mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-17 21:35:07 +00:00
70bbf9a3dd
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@29678 91177308-0d34-0410-b5e6-96231b3b80d8
1739 lines
60 KiB
C++
1739 lines
60 KiB
C++
//===-- CppWriter.cpp - Printing LLVM IR as a C++ Source File -------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by Reid Spencer and is distributed under the
|
|
// University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the writing of the LLVM IR as a set of C++ calls to the
|
|
// LLVM IR interface. The input module is assumed to be verified.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/CallingConv.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/InlineAsm.h"
|
|
#include "llvm/Instruction.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/SymbolTable.h"
|
|
#include "llvm/Support/CFG.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Config/config.h"
|
|
#include <algorithm>
|
|
#include <iostream>
|
|
#include <set>
|
|
|
|
using namespace llvm;
|
|
|
|
static cl::opt<std::string>
|
|
FuncName("funcname", cl::desc("Specify the name of the generated function"),
|
|
cl::value_desc("function name"));
|
|
|
|
enum WhatToGenerate {
|
|
GenProgram,
|
|
GenModule,
|
|
GenContents,
|
|
GenFunction,
|
|
GenInline,
|
|
GenVariable,
|
|
GenType
|
|
};
|
|
|
|
static cl::opt<WhatToGenerate> GenerationType(cl::Optional,
|
|
cl::desc("Choose what kind of output to generate"),
|
|
cl::init(GenProgram),
|
|
cl::values(
|
|
clEnumValN(GenProgram, "gen-program", "Generate a complete program"),
|
|
clEnumValN(GenModule, "gen-module", "Generate a module definition"),
|
|
clEnumValN(GenContents,"gen-contents", "Generate contents of a module"),
|
|
clEnumValN(GenFunction,"gen-function", "Generate a function definition"),
|
|
clEnumValN(GenInline, "gen-inline", "Generate an inline function"),
|
|
clEnumValN(GenVariable,"gen-variable", "Generate a variable definition"),
|
|
clEnumValN(GenType, "gen-type", "Generate a type definition"),
|
|
clEnumValEnd
|
|
)
|
|
);
|
|
|
|
static cl::opt<std::string> NameToGenerate("for", cl::Optional,
|
|
cl::desc("Specify the name of the thing to generate"),
|
|
cl::init("!bad!"));
|
|
|
|
namespace {
|
|
typedef std::vector<const Type*> TypeList;
|
|
typedef std::map<const Type*,std::string> TypeMap;
|
|
typedef std::map<const Value*,std::string> ValueMap;
|
|
typedef std::set<std::string> NameSet;
|
|
typedef std::set<const Type*> TypeSet;
|
|
typedef std::set<const Value*> ValueSet;
|
|
typedef std::map<const Value*,std::string> ForwardRefMap;
|
|
|
|
class CppWriter {
|
|
const char* progname;
|
|
std::ostream &Out;
|
|
const Module *TheModule;
|
|
uint64_t uniqueNum;
|
|
TypeMap TypeNames;
|
|
ValueMap ValueNames;
|
|
TypeMap UnresolvedTypes;
|
|
TypeList TypeStack;
|
|
NameSet UsedNames;
|
|
TypeSet DefinedTypes;
|
|
ValueSet DefinedValues;
|
|
ForwardRefMap ForwardRefs;
|
|
bool is_inline;
|
|
|
|
public:
|
|
inline CppWriter(std::ostream &o, const Module *M, const char* pn="llvm2cpp")
|
|
: progname(pn), Out(o), TheModule(M), uniqueNum(0), TypeNames(),
|
|
ValueNames(), UnresolvedTypes(), TypeStack(), is_inline(false) { }
|
|
|
|
const Module* getModule() { return TheModule; }
|
|
|
|
void printProgram(const std::string& fname, const std::string& modName );
|
|
void printModule(const std::string& fname, const std::string& modName );
|
|
void printContents(const std::string& fname, const std::string& modName );
|
|
void printFunction(const std::string& fname, const std::string& funcName );
|
|
void printInline(const std::string& fname, const std::string& funcName );
|
|
void printVariable(const std::string& fname, const std::string& varName );
|
|
void printType(const std::string& fname, const std::string& typeName );
|
|
|
|
void error(const std::string& msg);
|
|
|
|
private:
|
|
void printLinkageType(GlobalValue::LinkageTypes LT);
|
|
void printCallingConv(unsigned cc);
|
|
void printEscapedString(const std::string& str);
|
|
void printCFP(const ConstantFP* CFP);
|
|
|
|
std::string getCppName(const Type* val);
|
|
inline void printCppName(const Type* val);
|
|
|
|
std::string getCppName(const Value* val);
|
|
inline void printCppName(const Value* val);
|
|
|
|
bool printTypeInternal(const Type* Ty);
|
|
inline void printType(const Type* Ty);
|
|
void printTypes(const Module* M);
|
|
|
|
void printConstant(const Constant *CPV);
|
|
void printConstants(const Module* M);
|
|
|
|
void printVariableUses(const GlobalVariable *GV);
|
|
void printVariableHead(const GlobalVariable *GV);
|
|
void printVariableBody(const GlobalVariable *GV);
|
|
|
|
void printFunctionUses(const Function *F);
|
|
void printFunctionHead(const Function *F);
|
|
void printFunctionBody(const Function *F);
|
|
void printInstruction(const Instruction *I, const std::string& bbname);
|
|
std::string getOpName(Value*);
|
|
|
|
void printModuleBody();
|
|
|
|
};
|
|
|
|
static unsigned indent_level = 0;
|
|
inline std::ostream& nl(std::ostream& Out, int delta = 0) {
|
|
Out << "\n";
|
|
if (delta >= 0 || indent_level >= unsigned(-delta))
|
|
indent_level += delta;
|
|
for (unsigned i = 0; i < indent_level; ++i)
|
|
Out << " ";
|
|
return Out;
|
|
}
|
|
|
|
inline void in() { indent_level++; }
|
|
inline void out() { if (indent_level >0) indent_level--; }
|
|
|
|
inline void
|
|
sanitize(std::string& str) {
|
|
for (size_t i = 0; i < str.length(); ++i)
|
|
if (!isalnum(str[i]) && str[i] != '_')
|
|
str[i] = '_';
|
|
}
|
|
|
|
inline const char*
|
|
getTypePrefix(const Type* Ty ) {
|
|
const char* prefix;
|
|
switch (Ty->getTypeID()) {
|
|
case Type::VoidTyID: prefix = "void_"; break;
|
|
case Type::BoolTyID: prefix = "bool_"; break;
|
|
case Type::UByteTyID: prefix = "ubyte_"; break;
|
|
case Type::SByteTyID: prefix = "sbyte_"; break;
|
|
case Type::UShortTyID: prefix = "ushort_"; break;
|
|
case Type::ShortTyID: prefix = "short_"; break;
|
|
case Type::UIntTyID: prefix = "uint_"; break;
|
|
case Type::IntTyID: prefix = "int_"; break;
|
|
case Type::ULongTyID: prefix = "ulong_"; break;
|
|
case Type::LongTyID: prefix = "long_"; break;
|
|
case Type::FloatTyID: prefix = "float_"; break;
|
|
case Type::DoubleTyID: prefix = "double_"; break;
|
|
case Type::LabelTyID: prefix = "label_"; break;
|
|
case Type::FunctionTyID: prefix = "func_"; break;
|
|
case Type::StructTyID: prefix = "struct_"; break;
|
|
case Type::ArrayTyID: prefix = "array_"; break;
|
|
case Type::PointerTyID: prefix = "ptr_"; break;
|
|
case Type::PackedTyID: prefix = "packed_"; break;
|
|
case Type::OpaqueTyID: prefix = "opaque_"; break;
|
|
default: prefix = "other_"; break;
|
|
}
|
|
return prefix;
|
|
}
|
|
|
|
// Looks up the type in the symbol table and returns a pointer to its name or
|
|
// a null pointer if it wasn't found. Note that this isn't the same as the
|
|
// Mode::getTypeName function which will return an empty string, not a null
|
|
// pointer if the name is not found.
