mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-15 04:30:12 +00:00
f8cde7388e
"is sized". This prevents every query to isSized() from recursing over every sub-type of a struct type. This could get *very* slow for extremely deep nesting of structs, as in 177.mesa. This change is a 45% speedup for 'opt -O2' of 177.mesa.linked.bc, and likely a significant speedup for other cases as well. It even impacts -O0 cases because so many part of the code try to check whether a type is sized. Thanks for the review from Nick Lewycky and Benjamin Kramer on IRC. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152197 91177308-0d34-0410-b5e6-96231b3b80d8
463 lines
18 KiB
C++
463 lines
18 KiB
C++
//===-- llvm/DerivedTypes.h - Classes for handling data types ---*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains the declarations of classes that represent "derived
|
|
// types". These are things like "arrays of x" or "structure of x, y, z" or
|
|
// "function returning x taking (y,z) as parameters", etc...
|
|
//
|
|
// The implementations of these classes live in the Type.cpp file.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_DERIVED_TYPES_H
|
|
#define LLVM_DERIVED_TYPES_H
|
|
|
|
#include "llvm/Type.h"
|
|
#include "llvm/Support/DataTypes.h"
|
|
|
|
namespace llvm {
|
|
|
|
class Value;
|
|
class APInt;
|
|
class LLVMContext;
|
|
template<typename T> class ArrayRef;
|
|
class StringRef;
|
|
|
|
/// Class to represent integer types. Note that this class is also used to
|
|
/// represent the built-in integer types: Int1Ty, Int8Ty, Int16Ty, Int32Ty and
|
|
/// Int64Ty.
|
|
/// @brief Integer representation type
|
|
class IntegerType : public Type {
|
|
friend class LLVMContextImpl;
|
|
|
|
protected:
|
|
explicit IntegerType(LLVMContext &C, unsigned NumBits) : Type(C, IntegerTyID){
|
|
setSubclassData(NumBits);
|
|
}
|
|
public:
|
|
/// This enum is just used to hold constants we need for IntegerType.
|
|
enum {
|
|
MIN_INT_BITS = 1, ///< Minimum number of bits that can be specified
|
|
MAX_INT_BITS = (1<<23)-1 ///< Maximum number of bits that can be specified
|
|
///< Note that bit width is stored in the Type classes SubclassData field
|
|
///< which has 23 bits. This yields a maximum bit width of 8,388,607 bits.
|
|
};
|
|
|
|
/// This static method is the primary way of constructing an IntegerType.
|
|
/// If an IntegerType with the same NumBits value was previously instantiated,
|
|
/// that instance will be returned. Otherwise a new one will be created. Only
|
|
/// one instance with a given NumBits value is ever created.
|
|
/// @brief Get or create an IntegerType instance.
|
|
static IntegerType *get(LLVMContext &C, unsigned NumBits);
|
|
|
|
/// @brief Get the number of bits in this IntegerType
|
|
unsigned getBitWidth() const { return getSubclassData(); }
|
|
|
|
/// getBitMask - Return a bitmask with ones set for all of the bits
|
|
/// that can be set by an unsigned version of this type. This is 0xFF for
|
|
/// i8, 0xFFFF for i16, etc.
|
|
uint64_t getBitMask() const {
|
|
return ~uint64_t(0UL) >> (64-getBitWidth());
|
|
}
|
|
|
|
/// getSignBit - Return a uint64_t with just the most significant bit set (the
|
|
/// sign bit, if the value is treated as a signed number).
|
|
uint64_t getSignBit() const {
|
|
return 1ULL << (getBitWidth()-1);
|
|
}
|
|
|
|
/// For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc.
|
|
/// @returns a bit mask with ones set for all the bits of this type.
|
|
/// @brief Get a bit mask for this type.
|
|
APInt getMask() const;
|
|
|
|
/// This method determines if the width of this IntegerType is a power-of-2
|
|
/// in terms of 8 bit bytes.
|
|
/// @returns true if this is a power-of-2 byte width.
|
|
/// @brief Is this a power-of-2 byte-width IntegerType ?
|
|
bool isPowerOf2ByteWidth() const;
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast.
