llvm-6502/lib/MC/MCExpr.cpp
Jim Grosbach 4d08863108 Fix typo.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119542 91177308-0d34-0410-b5e6-96231b3b80d8
2010-11-17 19:30:11 +00:00

448 lines
15 KiB
C++

//===- MCExpr.cpp - Assembly Level Expression Implementation --------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "mcexpr"
#include "llvm/MC/MCExpr.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/MC/MCAsmLayout.h"
#include "llvm/MC/MCAssembler.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCObjectFormat.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/MCValue.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetAsmBackend.h"
using namespace llvm;
namespace {
namespace stats {
STATISTIC(MCExprEvaluate, "Number of MCExpr evaluations");
}
}
void MCExpr::print(raw_ostream &OS) const {
switch (getKind()) {
case MCExpr::Target:
return cast<MCTargetExpr>(this)->PrintImpl(OS);
case MCExpr::Constant:
OS << cast<MCConstantExpr>(*this).getValue();
return;
case MCExpr::SymbolRef: {
const MCSymbolRefExpr &SRE = cast<MCSymbolRefExpr>(*this);
const MCSymbol &Sym = SRE.getSymbol();
// Parenthesize names that start with $ so that they don't look like
// absolute names.
bool UseParens = Sym.getName()[0] == '$';
if (SRE.getKind() == MCSymbolRefExpr::VK_ARM_HI16 ||
SRE.getKind() == MCSymbolRefExpr::VK_ARM_LO16)
OS << MCSymbolRefExpr::getVariantKindName(SRE.getKind());
if (SRE.getKind() == MCSymbolRefExpr::VK_PPC_HA16 ||
SRE.getKind() == MCSymbolRefExpr::VK_PPC_LO16) {
OS << MCSymbolRefExpr::getVariantKindName(SRE.getKind());
UseParens = true;
}
if (UseParens)
OS << '(' << Sym << ')';
else
OS << Sym;
if (SRE.getKind() == MCSymbolRefExpr::VK_ARM_PLT ||
SRE.getKind() == MCSymbolRefExpr::VK_ARM_TLSGD ||
SRE.getKind() == MCSymbolRefExpr::VK_ARM_GOT ||
SRE.getKind() == MCSymbolRefExpr::VK_ARM_GOTOFF ||
SRE.getKind() == MCSymbolRefExpr::VK_ARM_TPOFF ||
SRE.getKind() == MCSymbolRefExpr::VK_ARM_GOTTPOFF)
OS << MCSymbolRefExpr::getVariantKindName(SRE.getKind());
else if (SRE.getKind() != MCSymbolRefExpr::VK_None &&
SRE.getKind() != MCSymbolRefExpr::VK_ARM_HI16 &&
SRE.getKind() != MCSymbolRefExpr::VK_ARM_LO16 &&
SRE.getKind() != MCSymbolRefExpr::VK_PPC_HA16 &&
SRE.getKind() != MCSymbolRefExpr::VK_PPC_LO16)
OS << '@' << MCSymbolRefExpr::getVariantKindName(SRE.getKind());
return;
}
case MCExpr::Unary: {
const MCUnaryExpr &UE = cast<MCUnaryExpr>(*this);
switch (UE.getOpcode()) {
default: assert(0 && "Invalid opcode!");
case MCUnaryExpr::LNot: OS << '!'; break;
case MCUnaryExpr::Minus: OS << '-'; break;
case MCUnaryExpr::Not: OS << '~'; break;
case MCUnaryExpr::Plus: OS << '+'; break;
}
OS << *UE.getSubExpr();
return;
}
case MCExpr::Binary: {
const MCBinaryExpr &BE = cast<MCBinaryExpr>(*this);
// Only print parens around the LHS if it is non-trivial.
if (isa<MCConstantExpr>(BE.getLHS()) || isa<MCSymbolRefExpr>(BE.getLHS())) {
OS << *BE.getLHS();
} else {
OS << '(' << *BE.getLHS() << ')';
}
switch (BE.getOpcode()) {
default: assert(0 && "Invalid opcode!");
case MCBinaryExpr::Add:
// Print "X-42" instead of "X+-42".