|
|
inline const std::string*
|
|
findTypeName(const SymbolTable& ST, const Type* Ty)
|
|
{
|
|
SymbolTable::type_const_iterator TI = ST.type_begin();
|
|
SymbolTable::type_const_iterator TE = ST.type_end();
|
|
for (;TI != TE; ++TI)
|
|
if (TI->second == Ty)
|
|
return &(TI->first);
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
CppWriter::error(const std::string& msg) {
|
|
std::cerr << progname << ": " << msg << "\n";
|
|
exit(2);
|
|
}
|
|
|
|
// printCFP - Print a floating point constant .. very carefully :)
|
|
// This makes sure that conversion to/from floating yields the same binary
|
|
// result so that we don't lose precision.
|
|
void
|
|
CppWriter::printCFP(const ConstantFP *CFP) {
|
|
Out << "ConstantFP::get(";
|
|
if (CFP->getType() == Type::DoubleTy)
|
|
Out << "Type::DoubleTy, ";
|
|
else
|
|
Out << "Type::FloatTy, ";
|
|
#if HAVE_PRINTF_A
|
|
char Buffer[100];
|
|
sprintf(Buffer, "%A", CFP->getValue());
|
|
if ((!strncmp(Buffer, "0x", 2) ||
|
|
!strncmp(Buffer, "-0x", 3) ||
|
|
!strncmp(Buffer, "+0x", 3)) &&
|
|
(atof(Buffer) == CFP->getValue()))
|
|
if (CFP->getType() == Type::DoubleTy)
|
|
Out << "BitsToDouble(" << Buffer << ")";
|
|
else
|
|
Out << "BitsToFloat(" << Buffer << ")";
|
|
else {
|
|
#endif
|
|
std::string StrVal = ftostr(CFP->getValue());
|
|
|
|
while (StrVal[0] == ' ')
|
|
StrVal.erase(StrVal.begin());
|
|
|
|
// Check to make sure that the stringized number is not some string like
|
|
// "Inf" or NaN. Check that the string matches the "[-+]?[0-9]" regex.
|
|
if (((StrVal[0] >= '0' && StrVal[0] <= '9') ||
|
|
((StrVal[0] == '-' || StrVal[0] == '+') &&
|
|
(StrVal[1] >= '0' && StrVal[1] <= '9'))) &&
|
|
(atof(StrVal.c_str()) == CFP->getValue()))
|
|
if (CFP->getType() == Type::DoubleTy)
|
|
Out << StrVal;
|
|
else
|
|
Out << StrVal;
|
|
else if (CFP->getType() == Type::DoubleTy)
|
|
Out << "BitsToDouble(0x" << std::hex << DoubleToBits(CFP->getValue())
|
|
<< std::dec << "ULL) /* " << StrVal << " */";
|
|
else
|
|
Out << "BitsToFloat(0x" << std::hex << FloatToBits(CFP->getValue())
|
|
<< std::dec << "U) /* " << StrVal << " */";
|
|
#if HAVE_PRINTF_A
|
|
}
|
|
#endif
|
|
Out << ")";
|
|
}
|
|
|
|
void
|
|
CppWriter::printCallingConv(unsigned cc){
|
|
// Print the calling convention.
|
|
switch (cc) {
|
|
case CallingConv::C: Out << "CallingConv::C"; break;
|
|
case CallingConv::CSRet: Out << "CallingConv::CSRet"; break;
|
|
case CallingConv::Fast: Out << "CallingConv::Fast"; break;
|
|
case CallingConv::Cold: Out << "CallingConv::Cold"; break;
|
|
case CallingConv::FirstTargetCC: Out << "CallingConv::FirstTargetCC"; break;
|
|
default: Out << cc; break;
|
|
}
|
|
}
|
|
|
|
void
|
|
CppWriter::printLinkageType(GlobalValue::LinkageTypes LT) {
|
|
switch (LT) {
|
|
case GlobalValue::InternalLinkage:
|
|
Out << "GlobalValue::InternalLinkage"; break;
|
|
case GlobalValue::LinkOnceLinkage:
|
|
Out << "GlobalValue::LinkOnceLinkage "; break;
|
|
case GlobalValue::WeakLinkage:
|
|
Out << "GlobalValue::WeakLinkage"; break;
|
|
case GlobalValue::AppendingLinkage:
|
|
Out << "GlobalValue::AppendingLinkage"; break;
|
|
case GlobalValue::ExternalLinkage:
|
|
Out << "GlobalValue::ExternalLinkage"; break;
|
|
case GlobalValue::GhostLinkage:
|
|
Out << "GlobalValue::GhostLinkage"; break;
|
|
}
|
|
}
|
|
|
|
// printEscapedString - Print each character of the specified string, escaping
|
|
// it if it is not printable or if it is an escape char.