|
|
static inline bool classof(const IntegerType *) { return true; }
|
|
static inline bool classof(const Type *T) {
|
|
return T->getTypeID() == IntegerTyID;
|
|
}
|
|
};
|
|
|
|
|
|
/// FunctionType - Class to represent function types
|
|
///
|
|
class FunctionType : public Type {
|
|
FunctionType(const FunctionType &); // Do not implement
|
|
const FunctionType &operator=(const FunctionType &); // Do not implement
|
|
FunctionType(Type *Result, ArrayRef<Type*> Params, bool IsVarArgs);
|
|
|
|
public:
|
|
/// FunctionType::get - This static method is the primary way of constructing
|
|
/// a FunctionType.
|
|
///
|
|
static FunctionType *get(Type *Result,
|
|
ArrayRef<Type*> Params, bool isVarArg);
|
|
|
|
/// FunctionType::get - Create a FunctionType taking no parameters.
|
|
///
|
|
static FunctionType *get(Type *Result, bool isVarArg);
|
|
|
|
/// isValidReturnType - Return true if the specified type is valid as a return
|
|
/// type.
|
|
static bool isValidReturnType(Type *RetTy);
|
|
|
|
/// isValidArgumentType - Return true if the specified type is valid as an
|
|
/// argument type.
|
|
static bool isValidArgumentType(Type *ArgTy);
|
|
|
|
bool isVarArg() const { return getSubclassData(); }
|
|
Type *getReturnType() const { return ContainedTys[0]; }
|
|
|
|
typedef Type::subtype_iterator param_iterator;
|
|
param_iterator param_begin() const { return ContainedTys + 1; }
|
|
param_iterator param_end() const { return &ContainedTys[NumContainedTys]; }
|
|
|
|
// Parameter type accessors.
|
|
Type *getParamType(unsigned i) const { return ContainedTys[i+1]; }
|
|
|
|
/// getNumParams - Return the number of fixed parameters this function type
|
|
/// requires. This does not consider varargs.
|
|
///
|
|
unsigned getNumParams() const { return NumContainedTys - 1; }
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast.
|
|
static inline bool classof(const FunctionType *) { return true; }
|
|
static inline bool classof(const Type *T) {
|
|
return T->getTypeID() == FunctionTyID;
|
|
}
|
|
};
|
|
|
|
|
|
/// CompositeType - Common super class of ArrayType, StructType, PointerType
|
|
/// and VectorType.
|
|
class CompositeType : public Type {
|
|
protected:
|
|
explicit CompositeType(LLVMContext &C, TypeID tid) : Type(C, tid) { }
|
|
public:
|
|
|
|
/// getTypeAtIndex - Given an index value into the type, return the type of
|
|
/// the element.
|
|
///
|
|
Type *getTypeAtIndex(const Value *V);
|
|
Type *getTypeAtIndex(unsigned Idx);
|
|
bool indexValid(const Value *V) const;
|
|
bool indexValid(unsigned Idx) const;
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast.
|
|
static inline bool classof(const CompositeType *) { return true; }
|
|
static inline bool classof(const Type *T) {
|
|
return T->getTypeID() == ArrayTyID ||
|
|
T->getTypeID() == StructTyID ||
|
|
T->getTypeID() == PointerTyID ||
|
|
T->getTypeID() == VectorTyID;
|
|
}
|
|
};
|
|
|
|
|
|
/// StructType - Class to represent struct types. There are two different kinds
|
|
/// of struct types: Literal structs and Identified structs.
|
|
///
|
|
/// Literal struct types (e.g. { i32, i32 }) are uniqued structurally, and must
|
|
/// always have a body when created. You can get one of these by using one of
|
|
/// the StructType::get() forms.
|
|
///
|
|
/// Identified structs (e.g. %foo or %42) may optionally have a name and are not
|
|
/// uniqued. The names for identified structs are managed at the LLVMContext
|
|
/// level, so there can only be a single identified struct with a given name in
|
|
/// a particular LLVMContext. Identified structs may also optionally be opaque
|
|
/// (have no body specified). You get one of these by using one of the
|
|
/// StructType::create() forms.
