llvm-6502/lib/Transforms/Utils/PromoteMemoryToRegister.cpp
Chris Lattner 5b5df1747f * Fix bug: test/Regression/Transforms/Mem2Reg/2002-03-28-UninitializedVal.ll
* Minor cleanup that was missed in last patch


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@2373 91177308-0d34-0410-b5e6-96231b3b80d8
2002-04-28 18:39:46 +00:00

289 lines
10 KiB
C++

//===- PromoteMemoryToRegister.cpp - Convert memory refs to regs ----------===//
//
// This pass is used to promote memory references to be register references. A
// simple example of the transformation performed by this pass is:
//
// FROM CODE TO CODE
// %X = alloca int, uint 1 ret int 42
// store int 42, int *%X
// %Y = load int* %X
// ret int %Y
//
// To do this transformation, a simple analysis is done to ensure it is safe.
// Currently this just loops over all alloca instructions, looking for
// instructions that are only used in simple load and stores.
//
// After this, the code is transformed by...something magical :)
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar/PromoteMemoryToRegister.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/iMemory.h"
#include "llvm/iPHINode.h"
#include "llvm/iTerminators.h"
#include "llvm/Pass.h"
#include "llvm/Function.h"
#include "llvm/BasicBlock.h"
#include "llvm/ConstantVals.h"
using namespace std;
namespace {
// instance of the promoter -- to keep all the local function data.
// gets re-created for each function processed
class PromoteInstance {
protected:
vector<AllocaInst*> Allocas; // the alloca instruction..
map<Instruction*, unsigned> AllocaLookup; // reverse mapping of above
vector<vector<BasicBlock*> > WriteSets; // index corresponds to Allocas
vector<vector<BasicBlock*> > PhiNodes; // index corresponds to Allocas
vector<vector<Value*> > CurrentValue; // the current value stack
//list of instructions to remove at end of pass :)
vector<Instruction *> KillList;
set<BasicBlock*> visited; // the basic blocks we've already visited
map<BasicBlock*, vector<PHINode*> > NewPhiNodes; // the phinodes we're adding
void traverse(BasicBlock *f, BasicBlock * predecessor);
bool PromoteFunction(Function *F, DominanceFrontier &DF);
bool QueuePhiNode(BasicBlock *bb, unsigned alloca_index);
void findSafeAllocas(Function *M);
bool didchange;
public:
// I do this so that I can force the deconstruction of the local variables
PromoteInstance(Function *F, DominanceFrontier &DF) {
didchange = PromoteFunction(F, DF);
}
//This returns whether the pass changes anything
operator bool () { return didchange; }
};
} // end of anonymous namespace
// findSafeAllocas - Find allocas that are safe to promote
//
void PromoteInstance::findSafeAllocas(Function *F) {
BasicBlock *BB = F->getEntryNode(); // Get the entry node for the function
// Look at all instructions in the entry node
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
if (AllocaInst *AI = dyn_cast<AllocaInst>(*I)) // Is it an alloca?
if (!AI->isArrayAllocation()) {
bool isSafe = true;
for (Value::use_iterator UI = AI->use_begin(), UE = AI->use_end();
UI != UE; ++UI) { // Loop over all of the uses of the alloca
// Only allow nonindexed memory access instructions...
if (MemAccessInst *MAI = dyn_cast<MemAccessInst>(*UI)) {
if (MAI->hasIndices()) { // indexed?
// Allow the access if there is only one index and the index is
// zero.
if (*MAI->idx_begin() != ConstantUInt::get(Type::UIntTy, 0) ||
MAI->idx_begin()+1 != MAI->idx_end()) {
isSafe = false;
break;
}
}
} else {
isSafe = false; break; // Not a load or store?
}
}
if (isSafe) { // If all checks pass, add alloca to safe list
AllocaLookup[AI] = Allocas.size();
Allocas.push_back(AI);
}
}
}
bool PromoteInstance::PromoteFunction(Function *F, DominanceFrontier &DF) {
// Calculate the set of safe allocas
findSafeAllocas(F);
// Add each alloca to the KillList. Note: KillList is destroyed MOST recently
// added to least recently.
KillList.assign(Allocas.begin(), Allocas.end());
// Calculate the set of write-locations for each alloca. This is analogous to
// counting the number of 'redefinitions' of each variable.
WriteSets.resize(Allocas.size());
for (unsigned i = 0; i != Allocas.size(); ++i) {
AllocaInst *AI = Allocas[i];
for (Value::use_iterator U =AI->use_begin(), E = AI->use_end(); U != E; ++U)
if (StoreInst *SI = dyn_cast<StoreInst>(*U))
// jot down the basic-block it came from
WriteSets[i].push_back(SI->getParent());
}
// Compute the locations where PhiNodes need to be inserted. Look at the
// dominance frontier of EACH basic-block we have a write in
//
PhiNodes.resize(Allocas.size());
for (unsigned i = 0; i != Allocas.size(); ++i) {
for (unsigned j = 0; j != WriteSets[i].size(); j++) {
// Look up the DF for this write, add it to PhiNodes