|
|
void
|
|
CppWriter::printEscapedString(const std::string &Str) {
|
|
for (unsigned i = 0, e = Str.size(); i != e; ++i) {
|
|
unsigned char C = Str[i];
|
|
if (isprint(C) && C != '"' && C != '\\') {
|
|
Out << C;
|
|
} else {
|
|
Out << "\\x"
|
|
<< (char) ((C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A'))
|
|
<< (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
|
|
}
|
|
}
|
|
}
|
|
|
|
std::string
|
|
CppWriter::getCppName(const Type* Ty)
|
|
{
|
|
// First, handle the primitive types .. easy
|
|
if (Ty->isPrimitiveType()) {
|
|
switch (Ty->getTypeID()) {
|
|
case Type::VoidTyID: return "Type::VoidTy";
|
|
case Type::BoolTyID: return "Type::BoolTy";
|
|
case Type::UByteTyID: return "Type::UByteTy";
|
|
case Type::SByteTyID: return "Type::SByteTy";
|
|
case Type::UShortTyID: return "Type::UShortTy";
|
|
case Type::ShortTyID: return "Type::ShortTy";
|
|
case Type::UIntTyID: return "Type::UIntTy";
|
|
case Type::IntTyID: return "Type::IntTy";
|
|
case Type::ULongTyID: return "Type::ULongTy";
|
|
case Type::LongTyID: return "Type::LongTy";
|
|
case Type::FloatTyID: return "Type::FloatTy";
|
|
case Type::DoubleTyID: return "Type::DoubleTy";
|
|
case Type::LabelTyID: return "Type::LabelTy";
|
|
default:
|
|
error("Invalid primitive type");
|
|
break;
|
|
}
|
|
return "Type::VoidTy"; // shouldn't be returned, but make it sensible
|
|
}
|
|
|
|
// Now, see if we've seen the type before and return that
|
|
TypeMap::iterator I = TypeNames.find(Ty);
|
|
if (I != TypeNames.end())
|
|
return I->second;
|
|
|
|
// Okay, let's build a new name for this type. Start with a prefix
|
|
const char* prefix = 0;
|
|
switch (Ty->getTypeID()) {
|
|
case Type::FunctionTyID: prefix = "FuncTy_"; break;
|
|
case Type::StructTyID: prefix = "StructTy_"; break;
|
|
case Type::ArrayTyID: prefix = "ArrayTy_"; break;
|
|
case Type::PointerTyID: prefix = "PointerTy_"; break;
|
|
case Type::OpaqueTyID: prefix = "OpaqueTy_"; break;
|
|
case Type::PackedTyID: prefix = "PackedTy_"; break;
|
|
default: prefix = "OtherTy_"; break; // prevent breakage
|
|
}
|
|
|
|
// See if the type has a name in the symboltable and build accordingly
|
|
const std::string* tName = findTypeName(TheModule->getSymbolTable(), Ty);
|
|
std::string name;
|
|
if (tName)
|
|
name = std::string(prefix) + *tName;
|
|
else
|
|
name = std::string(prefix) + utostr(uniqueNum++);
|
|
sanitize(name);
|
|
|
|
// Save the name
|
|
return TypeNames[Ty] = name;
|
|
}
|
|
|
|
void
|
|
CppWriter::printCppName(const Type* Ty)
|
|
{
|
|
printEscapedString(getCppName(Ty));
|
|
}
|
|
|
|
std::string
|
|
CppWriter::getCppName(const Value* val) {
|
|
std::string name;
|
|
ValueMap::iterator I = ValueNames.find(val);
|
|
if (I != ValueNames.end() && I->first == val)
|
|
return I->second;
|
|
|
|
if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(val)) {
|
|
name = std::string("gvar_") +
|
|
getTypePrefix(GV->getType()->getElementType());
|
|
} else if (const Function* F = dyn_cast<Function>(val)) {
|
|
name = std::string("func_");
|
|
} else if (const Constant* C = dyn_cast<Constant>(val)) {
|
|
name = std::string("const_") + getTypePrefix(C->getType());
|
|
} else if (const Argument* Arg = dyn_cast<Argument>(val)) {
|
|
if (is_inline) {
|
|
unsigned argNum = std::distance(Arg->getParent()->arg_begin(),
|
|
Function::const_arg_iterator(Arg)) + 1;
|
|
name = std::string("arg_") + utostr(argNum);
|
|
NameSet::iterator NI = UsedNames.find(name);
|
|
if (NI != UsedNames.end())
|
|
name += std::string("_") + utostr(uniqueNum++);
|
|
UsedNames.insert(name);
|
|
return ValueNames[val] = name;
|
|
} else {
|
|
name = getTypePrefix(val->getType());
|
|
}
|
|
} else {
|
|
name = getTypePrefix(val->getType());
|
|
}
|
|
name += (val->hasName() ? val->getName() : utostr(uniqueNum++));
|
|
sanitize(name);
|
|
NameSet::iterator NI = UsedNames.find(name);
|
|
if (NI != UsedNames.end())
|
|
name += std::string("_") + utostr(uniqueNum++);
|
|
UsedNames.insert(name);
|
|
return ValueNames[val] = name;
|
|
}
|
|
|
|
void
|
|
CppWriter::printCppName(const Value* val) {
|
|
printEscapedString(getCppName(val));
|
|
}
|
|
|
|
bool
|
|
CppWriter::printTypeInternal(const Type* Ty) {
|
|
// We don't print definitions for primitive types
|
|
if (Ty->isPrimitiveType())
|
|
return false;
|
|
|
|
// If we already defined this type, we don't need to define it again.
|
|
if (DefinedTypes.find(Ty) != DefinedTypes.end())
|
|
return false;
|
|
|
|
// Everything below needs the name for the type so get it now.
|
|
std::string typeName(getCppName(Ty));
|
|
|
|
// Search the type stack for recursion. If we find it, then generate this
|
|
// as an OpaqueType, but make sure not to do this multiple times because
|
|
// the type could appear in multiple places on the stack. Once the opaque
|
|
// definition is issued, it must not be re-issued. Consequently we have to
|
|
// check the UnresolvedTypes list as well.
|
|
TypeList::const_iterator TI = std::find(TypeStack.begin(),TypeStack.end(),Ty);
|
|
if (TI != TypeStack.end()) {
|
|
TypeMap::const_iterator I = UnresolvedTypes.find(Ty);
|
|
if (I == UnresolvedTypes.end()) {
|
|
Out << "PATypeHolder " << typeName << "_fwd = OpaqueType::get();";
|
|
nl(Out);
|
|
UnresolvedTypes[Ty] = typeName;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// We're going to print a derived type which, by definition, contains other
|
|
// types. So, push this one we're printing onto the type stack to assist with
|
|
// recursive definitions.