|
|
///
|
|
/// Independent of what kind of struct you have, the body of a struct type are
|
|
/// laid out in memory consequtively with the elements directly one after the
|
|
/// other (if the struct is packed) or (if not packed) with padding between the
|
|
/// elements as defined by TargetData (which is required to match what the code
|
|
/// generator for a target expects).
|
|
///
|
|
class StructType : public CompositeType {
|
|
StructType(const StructType &); // Do not implement
|
|
const StructType &operator=(const StructType &); // Do not implement
|
|
StructType(LLVMContext &C)
|
|
: CompositeType(C, StructTyID), SymbolTableEntry(0) {}
|
|
enum {
|
|
// This is the contents of the SubClassData field.
|
|
SCDB_HasBody = 1,
|
|
SCDB_Packed = 2,
|
|
SCDB_IsLiteral = 4,
|
|
SCDB_IsSized = 8
|
|
};
|
|
|
|
/// SymbolTableEntry - For a named struct that actually has a name, this is a
|
|
/// pointer to the symbol table entry (maintained by LLVMContext) for the
|
|
/// struct. This is null if the type is an literal struct or if it is
|
|
/// a identified type that has an empty name.
|
|
///
|
|
void *SymbolTableEntry;
|
|
public:
|
|
~StructType() {
|
|
delete [] ContainedTys; // Delete the body.
|
|
}
|
|
|
|
/// StructType::create - This creates an identified struct.
|
|
static StructType *create(LLVMContext &Context, StringRef Name);
|
|
static StructType *create(LLVMContext &Context);
|
|
|
|
static StructType *create(ArrayRef<Type*> Elements,
|
|
StringRef Name,
|
|
bool isPacked = false);
|
|
static StructType *create(ArrayRef<Type*> Elements);
|
|
static StructType *create(LLVMContext &Context,
|
|
ArrayRef<Type*> Elements,
|
|
StringRef Name,
|
|
bool isPacked = false);
|
|
static StructType *create(LLVMContext &Context, ArrayRef<Type*> Elements);
|
|
static StructType *create(StringRef Name, Type *elt1, ...) END_WITH_NULL;
|
|
|
|
/// StructType::get - This static method is the primary way to create a
|
|
/// literal StructType.
|
|
static StructType *get(LLVMContext &Context, ArrayRef<Type*> Elements,
|
|
bool isPacked = false);
|
|
|
|
/// StructType::get - Create an empty structure type.
|
|
///
|
|
static StructType *get(LLVMContext &Context, bool isPacked = false);
|
|
|
|
/// StructType::get - This static method is a convenience method for creating
|
|
/// structure types by specifying the elements as arguments. Note that this
|
|
/// method always returns a non-packed struct, and requires at least one
|
|
/// element type.
|
|
static StructType *get(Type *elt1, ...) END_WITH_NULL;
|
|
|
|
bool isPacked() const { return (getSubclassData() & SCDB_Packed) != 0; }
|
|
|
|
/// isLiteral - Return true if this type is uniqued by structural
|
|
/// equivalence, false if it is a struct definition.
|
|
bool isLiteral() const { return (getSubclassData() & SCDB_IsLiteral) != 0; }
|
|
|
|
/// isOpaque - Return true if this is a type with an identity that has no body
|
|
/// specified yet. These prints as 'opaque' in .ll files.
|
|
bool isOpaque() const { return (getSubclassData() & SCDB_HasBody) == 0; }
|
|
|
|
/// isSized - Return true if this is a sized type.
|
|
bool isSized() const;
|
|
|
|
/// hasName - Return true if this is a named struct that has a non-empty name.
|
|
bool hasName() const { return SymbolTableEntry != 0; }
|
|
|
|
/// getName - Return the name for this struct type if it has an identity.
|
|
/// This may return an empty string for an unnamed struct type. Do not call
|
|
/// this on an literal type.
|
|
StringRef getName() const;
|
|
|
|
/// setName - Change the name of this type to the specified name, or to a name
|
|
/// with a suffix if there is a collision. Do not call this on an literal
|
|
/// type.
|
|
void setName(StringRef Name);
|
|
|
|
/// setBody - Specify a body for an opaque identified type.
