(BB) == pred_end(BB) ||
// Can delete self loop.
BB->getSinglePredecessor() == BB) && "Block is not dead!");
TerminatorInst *BBTerm = BB->getTerminator();
// Loop through all of our successors and make sure they know that one
// of their predecessors is going away.
for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i)
BBTerm->getSuccessor(i)->removePredecessor(BB);
// Zap all the instructions in the block.
while (!BB->empty()) {
Instruction &I = BB->back();
// If this instruction is used, replace uses with an arbitrary value.
// Because control flow can't get here, we don't care what we replace the
// value with. Note that since this block is unreachable, and all values
// contained within it must dominate their uses, that all uses will
// eventually be removed (they are themselves dead).
if (!I.use_empty())
I.replaceAllUsesWith(UndefValue::get(I.getType()));
BB->getInstList().pop_back();
}
// Zap the block!
BB->eraseFromParent();
}
/// FoldSingleEntryPHINodes - We know that BB has one predecessor. If there are
/// any single-entry PHI nodes in it, fold them away. This handles the case
/// when all entries to the PHI nodes in a block are guaranteed equal, such as
/// when the block has exactly one predecessor.
void llvm::FoldSingleEntryPHINodes(BasicBlock *BB, Pass *P) {
if (!isa<PHINode>(BB->begin())) return;
AliasAnalysis *AA = 0;
MemoryDependenceAnalysis *MemDep = 0;
if (P) {
AA = P->getAnalysisIfAvailable<AliasAnalysis>();
MemDep = P->getAnalysisIfAvailable<MemoryDependenceAnalysis>();
}
while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
if (PN->getIncomingValue(0) != PN)
PN->replaceAllUsesWith(PN->getIncomingValue(0));
else
PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
if (MemDep)
MemDep->removeInstruction(PN); // Memdep updates AA itself.
else if (AA && isa<PointerType>(PN->getType()))
AA->deleteValue(PN);
PN->eraseFromParent();
}
}
/// DeleteDeadPHIs - Examine each PHI in the given block and delete it if it
/// is dead. Also recursively delete any operands that become dead as
/// a result. This includes tracing the def-use list from the PHI to see if
/// it is ultimately unused or if it reaches an unused cycle.
bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI) {
// Recursively deleting a PHI may cause multiple PHIs to be deleted
// or RAUW'd undef, so use an array of WeakVH for the PHIs to delete.
SmallVector<WeakVH, 8> PHIs;
for (BasicBlock::iterator I = BB->begin();
PHINode *PN = dyn_cast<PHINode>(I); ++I)
PHIs.push_back(PN);
bool Changed = false;
for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
Changed |= RecursivelyDeleteDeadPHINode(PN, TLI);
return Changed;
}
/// MergeBlockIntoPredecessor - Attempts to merge a block into its predecessor,
/// if possible. The return value indicates success or failure.
bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, Pass *P) {
// Don't merge away blocks who have their address taken.
if (BB->hasAddressTaken()) return false;
// Can't merge if there are multiple predecessors, or no predecessors.
BasicBlock *PredBB = BB->getUniquePredecessor();
if (!PredBB) return false;
// Don't break self-loops.
if (PredBB == BB) return false;
// Don't break invokes.
if (isa<InvokeInst>(PredBB->getTerminator())) return false;
succ_iterator SI(succ_begin(PredBB)), SE(succ_end(PredBB));
BasicBlock *OnlySucc = BB;
for (; SI != SE; ++SI)
if (*SI != OnlySucc) {
OnlySucc = 0; // There are multiple distinct successors!
break;
}
// Can't merge if there are multiple successors.
if (!OnlySucc) return false;
// Can't merge if there is PHI loop.
for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE; ++BI) {
if (PHINode *PN = dyn_cast<PHINode>(BI)) {
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
if (PN->getIncomingValue(i) == PN)
return false;
} else
break;
}
// Begin by getting rid of unneeded PHIs.
if (isa<PHINode>(BB->front()))
FoldSingleEntryPHINodes(BB, P);
// Delete the unconditional branch from the predecessor...
PredBB->getInstList().pop_back();
// Make all PHI nodes that referred to BB now refer to Pred as their
// source...