|
|
TypeStack.push_back(Ty);
|
|
|
|
// Print the type definition
|
|
switch (Ty->getTypeID()) {
|
|
case Type::FunctionTyID: {
|
|
const FunctionType* FT = cast<FunctionType>(Ty);
|
|
Out << "std::vector<const Type*>" << typeName << "_args;";
|
|
nl(Out);
|
|
FunctionType::param_iterator PI = FT->param_begin();
|
|
FunctionType::param_iterator PE = FT->param_end();
|
|
for (; PI != PE; ++PI) {
|
|
const Type* argTy = static_cast<const Type*>(*PI);
|
|
bool isForward = printTypeInternal(argTy);
|
|
std::string argName(getCppName(argTy));
|
|
Out << typeName << "_args.push_back(" << argName;
|
|
if (isForward)
|
|
Out << "_fwd";
|
|
Out << ");";
|
|
nl(Out);
|
|
}
|
|
bool isForward = printTypeInternal(FT->getReturnType());
|
|
std::string retTypeName(getCppName(FT->getReturnType()));
|
|
Out << "FunctionType* " << typeName << " = FunctionType::get(";
|
|
in(); nl(Out) << "/*Result=*/" << retTypeName;
|
|
if (isForward)
|
|
Out << "_fwd";
|
|
Out << ",";
|
|
nl(Out) << "/*Params=*/" << typeName << "_args,";
|
|
nl(Out) << "/*isVarArg=*/" << (FT->isVarArg() ? "true" : "false") << ");";
|
|
out();
|
|
nl(Out);
|
|
break;
|
|
}
|
|
case Type::StructTyID: {
|
|
const StructType* ST = cast<StructType>(Ty);
|
|
Out << "std::vector<const Type*>" << typeName << "_fields;";
|
|
nl(Out);
|
|
StructType::element_iterator EI = ST->element_begin();
|
|
StructType::element_iterator EE = ST->element_end();
|
|
for (; EI != EE; ++EI) {
|
|
const Type* fieldTy = static_cast<const Type*>(*EI);
|
|
bool isForward = printTypeInternal(fieldTy);
|
|
std::string fieldName(getCppName(fieldTy));
|
|
Out << typeName << "_fields.push_back(" << fieldName;
|
|
if (isForward)
|
|
Out << "_fwd";
|
|
Out << ");";
|
|
nl(Out);
|
|
}
|
|
Out << "StructType* " << typeName << " = StructType::get("
|
|
<< typeName << "_fields);";
|
|
nl(Out);
|
|
break;
|
|
}
|
|
case Type::ArrayTyID: {
|
|
const ArrayType* AT = cast<ArrayType>(Ty);
|
|
const Type* ET = AT->getElementType();
|
|
bool isForward = printTypeInternal(ET);
|
|
std::string elemName(getCppName(ET));
|
|
Out << "ArrayType* " << typeName << " = ArrayType::get("
|
|
<< elemName << (isForward ? "_fwd" : "")
|
|
<< ", " << utostr(AT->getNumElements()) << ");";
|
|
nl(Out);
|
|
break;
|
|
}
|
|
case Type::PointerTyID: {
|
|
const PointerType* PT = cast<PointerType>(Ty);
|
|
const Type* ET = PT->getElementType();
|
|
bool isForward = printTypeInternal(ET);
|
|
std::string elemName(getCppName(ET));
|
|
Out << "PointerType* " << typeName << " = PointerType::get("
|
|
<< elemName << (isForward ? "_fwd" : "") << ");";
|
|
nl(Out);
|
|
break;
|
|
}
|
|
case Type::PackedTyID: {
|
|
const PackedType* PT = cast<PackedType>(Ty);
|
|
const Type* ET = PT->getElementType();
|
|
bool isForward = printTypeInternal(ET);
|
|
std::string elemName(getCppName(ET));
|
|
Out << "PackedType* " << typeName << " = PackedType::get("
|
|
<< elemName << (isForward ? "_fwd" : "")
|
|
<< ", " << utostr(PT->getNumElements()) << ");";
|
|
nl(Out);
|
|
break;
|
|
}
|
|
case Type::OpaqueTyID: {
|
|
const OpaqueType* OT = cast<OpaqueType>(Ty);
|
|
Out << "OpaqueType* " << typeName << " = OpaqueType::get();";
|
|
nl(Out);
|
|
break;
|
|
}
|
|
default:
|
|
error("Invalid TypeID");
|
|
}
|
|
|
|
// If the type had a name, make sure we recreate it.
|
|
const std::string* progTypeName =
|
|
findTypeName(TheModule->getSymbolTable(),Ty);
|
|
if (progTypeName)
|
|
Out << "mod->addTypeName(\"" << *progTypeName << "\", "
|
|
<< typeName << ");";
|
|
nl(Out);
|
|
|
|
// Pop us off the type stack
|
|
TypeStack.pop_back();
|
|
|
|
// Indicate that this type is now defined.
|
|
DefinedTypes.insert(Ty);
|
|
|
|
// Early resolve as many unresolved types as possible. Search the unresolved
|
|
// types map for the type we just printed. Now that its definition is complete
|
|
// we can resolve any previous references to it. This prevents a cascade of
|
|
// unresolved types.
|
|
TypeMap::iterator I = UnresolvedTypes.find(Ty);
|
|
if (I != UnresolvedTypes.end()) {
|
|
Out << "cast<OpaqueType>(" << I->second
|
|
<< "_fwd.get())->refineAbstractTypeTo(" << I->second << ");";
|
|
nl(Out);
|
|
Out << I->second << " = cast<";
|
|
switch (Ty->getTypeID()) {
|
|
case Type::FunctionTyID: Out << "FunctionType"; break;
|
|
case Type::ArrayTyID: Out << "ArrayType"; break;
|
|
case Type::StructTyID: Out << "StructType"; break;
|
|
case Type::PackedTyID: Out << "PackedType"; break;
|
|
case Type::PointerTyID: Out << "PointerType"; break;
|
|
case Type::OpaqueTyID: Out << "OpaqueType"; break;
|
|
default: Out << "NoSuchDerivedType"; break;
|
|
}
|
|
Out << ">(" << I->second << "_fwd.get());";
|
|
nl(Out); nl(Out);
|
|
UnresolvedTypes.erase(I);
|
|
}
|
|
|
|
// Finally, separate the type definition from other with a newline.
|
|
nl(Out);
|
|
|
|
// We weren't a recursive type
|
|
return false;
|
|
}
|
|
|
|
// Prints a type definition. Returns true if it could not resolve all the types
|
|
// in the definition but had to use a forward reference.