if (const MCConstantExpr *RHSC = dyn_cast<MCConstantExpr>(BE.getRHS())) {
if (RHSC->getValue() < 0) {
OS << RHSC->getValue();
return;
}
}
OS << '+';
break;
case MCBinaryExpr::And: OS << '&'; break;
case MCBinaryExpr::Div: OS << '/'; break;
case MCBinaryExpr::EQ: OS << "=="; break;
case MCBinaryExpr::GT: OS << '>'; break;
case MCBinaryExpr::GTE: OS << ">="; break;
case MCBinaryExpr::LAnd: OS << "&&"; break;
case MCBinaryExpr::LOr: OS << "||"; break;
case MCBinaryExpr::LT: OS << '<'; break;
case MCBinaryExpr::LTE: OS << "<="; break;
case MCBinaryExpr::Mod: OS << '%'; break;
case MCBinaryExpr::Mul: OS << '*'; break;
case MCBinaryExpr::NE: OS << "!="; break;
case MCBinaryExpr::Or: OS << '|'; break;
case MCBinaryExpr::Shl: OS << "<<"; break;
case MCBinaryExpr::Shr: OS << ">>"; break;
case MCBinaryExpr::Sub: OS << '-'; break;
case MCBinaryExpr::Xor: OS << '^'; break;
}
// Only print parens around the LHS if it is non-trivial.
if (isa<MCConstantExpr>(BE.getRHS()) || isa<MCSymbolRefExpr>(BE.getRHS())) {
OS << *BE.getRHS();
} else {
OS << '(' << *BE.getRHS() << ')';
}
return;
}
}
assert(0 && "Invalid expression kind!");
}
void MCExpr::dump() const {
print(dbgs());
dbgs() << '\n';
}
/* *** */
const MCBinaryExpr *MCBinaryExpr::Create(Opcode Opc, const MCExpr *LHS,
const MCExpr *RHS, MCContext &Ctx) {
return new (Ctx) MCBinaryExpr(Opc, LHS, RHS);
}
const MCUnaryExpr *MCUnaryExpr::Create(Opcode Opc, const MCExpr *Expr,
MCContext &Ctx) {
return new (Ctx) MCUnaryExpr(Opc, Expr);
}
const MCConstantExpr *MCConstantExpr::Create(int64_t Value, MCContext &Ctx) {
return new (Ctx) MCConstantExpr(Value);
}
/* *** */
const MCSymbolRefExpr *MCSymbolRefExpr::Create(const MCSymbol *Sym,
VariantKind Kind,
MCContext &Ctx) {
return new (Ctx) MCSymbolRefExpr(Sym, Kind);
}
const MCSymbolRefExpr *MCSymbolRefExpr::Create(StringRef Name, VariantKind Kind,
MCContext &Ctx) {
return Create(Ctx.GetOrCreateSymbol(Name), Kind, Ctx);
}
StringRef MCSymbolRefExpr::getVariantKindName(VariantKind Kind) {
switch (Kind) {
default:
case VK_Invalid: return "<<invalid>>";
case VK_None: return "<<none>>";
case VK_GOT: return "GOT";
case VK_GOTOFF: return "GOTOFF";
case VK_GOTPCREL: return "GOTPCREL";
case VK_GOTTPOFF: return "GOTTPOFF";
case VK_INDNTPOFF: return "INDNTPOFF";
case VK_NTPOFF: return "NTPOFF";
case VK_GOTNTPOFF: return "GOTNTPOFF";
case VK_PLT: return "PLT";
case VK_TLSGD: return "TLSGD";
case VK_TLSLD: return "TLSLD";
case VK_TLSLDM: return "TLSLDM";
case VK_TPOFF: return "TPOFF";
case VK_DTPOFF: return "DTPOFF";
case VK_TLVP: return "TLVP";
case VK_ARM_HI16: return ":upper16:";
case VK_ARM_LO16: return ":lower16:";
case VK_ARM_PLT: return "(PLT)";
case VK_ARM_GOT: return "(GOT)";
case VK_ARM_GOTOFF: return "(GOTOFF)";
case VK_ARM_TPOFF: return "(tpoff)";
case VK_ARM_GOTTPOFF: return "(gottpoff)";
case VK_ARM_TLSGD: return "(tlsgd)";
case VK_PPC_TOC: return "toc";
case VK_PPC_HA16: return "ha16";
case VK_PPC_LO16: return "lo16";
}
}
MCSymbolRefExpr::VariantKind
MCSymbolRefExpr::getVariantKindForName(StringRef Name) {
return StringSwitch<VariantKind>(Name)
.Case("GOT", VK_GOT)
.Case("GOTOFF", VK_GOTOFF)
.Case("GOTPCREL", VK_GOTPCREL)
.Case("GOTTPOFF", VK_GOTTPOFF)
.Case("INDNTPOFF", VK_INDNTPOFF)
.Case("NTPOFF", VK_NTPOFF)
.Case("GOTNTPOFF", VK_GOTNTPOFF)
.Case("PLT", VK_PLT)
.Case("TLSGD", VK_TLSGD)
.Case("TLSLD", VK_TLSLD)
.Case("TLSLDM", VK_TLSLDM)
.Case("TPOFF", VK_TPOFF)
.Case("DTPOFF", VK_DTPOFF)
.Case("TLVP", VK_TLVP)
.Default(VK_Invalid);
}
/* *** */
void MCTargetExpr::Anchor() {}
/* *** */
bool MCExpr::EvaluateAsAbsolute(int64_t &Res, const MCAsmLayout *Layout) const {
MCValue Value;
// Fast path constants.