BB->replaceAllUsesWith(PredBB);
// Move all definitions in the successor to the predecessor...
PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
// Inherit predecessors name if it exists.
if (!PredBB->hasName())
PredBB->takeName(BB);
// Finally, erase the old block and update dominator info.
if (P) {
if (DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>()) {
if (DomTreeNode *DTN = DT->getNode(BB)) {
DomTreeNode *PredDTN = DT->getNode(PredBB);
SmallVector<DomTreeNode*, 8> Children(DTN->begin(), DTN->end());
for (SmallVectorImpl<DomTreeNode *>::iterator DI = Children.begin(),
DE = Children.end(); DI != DE; ++DI)
DT->changeImmediateDominator(*DI, PredDTN);
DT->eraseNode(BB);
}
if (LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>())
LI->removeBlock(BB);
if (MemoryDependenceAnalysis *MD =
P->getAnalysisIfAvailable<MemoryDependenceAnalysis>())
MD->invalidateCachedPredecessors();
}
}
BB->eraseFromParent();
return true;
}
/// ReplaceInstWithValue - Replace all uses of an instruction (specified by BI)
/// with a value, then remove and delete the original instruction.
///
void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
BasicBlock::iterator &BI, Value *V) {
Instruction &I = *BI;
// Replaces all of the uses of the instruction with uses of the value
I.replaceAllUsesWith(V);
// Make sure to propagate a name if there is one already.
if (I.hasName() && !V->hasName())
V->takeName(&I);
// Delete the unnecessary instruction now...
BI = BIL.erase(BI);
}
/// ReplaceInstWithInst - Replace the instruction specified by BI with the
/// instruction specified by I. The original instruction is deleted and BI is
/// updated to point to the new instruction.
///
void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
BasicBlock::iterator &BI, Instruction *I) {
assert(I->getParent() == 0 &&
"ReplaceInstWithInst: Instruction already inserted into basic block!");
// Insert the new instruction into the basic block...
BasicBlock::iterator New = BIL.insert(BI, I);
// Replace all uses of the old instruction, and delete it.
ReplaceInstWithValue(BIL, BI, I);
// Move BI back to point to the newly inserted instruction
BI = New;
}
/// ReplaceInstWithInst - Replace the instruction specified by From with the
/// instruction specified by To.
///
void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
BasicBlock::iterator BI(From);
ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
}
/// SplitEdge - Split the edge connecting specified block. Pass P must
/// not be NULL.
BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, Pass *P) {
unsigned SuccNum = GetSuccessorNumber(BB, Succ);
// If this is a critical edge, let SplitCriticalEdge do it.
TerminatorInst *LatchTerm = BB->getTerminator();
if (SplitCriticalEdge(LatchTerm, SuccNum, P))
return LatchTerm->getSuccessor(SuccNum);
// If the edge isn't critical, then BB has a single successor or Succ has a
// single pred. Split the block.
if (BasicBlock *SP = Succ->getSinglePredecessor()) {
// If the successor only has a single pred, split the top of the successor
// block.
assert(SP == BB && "CFG broken");
SP = NULL;
return SplitBlock(Succ, Succ->begin(), P);
}
// Otherwise, if BB has a single successor, split it at the bottom of the
// block.
assert(BB->getTerminator()->getNumSuccessors() == 1 &&
"Should have a single succ!");
return SplitBlock(BB, BB->getTerminator(), P);
}
/// SplitBlock - Split the specified block at the specified instruction - every
/// thing before SplitPt stays in Old and everything starting with SplitPt moves
/// to a new block. The two blocks are joined by an unconditional branch and
/// the loop info is updated.
///
BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, Pass *P) {
BasicBlock::iterator SplitIt = SplitPt;
while (isa<PHINode>(SplitIt) || isa<LandingPadInst>(SplitIt))
++SplitIt;
BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split");
// The new block lives in whichever loop the old one did. This preserves
// LCSSA as well, because we force the split point to be after any PHI nodes.
if (LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>())
if (Loop *L = LI->getLoopFor(Old))
L->addBasicBlockToLoop(New, LI->getBase());
if (DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>()) {
// Old dominates New. New node dominates all other nodes dominated by Old.