|
|
void
|
|
CppWriter::printType(const Type* Ty) {
|
|
assert(TypeStack.empty());
|
|
TypeStack.clear();
|
|
printTypeInternal(Ty);
|
|
assert(TypeStack.empty());
|
|
}
|
|
|
|
void
|
|
CppWriter::printTypes(const Module* M) {
|
|
|
|
// Walk the symbol table and print out all its types
|
|
const SymbolTable& symtab = M->getSymbolTable();
|
|
for (SymbolTable::type_const_iterator TI = symtab.type_begin(),
|
|
TE = symtab.type_end(); TI != TE; ++TI) {
|
|
|
|
// For primitive types and types already defined, just add a name
|
|
TypeMap::const_iterator TNI = TypeNames.find(TI->second);
|
|
if (TI->second->isPrimitiveType() || TNI != TypeNames.end()) {
|
|
Out << "mod->addTypeName(\"";
|
|
printEscapedString(TI->first);
|
|
Out << "\", " << getCppName(TI->second) << ");";
|
|
nl(Out);
|
|
// For everything else, define the type
|
|
} else {
|
|
printType(TI->second);
|
|
}
|
|
}
|
|
|
|
// Add all of the global variables to the value table...
|
|
for (Module::const_global_iterator I = TheModule->global_begin(),
|
|
E = TheModule->global_end(); I != E; ++I) {
|
|
if (I->hasInitializer())
|
|
printType(I->getInitializer()->getType());
|
|
printType(I->getType());
|
|
}
|
|
|
|
// Add all the functions to the table
|
|
for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end();
|
|
FI != FE; ++FI) {
|
|
printType(FI->getReturnType());
|
|
printType(FI->getFunctionType());
|
|
// Add all the function arguments
|
|
for(Function::const_arg_iterator AI = FI->arg_begin(),
|
|
AE = FI->arg_end(); AI != AE; ++AI) {
|
|
printType(AI->getType());
|
|
}
|
|
|
|
// Add all of the basic blocks and instructions
|
|
for (Function::const_iterator BB = FI->begin(),
|
|
E = FI->end(); BB != E; ++BB) {
|
|
printType(BB->getType());
|
|
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;
|
|
++I) {
|
|
printType(I->getType());
|
|
for (unsigned i = 0; i < I->getNumOperands(); ++i)
|
|
printType(I->getOperand(i)->getType());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// printConstant - Print out a constant pool entry...
|
|
void CppWriter::printConstant(const Constant *CV) {
|
|
// First, if the constant is actually a GlobalValue (variable or function) or
|
|
// its already in the constant list then we've printed it already and we can
|
|
// just return.
|
|
if (isa<GlobalValue>(CV) || ValueNames.find(CV) != ValueNames.end())
|
|
return;
|
|
|
|
std::string constName(getCppName(CV));
|
|
std::string typeName(getCppName(CV->getType()));
|
|
if (CV->isNullValue()) {
|
|
Out << "Constant* " << constName << " = Constant::getNullValue("
|
|
<< typeName << ");";
|
|
nl(Out);
|
|
return;
|
|
}
|
|
if (isa<GlobalValue>(CV)) {
|
|
// Skip variables and functions, we emit them elsewhere
|
|
return;
|
|
}
|
|
if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV)) {
|
|
Out << "ConstantBool* " << constName << " = ConstantBool::get("
|
|
<< (CB == ConstantBool::True ? "true" : "false")
|
|
<< ");";
|
|
} else if (const ConstantSInt *CI = dyn_cast<ConstantSInt>(CV)) {
|
|
Out << "ConstantSInt* " << constName << " = ConstantSInt::get("
|
|
<< typeName << ", " << CI->getValue() << ");";
|
|
} else if (const ConstantUInt *CI = dyn_cast<ConstantUInt>(CV)) {
|
|
Out << "ConstantUInt* " << constName << " = ConstantUInt::get("
|
|
<< typeName << ", " << CI->getValue() << ");";
|
|
} else if (isa<ConstantAggregateZero>(CV)) {
|
|
Out << "ConstantAggregateZero* " << constName
|
|
<< " = ConstantAggregateZero::get(" << typeName << ");";
|
|
} else if (isa<ConstantPointerNull>(CV)) {
|
|
Out << "ConstantPointerNull* " << constName
|
|
<< " = ConstanPointerNull::get(" << typeName << ");";
|
|
} else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
|
|
Out << "ConstantFP* " << constName << " = ";
|
|
printCFP(CFP);
|
|
Out << ";";
|
|
} else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
|
|
if (CA->isString() && CA->getType()->getElementType() == Type::SByteTy) {
|
|
Out << "Constant* " << constName << " = ConstantArray::get(\"";
|
|
printEscapedString(CA->getAsString());
|
|
// Determine if we want null termination or not.
|
|
if (CA->getType()->getNumElements() <= CA->getAsString().length())
|
|
Out << "\", false";// No null terminator
|
|
else
|
|
Out << "\", true"; // Indicate that the null terminator should be added.