DominanceFrontier::const_iterator it = DF.find(WriteSets[i][j]);
DominanceFrontier::DomSetType S = it->second;
for (DominanceFrontier::DomSetType::iterator P = S.begin(), PE = S.end();
P != PE; ++P)
QueuePhiNode(*P, i);
}
// Perform iterative step
for (unsigned k = 0; k != PhiNodes[i].size(); k++) {
DominanceFrontier::const_iterator it = DF.find(PhiNodes[i][k]);
DominanceFrontier::DomSetType S = it->second;
for (DominanceFrontier::DomSetType::iterator P = S.begin(), PE = S.end();
P != PE; ++P)
QueuePhiNode(*P, i);
}
}
// Set the incoming values for the basic block to be null values for all of
// the alloca's. We do this in case there is a load of a value that has not
// been stored yet. In this case, it will get this null value.
//
CurrentValue.push_back(vector<Value *>(Allocas.size()));
for (unsigned i = 0, e = Allocas.size(); i != e; ++i)
CurrentValue[0][i] =
Constant::getNullValue(Allocas[i]->getType()->getElementType());
// Walks all basic blocks in the function performing the SSA rename algorithm
// and inserting the phi nodes we marked as necessary
//
traverse(F->front(), 0); // there is no predecessor of the root node
// Remove all instructions marked by being placed in the KillList...
//
while (!KillList.empty()) {
Instruction *I = KillList.back();
KillList.pop_back();
//now go find..
I->getParent()->getInstList().remove(I);
delete I;
}
return !Allocas.empty();
}
// QueuePhiNode - queues a phi-node to be added to a basic-block for a specific
// Alloca returns true if there wasn't already a phi-node for that variable
//
bool PromoteInstance::QueuePhiNode(BasicBlock *BB, unsigned i /*the alloca*/) {
// Look up the basic-block in question
vector<PHINode*> &BBPNs = NewPhiNodes[BB];
if (BBPNs.empty()) BBPNs.resize(Allocas.size());
// If the BB already has a phi node added for the i'th alloca then we're done!
if (BBPNs[i]) return false;
// Create a phi-node using the dereferenced type...
PHINode *PN = new PHINode(Allocas[i]->getType()->getElementType(),
Allocas[i]->getName()+".mem2reg");
BBPNs[i] = PN;
// Add the phi-node to the basic-block
BB->getInstList().push_front(PN);
PhiNodes[i].push_back(BB);
return true;
}
void PromoteInstance::traverse(BasicBlock *BB, BasicBlock *Pred) {
vector<Value *> &TOS = CurrentValue.back(); // look at top
// If this is a BB needing a phi node, lookup/create the phinode for each
// variable we need phinodes for.
vector<PHINode *> &BBPNs = NewPhiNodes[BB];
for (unsigned k = 0; k != BBPNs.size(); ++k)
if (PHINode *PN = BBPNs[k]) {
// at this point we can assume that the array has phi nodes.. let's add
// the incoming data
PN->addIncoming(TOS[k], Pred);
// also note that the active variable IS designated by the phi node
TOS[k] = PN;
}
// don't revisit nodes
if (visited.count(BB)) return;
// mark as visited
visited.insert(BB);
// keep track of the value of each variable we're watching.. how?
for (BasicBlock::iterator II = BB->begin(); II != BB->end(); ++II) {
Instruction *I = *II; //get the instruction
if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
Value *Ptr = LI->getPointerOperand();
if (AllocaInst *Src = dyn_cast<AllocaInst>(Ptr)) {
map<Instruction*, unsigned>::iterator ai = AllocaLookup.find(Src);
if (ai != AllocaLookup.end()) {
Value *V = TOS[ai->second];
// walk the use list of this load and replace all uses with r
LI->replaceAllUsesWith(V);
KillList.push_back(LI); // Mark the load to be deleted
}
}
} else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
// delete this instruction and mark the name as the current holder of the
// value
Value *Ptr = SI->getPointerOperand();
if (AllocaInst *Dest = dyn_cast<AllocaInst>(Ptr)) {
map<Instruction *, unsigned>::iterator ai = AllocaLookup.find(Dest);
if (ai != AllocaLookup.end()) {
// what value were we writing?
TOS[ai->second] = SI->getOperand(0);
KillList.push_back(SI); // Mark the store to be deleted
}
}
} else if (TerminatorInst *TI = dyn_cast<TerminatorInst>(I)) {
// Recurse across our successors
for (unsigned i = 0; i != TI->getNumSuccessors(); i++) {
CurrentValue.push_back(CurrentValue.back());
traverse(TI->getSuccessor(i), BB); // This node becomes the predecessor
CurrentValue.pop_back();
}
}
}
}
namespace {
struct PromotePass : public FunctionPass {
// runOnFunction - To run this pass, first we calculate the alloca
// instructions that are safe for promotion, then we promote each one.
//
virtual bool runOnFunction(Function *F) {
return (bool)PromoteInstance(F, getAnalysis<DominanceFrontier>());
}
// getAnalysisUsage - We need dominance frontiers
//
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired(DominanceFrontier::ID);
}
};
}
// createPromoteMemoryToRegister - Provide an entry point to create this pass.
//
Pass *createPromoteMemoryToRegister() {
return new PromotePass();
}