if (DomTreeNode *OldNode = DT->getNode(Old)) {
std::vector<DomTreeNode *> Children;
for (DomTreeNode::iterator I = OldNode->begin(), E = OldNode->end();
I != E; ++I)
Children.push_back(*I);
DomTreeNode *NewNode = DT->addNewBlock(New,Old);
for (std::vector<DomTreeNode *>::iterator I = Children.begin(),
E = Children.end(); I != E; ++I)
DT->changeImmediateDominator(*I, NewNode);
}
}
return New;
}
/// UpdateAnalysisInformation - Update DominatorTree, LoopInfo, and LCCSA
/// analysis information.
static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB,
ArrayRef<BasicBlock *> Preds,
Pass *P, bool &HasLoopExit) {
if (!P) return;
LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>();
Loop *L = LI ? LI->getLoopFor(OldBB) : 0;
// If we need to preserve loop analyses, collect some information about how
// this split will affect loops.
bool IsLoopEntry = !!L;
bool SplitMakesNewLoopHeader = false;
if (LI) {
bool PreserveLCSSA = P->mustPreserveAnalysisID(LCSSAID);
for (ArrayRef<BasicBlock*>::iterator
i = Preds.begin(), e = Preds.end(); i != e; ++i) {
BasicBlock *Pred = *i;
// If we need to preserve LCSSA, determine if any of the preds is a loop
// exit.
if (PreserveLCSSA)
if (Loop *PL = LI->getLoopFor(Pred))
if (!PL->contains(OldBB))
HasLoopExit = true;
// If we need to preserve LoopInfo, note whether any of the preds crosses
// an interesting loop boundary.
if (!L) continue;
if (L->contains(Pred))
IsLoopEntry = false;
else
SplitMakesNewLoopHeader = true;
}
}
// Update dominator tree if available.
DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>();
if (DT)
DT->splitBlock(NewBB);
if (!L) return;
if (IsLoopEntry) {
// Add the new block to the nearest enclosing loop (and not an adjacent
// loop). To find this, examine each of the predecessors and determine which
// loops enclose them, and select the most-nested loop which contains the
// loop containing the block being split.
Loop *InnermostPredLoop = 0;
for (ArrayRef<BasicBlock*>::iterator
i = Preds.begin(), e = Preds.end(); i != e; ++i) {
BasicBlock *Pred = *i;
if (Loop *PredLoop = LI->getLoopFor(Pred)) {
// Seek a loop which actually contains the block being split (to avoid
// adjacent loops).
while (PredLoop && !PredLoop->contains(OldBB))
PredLoop = PredLoop->getParentLoop();
// Select the most-nested of these loops which contains the block.
if (PredLoop && PredLoop->contains(OldBB) &&
(!InnermostPredLoop ||
InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
InnermostPredLoop = PredLoop;
}
}
if (InnermostPredLoop)
InnermostPredLoop->addBasicBlockToLoop(NewBB, LI->getBase());
} else {
L->addBasicBlockToLoop(NewBB, LI->getBase());
if (SplitMakesNewLoopHeader)
L->moveToHeader(NewBB);
}
}
/// UpdatePHINodes - Update the PHI nodes in OrigBB to include the values coming
/// from NewBB. This also updates AliasAnalysis, if available.
static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
ArrayRef<BasicBlock*> Preds, BranchInst *BI,
Pass *P, bool HasLoopExit) {
// Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB.
AliasAnalysis *AA = P ? P->getAnalysisIfAvailable<AliasAnalysis>() : 0;
for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) {
PHINode *PN = cast<PHINode>(I++);
// Check to see if all of the values coming in are the same. If so, we
// don't need to create a new PHI node, unless it's needed for LCSSA.
Value *InVal = 0;
if (!HasLoopExit) {
InVal = PN->getIncomingValueForBlock(Preds[0]);
for (unsigned i = 1, e = Preds.size(); i != e; ++i)
if (InVal != PN->getIncomingValueForBlock(Preds[i])) {
InVal = 0;
break;
}
}
if (InVal) {
// If all incoming values for the new PHI would be the same, just don't
// make a new PHI. Instead, just remove the incoming values from the old
// PHI.
for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
// Explicitly check the BB index here to handle duplicates in Preds.
int Idx = PN->getBasicBlockIndex(Preds[i]);
if (Idx >= 0)
PN->removeIncomingValue(Idx, false);
}
} else {
// If the values coming into the block are not the same, we need a PHI.