|
|
Out << ");";
|
|
} else {
|
|
Out << "std::vector<Constant*> " << constName << "_elems;";
|
|
nl(Out);
|
|
unsigned N = CA->getNumOperands();
|
|
for (unsigned i = 0; i < N; ++i) {
|
|
printConstant(CA->getOperand(i)); // recurse to print operands
|
|
Out << constName << "_elems.push_back("
|
|
<< getCppName(CA->getOperand(i)) << ");";
|
|
nl(Out);
|
|
}
|
|
Out << "Constant* " << constName << " = ConstantArray::get("
|
|
<< typeName << ", " << constName << "_elems);";
|
|
}
|
|
} else if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
|
|
Out << "std::vector<Constant*> " << constName << "_fields;";
|
|
nl(Out);
|
|
unsigned N = CS->getNumOperands();
|
|
for (unsigned i = 0; i < N; i++) {
|
|
printConstant(CS->getOperand(i));
|
|
Out << constName << "_fields.push_back("
|
|
<< getCppName(CS->getOperand(i)) << ");";
|
|
nl(Out);
|
|
}
|
|
Out << "Constant* " << constName << " = ConstantStruct::get("
|
|
<< typeName << ", " << constName << "_fields);";
|
|
} else if (const ConstantPacked *CP = dyn_cast<ConstantPacked>(CV)) {
|
|
Out << "std::vector<Constant*> " << constName << "_elems;";
|
|
nl(Out);
|
|
unsigned N = CP->getNumOperands();
|
|
for (unsigned i = 0; i < N; ++i) {
|
|
printConstant(CP->getOperand(i));
|
|
Out << constName << "_elems.push_back("
|
|
<< getCppName(CP->getOperand(i)) << ");";
|
|
nl(Out);
|
|
}
|
|
Out << "Constant* " << constName << " = ConstantPacked::get("
|
|
<< typeName << ", " << constName << "_elems);";
|
|
} else if (isa<UndefValue>(CV)) {
|
|
Out << "UndefValue* " << constName << " = UndefValue::get("
|
|
<< typeName << ");";
|
|
} else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
|
|
if (CE->getOpcode() == Instruction::GetElementPtr) {
|
|
Out << "std::vector<Constant*> " << constName << "_indices;";
|
|
nl(Out);
|
|
printConstant(CE->getOperand(0));
|
|
for (unsigned i = 1; i < CE->getNumOperands(); ++i ) {
|
|
printConstant(CE->getOperand(i));
|
|
Out << constName << "_indices.push_back("
|
|
<< getCppName(CE->getOperand(i)) << ");";
|
|
nl(Out);
|
|
}
|
|
Out << "Constant* " << constName
|
|
<< " = ConstantExpr::getGetElementPtr("
|
|
<< getCppName(CE->getOperand(0)) << ", "
|
|
<< constName << "_indices);";
|
|
} else if (CE->getOpcode() == Instruction::Cast) {
|
|
printConstant(CE->getOperand(0));
|
|
Out << "Constant* " << constName << " = ConstantExpr::getCast(";
|
|
Out << getCppName(CE->getOperand(0)) << ", " << getCppName(CE->getType())
|
|
<< ");";
|
|
} else {
|
|
unsigned N = CE->getNumOperands();
|
|
for (unsigned i = 0; i < N; ++i ) {
|
|
printConstant(CE->getOperand(i));
|
|
}
|
|
Out << "Constant* " << constName << " = ConstantExpr::";
|
|
switch (CE->getOpcode()) {
|
|
case Instruction::Add: Out << "getAdd"; break;
|
|
case Instruction::Sub: Out << "getSub"; break;
|
|
case Instruction::Mul: Out << "getMul"; break;
|
|
case Instruction::Div: Out << "getDiv"; break;
|
|
case Instruction::Rem: Out << "getRem"; break;
|
|
case Instruction::And: Out << "getAnd"; break;
|
|
case Instruction::Or: Out << "getOr"; break;
|
|
case Instruction::Xor: Out << "getXor"; break;
|
|
case Instruction::SetEQ: Out << "getSetEQ"; break;
|
|
case Instruction::SetNE: Out << "getSetNE"; break;
|
|
case Instruction::SetLE: Out << "getSetLE"; break;
|
|
case Instruction::SetGE: Out << "getSetGE"; break;
|
|
case Instruction::SetLT: Out << "getSetLT"; break;
|
|
case Instruction::SetGT: Out << "getSetGT"; break;
|
|
case Instruction::Shl: Out << "getShl"; break;
|
|
case Instruction::Shr: Out << "getShr"; break;
|
|
case Instruction::Select: Out << "getSelect"; break;
|
|
case Instruction::ExtractElement: Out << "getExtractElement"; break;
|
|
case Instruction::InsertElement: Out << "getInsertElement"; break;
|
|
case Instruction::ShuffleVector: Out << "getShuffleVector"; break;
|
|
default:
|
|
error("Invalid constant expression");
|
|
break;
|
|
}
|
|
Out << getCppName(CE->getOperand(0));
|
|
for (unsigned i = 1; i < CE->getNumOperands(); ++i)
|
|
Out << ", " << getCppName(CE->getOperand(i));
|
|
Out << ");";
|
|
}
|
|
} else {
|
|
error("Bad Constant");
|
|
Out << "Constant* " << constName << " = 0; ";
|
|
}
|
|
nl(Out);
|
|
}
|
|
|
|
void
|
|
CppWriter::printConstants(const Module* M) {
|
|
// Traverse all the global variables looking for constant initializers
|
|
for (Module::const_global_iterator I = TheModule->global_begin(),
|
|
E = TheModule->global_end(); I != E; ++I)
|
|
if (I->hasInitializer())
|
|
printConstant(I->getInitializer());
|
|
|
|
// Traverse the LLVM functions looking for constants
|
|
for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end();
|
|
FI != FE; ++FI) {
|
|
// Add all of the basic blocks and instructions
|
|
for (Function::const_iterator BB = FI->begin(),
|
|
E = FI->end(); BB != E; ++BB) {
|
|
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;
|
|
++I) {
|
|
for (unsigned i = 0; i < I->getNumOperands(); ++i) {
|
|
if (Constant* C = dyn_cast<Constant>(I->getOperand(i))) {
|
|
printConstant(C);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void CppWriter::printVariableUses(const GlobalVariable *GV) {
|
|
nl(Out) << "// Type Definitions";
|
|
nl(Out);
|
|
printType(GV->getType());
|
|
if (GV->hasInitializer()) {
|
|
Constant* Init = GV->getInitializer();
|
|
printType(Init->getType());
|
|
if (Function* F = dyn_cast<Function>(Init)) {
|
|
nl(Out)<< "/ Function Declarations"; nl(Out);
|
|
printFunctionHead(F);
|
|
} else if (GlobalVariable* gv = dyn_cast<GlobalVariable>(Init)) {
|
|