|
|
void setBody(ArrayRef<Type*> Elements, bool isPacked = false);
|
|
void setBody(Type *elt1, ...) END_WITH_NULL;
|
|
|
|
/// isValidElementType - Return true if the specified type is valid as a
|
|
/// element type.
|
|
static bool isValidElementType(Type *ElemTy);
|
|
|
|
|
|
// Iterator access to the elements.
|
|
typedef Type::subtype_iterator element_iterator;
|
|
element_iterator element_begin() const { return ContainedTys; }
|
|
element_iterator element_end() const { return &ContainedTys[NumContainedTys];}
|
|
|
|
/// isLayoutIdentical - Return true if this is layout identical to the
|
|
/// specified struct.
|
|
bool isLayoutIdentical(StructType *Other) const;
|
|
|
|
// Random access to the elements
|
|
unsigned getNumElements() const { return NumContainedTys; }
|
|
Type *getElementType(unsigned N) const {
|
|
assert(N < NumContainedTys && "Element number out of range!");
|
|
return ContainedTys[N];
|
|
}
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast.
|
|
static inline bool classof(const StructType *) { return true; }
|
|
static inline bool classof(const Type *T) {
|
|
return T->getTypeID() == StructTyID;
|
|
}
|
|
};
|
|
|
|
/// SequentialType - This is the superclass of the array, pointer and vector
|
|
/// type classes. All of these represent "arrays" in memory. The array type
|
|
/// represents a specifically sized array, pointer types are unsized/unknown
|
|
/// size arrays, vector types represent specifically sized arrays that
|
|
/// allow for use of SIMD instructions. SequentialType holds the common
|
|
/// features of all, which stem from the fact that all three lay their
|
|
/// components out in memory identically.
|
|
///
|
|
class SequentialType : public CompositeType {
|
|
Type *ContainedType; ///< Storage for the single contained type.
|
|
SequentialType(const SequentialType &); // Do not implement!
|
|
const SequentialType &operator=(const SequentialType &); // Do not implement!
|
|
|
|
protected:
|
|
SequentialType(TypeID TID, Type *ElType)
|
|
: CompositeType(ElType->getContext(), TID), ContainedType(ElType) {
|
|
ContainedTys = &ContainedType;
|
|
NumContainedTys = 1;
|
|
}
|
|
|
|
public:
|
|
Type *getElementType() const { return ContainedTys[0]; }
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast.
|
|
static inline bool classof(const SequentialType *) { return true; }
|
|
static inline bool classof(const Type *T) {
|
|
return T->getTypeID() == ArrayTyID ||
|
|
T->getTypeID() == PointerTyID ||
|
|
T->getTypeID() == VectorTyID;
|
|
}
|
|
};
|
|
|
|
|
|
/// ArrayType - Class to represent array types.
|
|
///
|
|
class ArrayType : public SequentialType {
|
|
uint64_t NumElements;
|
|
|
|
ArrayType(const ArrayType &); // Do not implement
|
|
const ArrayType &operator=(const ArrayType &); // Do not implement
|
|
ArrayType(Type *ElType, uint64_t NumEl);
|
|
public:
|
|
/// ArrayType::get - This static method is the primary way to construct an
|
|
/// ArrayType
|
|
///
|
|
static ArrayType *get(Type *ElementType, uint64_t NumElements);
|
|
|
|
/// isValidElementType - Return true if the specified type is valid as a
|
|
/// element type.
|
|
static bool isValidElementType(Type *ElemTy);
|
|
|
|
uint64_t getNumElements() const { return NumElements; }
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast.
|
|
static inline bool classof(const ArrayType *) { return true; }
|
|
static inline bool classof(const Type *T) {
|
|
return T->getTypeID() == ArrayTyID;
|
|
}
|
|
};
|
|
|
|
/// VectorType - Class to represent vector types.
|
|
///
|
|
class VectorType : public SequentialType {
|
|
unsigned NumElements;
|
|
|
|
VectorType(const VectorType &); // Do not implement
|
|
const VectorType &operator=(const VectorType &); // Do not implement
|
|
VectorType(Type *ElType, unsigned NumEl);
|
|
public:
|
|
/// VectorType::get - This static method is the primary way to construct an
|
|
/// VectorType.