// Create the new PHI node, insert it into NewBB at the end of the block
PHINode *NewPHI =
PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI);
if (AA) AA->copyValue(PN, NewPHI);
// Move all of the PHI values for 'Preds' to the new PHI.
for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
Value *V = PN->removeIncomingValue(Preds[i], false);
NewPHI->addIncoming(V, Preds[i]);
}
InVal = NewPHI;
}
// Add an incoming value to the PHI node in the loop for the preheader
// edge.
PN->addIncoming(InVal, NewBB);
}
}
/// SplitBlockPredecessors - This method transforms BB by introducing a new
/// basic block into the function, and moving some of the predecessors of BB to
/// be predecessors of the new block. The new predecessors are indicated by the
/// Preds array, which has NumPreds elements in it. The new block is given a
/// suffix of 'Suffix'.
///
/// This currently updates the LLVM IR, AliasAnalysis, DominatorTree,
/// LoopInfo, and LCCSA but no other analyses. In particular, it does not
/// preserve LoopSimplify (because it's complicated to handle the case where one
/// of the edges being split is an exit of a loop with other exits).
///
BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
ArrayRef<BasicBlock*> Preds,
const char *Suffix, Pass *P) {
// Create new basic block, insert right before the original block.
BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), BB->getName()+Suffix,
BB->getParent(), BB);
// The new block unconditionally branches to the old block.
BranchInst *BI = BranchInst::Create(BB, NewBB);
// Move the edges from Preds to point to NewBB instead of BB.
for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
// This is slightly more strict than necessary; the minimum requirement
// is that there be no more than one indirectbr branching to BB. And
// all BlockAddress uses would need to be updated.
assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
"Cannot split an edge from an IndirectBrInst");
Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
}
// Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
// node becomes an incoming value for BB's phi node. However, if the Preds
// list is empty, we need to insert dummy entries into the PHI nodes in BB to
// account for the newly created predecessor.
if (Preds.size() == 0) {
// Insert dummy values as the incoming value.
for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
return NewBB;
}
// Update DominatorTree, LoopInfo, and LCCSA analysis information.
bool HasLoopExit = false;
UpdateAnalysisInformation(BB, NewBB, Preds, P, HasLoopExit);
// Update the PHI nodes in BB with the values coming from NewBB.
UpdatePHINodes(BB, NewBB, Preds, BI, P, HasLoopExit);
return NewBB;
}
/// SplitLandingPadPredecessors - This method transforms the landing pad,
/// OrigBB, by introducing two new basic blocks into the function. One of those
/// new basic blocks gets the predecessors listed in Preds. The other basic
/// block gets the remaining predecessors of OrigBB. The landingpad instruction
/// OrigBB is clone into both of the new basic blocks. The new blocks are given
/// the suffixes 'Suffix1' and 'Suffix2', and are returned in the NewBBs vector.
///
/// This currently updates the LLVM IR, AliasAnalysis, DominatorTree,
/// DominanceFrontier, LoopInfo, and LCCSA but no other analyses. In particular,
/// it does not preserve LoopSimplify (because it's complicated to handle the
/// case where one of the edges being split is an exit of a loop with other
/// exits).
///
void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
ArrayRef<BasicBlock*> Preds,
const char *Suffix1, const char *Suffix2,
Pass *P,
SmallVectorImpl<BasicBlock*> &NewBBs) {
assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!");
// Create a new basic block for OrigBB's predecessors listed in Preds. Insert
// it right before the original block.
BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(),
OrigBB->getName() + Suffix1,
OrigBB->getParent(), OrigBB);
NewBBs.push_back(NewBB1);
// The new block unconditionally branches to the old block.
BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1);
// Move the edges from Preds to point to NewBB1 instead of OrigBB.
for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
// This is slightly more strict than necessary; the minimum requirement
// is that there be no more than one indirectbr branching to BB. And
// all BlockAddress uses would need to be updated.
assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
"Cannot split an edge from an IndirectBrInst");
Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1);
}
// Update DominatorTree, LoopInfo, and LCCSA analysis information.
bool HasLoopExit = false;
UpdateAnalysisInformation(OrigBB, NewBB1, Preds, P, HasLoopExit);
// Update the PHI nodes in OrigBB with the values coming from NewBB1.
UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, P, HasLoopExit);
// Move the remaining edges from OrigBB to point to NewBB2.
SmallVector<BasicBlock*, 8> NewBB2Preds;
for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB);
i != e; ) {
BasicBlock *Pred = *i++;
if (Pred == NewBB1) continue;
assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
"Cannot split an edge from an IndirectBrInst");
NewBB2Preds.push_back(Pred);
e = pred_end(OrigBB);
}
BasicBlock *NewBB2 = 0;
if (!NewBB2Preds.empty()) {
// Create another basic block for the rest of OrigBB's predecessors.
NewBB2 = BasicBlock::Create(OrigBB->getContext(),
OrigBB->getName() + Suffix2,
OrigBB->getParent(), OrigBB);
NewBBs.push_back(NewBB2);
// The new block unconditionally branches to the old block.
BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2);
// Move the remaining edges from OrigBB to point to NewBB2.
for (SmallVectorImpl<BasicBlock*>::iterator
i = NewBB2Preds.begin(), e = NewBB2Preds.end(); i != e; ++i)
(*i)->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2);
// Update DominatorTree, LoopInfo, and LCCSA analysis information.
HasLoopExit = false;
UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, P, HasLoopExit);
// Update the PHI nodes in OrigBB with the values coming from NewBB2.
UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, P, HasLoopExit);
}
LandingPadInst *LPad = OrigBB->getLandingPadInst();
Instruction *Clone1 = LPad->clone();
Clone1->setName(Twine("lpad") + Suffix1);
NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1);
if (NewBB2) {
Instruction *Clone2 = LPad->clone();
Clone2->setName(Twine("lpad") + Suffix2);
NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2);
// Create a PHI node for the two cloned landingpad instructions.
PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad);
PN->addIncoming(Clone1, NewBB1);
PN->addIncoming(Clone2, NewBB2);
LPad->replaceAllUsesWith(PN);
LPad->eraseFromParent();
} else {
// There is no second clone. Just replace the landing pad with the first
// clone.
LPad->replaceAllUsesWith(Clone1);
LPad->eraseFromParent();
}
}
/// FoldReturnIntoUncondBranch - This method duplicates the specified return
/// instruction into a predecessor which ends in an unconditional branch. If
/// the return instruction returns a value defined by a PHI, propagate the
/// right value into the return. It returns the new return instruction in the
/// predecessor.
ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
BasicBlock *Pred) {
Instruction *UncondBranch = Pred->getTerminator();
// Clone the return and add it to the end of the predecessor.
Instruction *NewRet = RI->clone();
Pred->getInstList().push_back(NewRet);
// If the return instruction returns a value, and if the value was a
// PHI node in "BB", propagate the right value into the return.
for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end();
i != e; ++i) {
Value *V = *i;
Instruction *NewBC = 0;
if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
// Return value might be bitcasted. Clone and insert it before the
// return instruction.
V = BCI->getOperand(0);
NewBC = BCI->clone();
Pred->getInstList().insert(NewRet, NewBC);
*i = NewBC;
}
if (PHINode *PN = dyn_cast<PHINode>(V)) {
if (PN->getParent() == BB) {
if (NewBC)
NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred));
else
*i = PN->getIncomingValueForBlock(Pred);
}
}
}
// Update any PHI nodes in the returning block to realize that we no
// longer branch to them.
BB->removePredecessor(Pred);
UncondBranch->eraseFromParent();
return cast<ReturnInst>(NewRet);
}
/// SplitBlockAndInsertIfThen - Split the containing block at the
/// specified instruction - everything before and including Cmp stays
/// in the old basic block, and everything after Cmp is moved to a
/// new block. The two blocks are connected by a conditional branch
/// (with value of Cmp being the condition).
/// Before:
/// Head
/// Cmp
/// Tail
/// After:
/// Head
/// Cmp
/// if (Cmp)
/// ThenBlock
/// Tail
///
/// If Unreachable is true, then ThenBlock ends with
/// UnreachableInst, otherwise it branches to Tail.