if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(this)) {
Res = CE->getValue();
return true;
}
if (!EvaluateAsRelocatable(Value, Layout) || !Value.isAbsolute()) {
// EvaluateAsAbsolute is defined to return the "current value" of
// the expression if we are given a Layout object, even in cases
// when the value is not fixed.
if (Layout) {
Res = Value.getConstant();
if (Value.getSymA()) {
Res += Layout->getSymbolAddress(
&Layout->getAssembler().getSymbolData(Value.getSymA()->getSymbol()));
}
if (Value.getSymB()) {
Res -= Layout->getSymbolAddress(
&Layout->getAssembler().getSymbolData(Value.getSymB()->getSymbol()));
}
}
return false;
}
Res = Value.getConstant();
return true;
}
static bool EvaluateSymbolicAdd(const MCAsmLayout *Layout, bool InSet,
const MCValue &LHS,const MCSymbolRefExpr *RHS_A,
const MCSymbolRefExpr *RHS_B, int64_t RHS_Cst,
MCValue &Res) {
// We can't add or subtract two symbols.
if ((LHS.getSymA() && RHS_A) ||
(LHS.getSymB() && RHS_B))
return false;
const MCSymbolRefExpr *A = LHS.getSymA() ? LHS.getSymA() : RHS_A;
const MCSymbolRefExpr *B = LHS.getSymB() ? LHS.getSymB() : RHS_B;
if (B) {
// If we have a negated symbol, then we must have also have a non-negated
// symbol in order to encode the expression. We can do this check later to
// permit expressions which eventually fold to a representable form -- such
// as (a + (0 - b)) -- if necessary.
if (!A)
return false;
}
// Absolutize symbol differences between defined symbols when we have a
// layout object and the target requests it.
if (Layout && A && B) {
const MCSymbol &SA = A->getSymbol();
const MCSymbol &SB = B->getSymbol();
const MCObjectFormat &F =
Layout->getAssembler().getBackend().getObjectFormat();
if (SA.isDefined() && SB.isDefined() && F.isAbsolute(InSet, SA, SB)) {
const MCAssembler &Asm = Layout->getAssembler();
MCSymbolData &AD = Asm.getSymbolData(A->getSymbol());
MCSymbolData &BD = Asm.getSymbolData(B->getSymbol());
Res = MCValue::get(+ Layout->getSymbolAddress(&AD)
- Layout->getSymbolAddress(&BD)
+ LHS.getConstant()
+ RHS_Cst);
return true;
}
}
Res = MCValue::get(A, B, LHS.getConstant() + RHS_Cst);
return true;
}
bool MCExpr::EvaluateAsRelocatable(MCValue &Res,
const MCAsmLayout *Layout) const {
return EvaluateAsRelocatableImpl(Res, Layout, false);
}
bool MCExpr::EvaluateAsRelocatableImpl(MCValue &Res,
const MCAsmLayout *Layout,
bool InSet) const {
++stats::MCExprEvaluate;
switch (getKind()) {
case Target:
return cast<MCTargetExpr>(this)->EvaluateAsRelocatableImpl(Res, Layout);
case Constant:
Res = MCValue::get(cast<MCConstantExpr>(this)->getValue());
return true;
case SymbolRef: {
const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(this);
const MCSymbol &Sym = SRE->getSymbol();
// Evaluate recursively if this is a variable.