|
|
///
|
|
static VectorType *get(Type *ElementType, unsigned NumElements);
|
|
|
|
/// VectorType::getInteger - This static method gets a VectorType with the
|
|
/// same number of elements as the input type, and the element type is an
|
|
/// integer type of the same width as the input element type.
|
|
///
|
|
static VectorType *getInteger(VectorType *VTy) {
|
|
unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
|
|
assert(EltBits && "Element size must be of a non-zero size");
|
|
Type *EltTy = IntegerType::get(VTy->getContext(), EltBits);
|
|
return VectorType::get(EltTy, VTy->getNumElements());
|
|
}
|
|
|
|
/// VectorType::getExtendedElementVectorType - This static method is like
|
|
/// getInteger except that the element types are twice as wide as the
|
|
/// elements in the input type.
|
|
///
|
|
static VectorType *getExtendedElementVectorType(VectorType *VTy) {
|
|
unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
|
|
Type *EltTy = IntegerType::get(VTy->getContext(), EltBits * 2);
|
|
return VectorType::get(EltTy, VTy->getNumElements());
|
|
}
|
|
|
|
/// VectorType::getTruncatedElementVectorType - This static method is like
|
|
/// getInteger except that the element types are half as wide as the
|
|
/// elements in the input type.
|
|
///
|
|
static VectorType *getTruncatedElementVectorType(VectorType *VTy) {
|
|
unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
|
|
assert((EltBits & 1) == 0 &&
|
|
"Cannot truncate vector element with odd bit-width");
|
|
Type *EltTy = IntegerType::get(VTy->getContext(), EltBits / 2);
|
|
return VectorType::get(EltTy, VTy->getNumElements());
|
|
}
|
|
|
|
/// isValidElementType - Return true if the specified type is valid as a
|
|
/// element type.
|
|
static bool isValidElementType(Type *ElemTy);
|
|
|
|
/// @brief Return the number of elements in the Vector type.
|
|
unsigned getNumElements() const { return NumElements; }
|
|
|
|
/// @brief Return the number of bits in the Vector type.
|
|
/// Returns zero when the vector is a vector of pointers.
|
|
unsigned getBitWidth() const {
|
|
return NumElements * getElementType()->getPrimitiveSizeInBits();
|
|
}
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast.
|
|
static inline bool classof(const VectorType *) { return true; }
|
|
static inline bool classof(const Type *T) {
|
|
return T->getTypeID() == VectorTyID;
|
|
}
|
|
};
|
|
|
|
|
|
/// PointerType - Class to represent pointers.
|
|
///
|
|
class PointerType : public SequentialType {
|
|
PointerType(const PointerType &); // Do not implement
|
|
const PointerType &operator=(const PointerType &); // Do not implement
|
|
explicit PointerType(Type *ElType, unsigned AddrSpace);
|
|
public:
|
|
/// PointerType::get - This constructs a pointer to an object of the specified
|
|
/// type in a numbered address space.
|
|
static PointerType *get(Type *ElementType, unsigned AddressSpace);
|
|
|
|
/// PointerType::getUnqual - This constructs a pointer to an object of the
|
|
/// specified type in the generic address space (address space zero).
|
|
static PointerType *getUnqual(Type *ElementType) {
|
|
return PointerType::get(ElementType, 0);
|
|
}
|
|
|
|
/// isValidElementType - Return true if the specified type is valid as a
|
|
/// element type.
|
|
static bool isValidElementType(Type *ElemTy);
|
|
|
|
/// @brief Return the address space of the Pointer type.
|
|
inline unsigned getAddressSpace() const { return getSubclassData(); }
|
|
|
|
// Implement support type inquiry through isa, cast, and dyn_cast.
|
|
static inline bool classof(const PointerType *) { return true; }
|
|
static inline bool classof(const Type *T) {
|
|
return T->getTypeID() == PointerTyID;
|
|
}
|
|
};
|
|
|
|
} // End llvm namespace
|
|
|
|
#endif
|