nl(Out) << "// Global Variable Declarations"; nl(Out);
|
|
printVariableHead(gv);
|
|
} else {
|
|
nl(Out) << "// Constant Definitions"; nl(Out);
|
|
printConstant(gv);
|
|
}
|
|
if (GlobalVariable* gv = dyn_cast<GlobalVariable>(Init)) {
|
|
nl(Out) << "// Global Variable Definitions"; nl(Out);
|
|
printVariableBody(gv);
|
|
}
|
|
}
|
|
}
|
|
|
|
void CppWriter::printVariableHead(const GlobalVariable *GV) {
|
|
nl(Out) << "GlobalVariable* " << getCppName(GV);
|
|
if (is_inline) {
|
|
Out << " = mod->getGlobalVariable(";
|
|
printEscapedString(GV->getName());
|
|
Out << ", " << getCppName(GV->getType()->getElementType()) << ",true)";
|
|
nl(Out) << "if (!" << getCppName(GV) << ") {";
|
|
in(); nl(Out) << getCppName(GV);
|
|
}
|
|
Out << " = new GlobalVariable(";
|
|
nl(Out) << "/*Type=*/";
|
|
printCppName(GV->getType()->getElementType());
|
|
Out << ",";
|
|
nl(Out) << "/*isConstant=*/" << (GV->isConstant()?"true":"false");
|
|
Out << ",";
|
|
nl(Out) << "/*Linkage=*/";
|
|
printLinkageType(GV->getLinkage());
|
|
Out << ",";
|
|
nl(Out) << "/*Initializer=*/0, ";
|
|
if (GV->hasInitializer()) {
|
|
Out << "// has initializer, specified below";
|
|
}
|
|
nl(Out) << "/*Name=*/\"";
|
|
printEscapedString(GV->getName());
|
|
Out << "\",";
|
|
nl(Out) << "mod);";
|
|
nl(Out);
|
|
|
|
if (GV->hasSection()) {
|
|
printCppName(GV);
|
|
Out << "->setSection(\"";
|
|
printEscapedString(GV->getSection());
|
|
Out << "\");";
|
|
nl(Out);
|
|
}
|
|
if (GV->getAlignment()) {
|
|
printCppName(GV);
|
|
Out << "->setAlignment(" << utostr(GV->getAlignment()) << ");";
|
|
nl(Out);
|
|
};
|
|
if (is_inline) {
|
|
out(); Out << "}"; nl(Out);
|
|
}
|
|
}
|
|
|
|
void
|
|
CppWriter::printVariableBody(const GlobalVariable *GV) {
|
|
if (GV->hasInitializer()) {
|
|
printCppName(GV);
|
|
Out << "->setInitializer(";
|
|
//if (!isa<GlobalValue(GV->getInitializer()))
|
|
//else
|
|
Out << getCppName(GV->getInitializer()) << ");";
|
|
nl(Out);
|
|
}
|
|
}
|
|
|
|
std::string
|
|
CppWriter::getOpName(Value* V) {
|
|
if (!isa<Instruction>(V) || DefinedValues.find(V) != DefinedValues.end())
|
|
return getCppName(V);
|
|
|
|
// See if its alread in the map of forward references, if so just return the
|
|
// name we already set up for it
|
|
ForwardRefMap::const_iterator I = ForwardRefs.find(V);
|
|
if (I != ForwardRefs.end())
|
|
return I->second;
|
|
|
|
// This is a new forward reference. Generate a unique name for it
|
|
std::string result(std::string("fwdref_") + utostr(uniqueNum++));
|
|
|
|
// Yes, this is a hack. An Argument is the smallest instantiable value that
|
|
// we can make as a placeholder for the real value. We'll replace these
|
|
// Argument instances later.
|
|
Out << "Argument* " << result << " = new Argument("
|
|
<< getCppName(V->getType()) << ");";
|
|
nl(Out);
|
|
ForwardRefs[V] = result;
|
|
return result;
|
|
}
|
|
|
|
// printInstruction - This member is called for each Instruction in a function.
|
|
void
|
|
CppWriter::printInstruction(const Instruction *I, const std::string& bbname) {
|
|
std::string iName(getCppName(I));
|
|
|
|
// Before we emit this instruction, we need to take care of generating any
|
|
// forward references. So, we get the names of all the operands in advance
|
|
std::string* opNames = new std::string[I->getNumOperands()];
|
|
for (unsigned i = 0; i < I->getNumOperands(); i++) {
|
|
opNames[i] = getOpName(I->getOperand(i));
|
|
}
|
|
|
|
switch (I->getOpcode()) {
|
|
case Instruction::Ret: {
|
|
const ReturnInst* ret = cast<ReturnInst>(I);
|
|
Out << "ReturnInst* " << iName << " = new ReturnInst("
|
|
<< (ret->getReturnValue() ? opNames[0] + ", " : "") << bbname << ");";
|
|
break;
|
|
}
|
|
case Instruction::Br: {
|
|
const BranchInst* br = cast<BranchInst>(I);
|
|
Out << "BranchInst* " << iName << " = new BranchInst(" ;
|
|
if (br->getNumOperands() == 3 ) {
|
|
Out << opNames[0] << ", "
|
|
<< opNames[1] << ", "
|
|
<< opNames[2] << ", ";
|
|
|
|
} else if (br->getNumOperands() == 1) {
|
|
Out << opNames[0] << ", ";
|
|
} else {
|
|
error("Branch with 2 operands?");
|
|
}
|
|
Out << bbname << ");";
|
|
break;
|
|
}
|
|
case Instruction::Switch: {
|
|
const SwitchInst* sw = cast<SwitchInst>(I);
|
|
Out << "SwitchInst* " << iName << " = new SwitchInst("
|
|
<< opNames[0] << ", "
|
|
<< opNames[1] << ", "
|
|
<< sw->getNumCases() << ", " << bbname << ");";
|
|
nl(Out);
|
|
for (unsigned i = 2; i < sw->getNumOperands(); i += 2 ) {
|
|
Out << iName << "->addCase("
|
|
<< opNames[i] << ", "
|
|
<< opNames[i+1] << ");";
|
|
nl(Out);
|
|
}
|
|
break;
|
|
}
|
|
case Instruction::Invoke: {
|
|
const InvokeInst* inv = cast<InvokeInst>(I);
|
|
Out << "std::vector<Value*> " << iName << "_params;";
|
|
nl(Out);
|
|
for (unsigned i = 3; i < inv->getNumOperands(); ++i) {
|
|
Out << iName << "_params.push_back("
|
|
<< opNames[i] << ");";
|
|
nl(Out);
|
|
}
|
|
Out << "InvokeInst* " << iName << " = new InvokeInst("
|
|
<< opNames[0] << ", "
|
|
<< opNames[1] << ", "
|
|
<< opNames[2] << ", "
|
|
<< iName << "_params, \"";
|
|
printEscapedString(inv->getName());
|
|
Out << "\", " << bbname << ");";
|
|
nl(Out) << iName << "->setCallingConv(";
|
|
printCallingConv(inv->getCallingConv());
|
|
Out << ");";
|
|
break;
|
|
}
|
|
case Instruction::Unwind: {
|
|
Out << "UnwindInst* " << iName << " = new UnwindInst("
|
|
<< bbname << ");";
|
|
break;
|
|
}
|
|
case Instruction::Unreachable:{
|
|
Out << "UnreachableInst* " << iName << " = new UnreachableInst("
|
|
<< bbname << ");";