if (Sym.isVariable() && SRE->getKind() == MCSymbolRefExpr::VK_None) {
bool Ret = Sym.getVariableValue()->EvaluateAsRelocatableImpl(Res, Layout,
true);
// If we failed to simplify this to a constant, let the target
// handle it.
if (Ret && !Res.getSymA() && !Res.getSymB())
return true;
}
Res = MCValue::get(SRE, 0, 0);
return true;
}
case Unary: {
const MCUnaryExpr *AUE = cast<MCUnaryExpr>(this);
MCValue Value;
if (!AUE->getSubExpr()->EvaluateAsRelocatableImpl(Value, Layout, InSet))
return false;
switch (AUE->getOpcode()) {
case MCUnaryExpr::LNot:
if (!Value.isAbsolute())
return false;
Res = MCValue::get(!Value.getConstant());
break;
case MCUnaryExpr::Minus:
/// -(a - b + const) ==> (b - a - const)
if (Value.getSymA() && !Value.getSymB())
return false;
Res = MCValue::get(Value.getSymB(), Value.getSymA(),
-Value.getConstant());
break;
case MCUnaryExpr::Not:
if (!Value.isAbsolute())
return false;
Res = MCValue::get(~Value.getConstant());
break;
case MCUnaryExpr::Plus:
Res = Value;
break;
}
return true;
}
case Binary: {
const MCBinaryExpr *ABE = cast<MCBinaryExpr>(this);
MCValue LHSValue, RHSValue;
if (!ABE->getLHS()->EvaluateAsRelocatableImpl(LHSValue, Layout, InSet) ||
!ABE->getRHS()->EvaluateAsRelocatableImpl(RHSValue, Layout, InSet))
return false;
// We only support a few operations on non-constant expressions, handle
// those first.
if (!LHSValue.isAbsolute() || !RHSValue.isAbsolute()) {
switch (ABE->getOpcode()) {
default:
return false;
case MCBinaryExpr::Sub:
// Negate RHS and add.
return EvaluateSymbolicAdd(Layout, InSet, LHSValue,
RHSValue.getSymB(), RHSValue.getSymA(),
-RHSValue.getConstant(),
Res);
case MCBinaryExpr::Add:
return EvaluateSymbolicAdd(Layout, InSet, LHSValue,
RHSValue.getSymA(), RHSValue.getSymB(),
RHSValue.getConstant(),
Res);
}
}
// FIXME: We need target hooks for the evaluation. It may be limited in
// width, and gas defines the result of comparisons and right shifts
// differently from Apple as.
int64_t LHS = LHSValue.getConstant(), RHS = RHSValue.getConstant();
int64_t Result = 0;
switch (ABE->getOpcode()) {
case MCBinaryExpr::Add: Result = LHS + RHS; break;
case MCBinaryExpr::And: Result = LHS & RHS; break;
case MCBinaryExpr::Div: Result = LHS / RHS; break;
case MCBinaryExpr::EQ: Result = LHS == RHS; break;
case MCBinaryExpr::GT: Result = LHS > RHS; break;
case MCBinaryExpr::GTE: Result = LHS >= RHS; break;
case MCBinaryExpr::LAnd: Result = LHS && RHS; break;
case MCBinaryExpr::LOr: Result = LHS || RHS; break;
case MCBinaryExpr::LT: Result = LHS < RHS; break;
case MCBinaryExpr::LTE: Result = LHS <= RHS; break;
case MCBinaryExpr::Mod: Result = LHS % RHS; break;
case MCBinaryExpr::Mul: Result = LHS * RHS; break;
case MCBinaryExpr::NE: Result = LHS != RHS; break;
case MCBinaryExpr::Or: Result = LHS | RHS; break;
case MCBinaryExpr::Shl: Result = LHS << RHS; break;
case MCBinaryExpr::Shr: Result = LHS >> RHS; break;
case MCBinaryExpr::Sub: Result = LHS - RHS; break;
case MCBinaryExpr::Xor: Result = LHS ^ RHS; break;
}
Res = MCValue::get(Result);
return true;
}
}
assert(0 && "Invalid assembly expression kind!");
return false;
}