/// Returns the NewBasicBlock's terminator.
TerminatorInst *llvm::SplitBlockAndInsertIfThen(Instruction *Cmp,
bool Unreachable, MDNode *BranchWeights) {
Instruction *SplitBefore = Cmp->getNextNode();
BasicBlock *Head = SplitBefore->getParent();
BasicBlock *Tail = Head->splitBasicBlock(SplitBefore);
TerminatorInst *HeadOldTerm = Head->getTerminator();
LLVMContext &C = Head->getContext();
BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
TerminatorInst *CheckTerm;
if (Unreachable)
CheckTerm = new UnreachableInst(C, ThenBlock);
else
CheckTerm = BranchInst::Create(Tail, ThenBlock);
BranchInst *HeadNewTerm =
BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/Tail, Cmp);
HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
return CheckTerm;
}
/// GetIfCondition - Given a basic block (BB) with two predecessors,
/// check to see if the merge at this block is due
/// to an "if condition". If so, return the boolean condition that determines
/// which entry into BB will be taken. Also, return by references the block
/// that will be entered from if the condition is true, and the block that will
/// be entered if the condition is false.
///
/// This does no checking to see if the true/false blocks have large or unsavory
/// instructions in them.
Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
BasicBlock *&IfFalse) {
PHINode *SomePHI = dyn_cast<PHINode>(BB->begin());
BasicBlock *Pred1 = NULL;
BasicBlock *Pred2 = NULL;
if (SomePHI) {
if (SomePHI->getNumIncomingValues() != 2)
return NULL;
Pred1 = SomePHI->getIncomingBlock(0);
Pred2 = SomePHI->getIncomingBlock(1);
} else {
pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
if (PI == PE) // No predecessor
return NULL;
Pred1 = *PI++;
if (PI == PE) // Only one predecessor
return NULL;
Pred2 = *PI++;
if (PI != PE) // More than two predecessors
return NULL;
}
// We can only handle branches. Other control flow will be lowered to
// branches if possible anyway.
BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
if (Pred1Br == 0 || Pred2Br == 0)
return 0;
// Eliminate code duplication by ensuring that Pred1Br is conditional if
// either are.
if (Pred2Br->isConditional()) {
// If both branches are conditional, we don't have an "if statement". In
// reality, we could transform this case, but since the condition will be
// required anyway, we stand no chance of eliminating it, so the xform is
// probably not profitable.
if (Pred1Br->isConditional())
return 0;
std::swap(Pred1, Pred2);
std::swap(Pred1Br, Pred2Br);
}
if (Pred1Br->isConditional()) {
// The only thing we have to watch out for here is to make sure that Pred2
// doesn't have incoming edges from other blocks. If it does, the condition
// doesn't dominate BB.
if (Pred2->getSinglePredecessor() == 0)
return 0;
// If we found a conditional branch predecessor, make sure that it branches
// to BB and Pred2Br. If it doesn't, this isn't an "if statement".
if (Pred1Br->getSuccessor(0) == BB &&
Pred1Br->getSuccessor(1) == Pred2) {
IfTrue = Pred1;
IfFalse = Pred2;
} else if (Pred1Br->getSuccessor(0) == Pred2 &&
Pred1Br->getSuccessor(1) == BB) {
IfTrue = Pred2;
IfFalse = Pred1;
} else {
// We know that one arm of the conditional goes to BB, so the other must
// go somewhere unrelated, and this must not be an "if statement".
return 0;
}
return Pred1Br->getCondition();
}
// Ok, if we got here, both predecessors end with an unconditional branch to
// BB. Don't panic! If both blocks only have a single (identical)
// predecessor, and THAT is a conditional branch, then we're all ok!
BasicBlock *CommonPred = Pred1->getSinglePredecessor();
if (CommonPred == 0 || CommonPred != Pred2->getSinglePredecessor())
return 0;
// Otherwise, if this is a conditional branch, then we can use it!
BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
if (BI == 0) return 0;
assert(BI->isConditional() && "Two successors but not conditional?");
if (BI->getSuccessor(0) == Pred1) {
IfTrue = Pred1;
IfFalse = Pred2;
} else {
IfTrue = Pred2;
IfFalse = Pred1;
}
return BI->getCondition();
}