|
|
break;
|
|
}
|
|
case Instruction::Add:
|
|
case Instruction::Sub:
|
|
case Instruction::Mul:
|
|
case Instruction::Div:
|
|
case Instruction::Rem:
|
|
case Instruction::And:
|
|
case Instruction::Or:
|
|
case Instruction::Xor:
|
|
case Instruction::Shl:
|
|
case Instruction::Shr:{
|
|
Out << "BinaryOperator* " << iName << " = BinaryOperator::create(";
|
|
switch (I->getOpcode()) {
|
|
case Instruction::Add: Out << "Instruction::Add"; break;
|
|
case Instruction::Sub: Out << "Instruction::Sub"; break;
|
|
case Instruction::Mul: Out << "Instruction::Mul"; break;
|
|
case Instruction::Div: Out << "Instruction::Div"; break;
|
|
case Instruction::Rem: Out << "Instruction::Rem"; break;
|
|
case Instruction::And: Out << "Instruction::And"; break;
|
|
case Instruction::Or: Out << "Instruction::Or"; break;
|
|
case Instruction::Xor: Out << "Instruction::Xor"; break;
|
|
case Instruction::Shl: Out << "Instruction::Shl"; break;
|
|
case Instruction::Shr: Out << "Instruction::Shr"; break;
|
|
default: Out << "Instruction::BadOpCode"; break;
|
|
}
|
|
Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
|
|
printEscapedString(I->getName());
|
|
Out << "\", " << bbname << ");";
|
|
break;
|
|
}
|
|
case Instruction::SetEQ:
|
|
case Instruction::SetNE:
|
|
case Instruction::SetLE:
|
|
case Instruction::SetGE:
|
|
case Instruction::SetLT:
|
|
case Instruction::SetGT: {
|
|
Out << "SetCondInst* " << iName << " = new SetCondInst(";
|
|
switch (I->getOpcode()) {
|
|
case Instruction::SetEQ: Out << "Instruction::SetEQ"; break;
|
|
case Instruction::SetNE: Out << "Instruction::SetNE"; break;
|
|
case Instruction::SetLE: Out << "Instruction::SetLE"; break;
|
|
case Instruction::SetGE: Out << "Instruction::SetGE"; break;
|
|
case Instruction::SetLT: Out << "Instruction::SetLT"; break;
|
|
case Instruction::SetGT: Out << "Instruction::SetGT"; break;
|
|
default: Out << "Instruction::BadOpCode"; break;
|
|
}
|
|
Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
|
|
printEscapedString(I->getName());
|
|
Out << "\", " << bbname << ");";
|
|
break;
|
|
}
|
|
case Instruction::Malloc: {
|
|
const MallocInst* mallocI = cast<MallocInst>(I);
|
|
Out << "MallocInst* " << iName << " = new MallocInst("
|
|
<< getCppName(mallocI->getAllocatedType()) << ", ";
|
|
if (mallocI->isArrayAllocation())
|
|
Out << opNames[0] << ", " ;
|
|
Out << "\"";
|
|
printEscapedString(mallocI->getName());
|
|
Out << "\", " << bbname << ");";
|
|
if (mallocI->getAlignment())
|
|
nl(Out) << iName << "->setAlignment("
|
|
<< mallocI->getAlignment() << ");";
|
|
break;
|
|
}
|
|
case Instruction::Free: {
|
|
Out << "FreeInst* " << iName << " = new FreeInst("
|
|
<< getCppName(I->getOperand(0)) << ", " << bbname << ");";
|
|
break;
|
|
}
|
|
case Instruction::Alloca: {
|
|
const AllocaInst* allocaI = cast<AllocaInst>(I);
|
|
Out << "AllocaInst* " << iName << " = new AllocaInst("
|
|
<< getCppName(allocaI->getAllocatedType()) << ", ";
|
|
if (allocaI->isArrayAllocation())
|
|
Out << opNames[0] << ", ";
|
|
Out << "\"";
|
|
printEscapedString(allocaI->getName());
|
|
Out << "\", " << bbname << ");";
|
|
if (allocaI->getAlignment())
|
|
nl(Out) << iName << "->setAlignment("
|
|
<< allocaI->getAlignment() << ");";
|
|
break;
|
|
}
|
|
case Instruction::Load:{
|
|
const LoadInst* load = cast<LoadInst>(I);
|
|
Out << "LoadInst* " << iName << " = new LoadInst("
|
|
<< opNames[0] << ", \"";
|
|
printEscapedString(load->getName());
|
|
Out << "\", " << (load->isVolatile() ? "true" : "false" )
|
|
<< ", " << bbname << ");";
|
|
break;
|
|
}
|
|
case Instruction::Store: {
|
|
const StoreInst* store = cast<StoreInst>(I);
|
|
Out << "StoreInst* " << iName << " = new StoreInst("
|
|
<< opNames[0] << ", "
|
|
<< opNames[1] << ", "
|
|
<< (store->isVolatile() ? "true" : "false")
|
|
<< ", " << bbname << ");";
|
|
break;
|
|
}
|
|
case Instruction::GetElementPtr: {
|
|
const GetElementPtrInst* gep = cast<GetElementPtrInst>(I);
|
|
if (gep->getNumOperands() <= 2) {
|
|
Out << "GetElementPtrInst* " << iName << " = new GetElementPtrInst("
|
|
<< opNames[0];
|
|
if (gep->getNumOperands() == 2)
|
|
Out << ", " << opNames[1];
|
|
} else {
|
|
Out << "std::vector<Value*> " << iName << "_indices;";
|
|
nl(Out);
|
|
for (unsigned i = 1; i < gep->getNumOperands(); ++i ) {
|
|
Out << iName << "_indices.push_back("
|
|
<< opNames[i] << ");";
|
|
nl(Out);
|
|
}
|
|
Out << "Instruction* " << iName << " = new GetElementPtrInst("
|
|
<< opNames[0] << ", " << iName << "_indices";
|
|
}
|
|
Out << ", \"";
|
|
printEscapedString(gep->getName());
|
|
Out << "\", " << bbname << ");";
|
|
break;
|
|
}
|
|
case Instruction::PHI: {
|
|
const PHINode* phi = cast<PHINode>(I);
|
|
|
|
Out << "PHINode* " << iName << " = new PHINode("
|
|
<< getCppName(phi->getType()) << ", \"";
|
|
printEscapedString(phi->getName());
|
|
Out << "\", " << bbname << ");";
|
|
nl(Out) << iName << "->reserveOperandSpace("
|
|
<< phi->getNumIncomingValues()
|
|
<< ");";
|
|
nl(Out);
|
|
for (unsigned i = 0; i < phi->getNumOperands(); i+=2) {
|
|
Out << iName << "->addIncoming("
|
|
<< opNames[i] << ", " << opNames[i+1] << ");";
|
|
nl(Out);
|
|
}
|
|
break;
|
|
}
|
|
case Instruction::Cast: {
|
|
const CastInst* cst = cast<CastInst>(I);
|
|
Out << "CastInst* " << iName << " = new CastInst("
|
|
<< opNames[0] << ", "
|
|
<< getCppName(cst->getType()) << ", \"";
|
|
printEscapedString(cst->getName());
|
|
Out << "\", " << bbname << ");";
|
|
break;
|
|
}
|
|
case Instruction::Call:{
|
|
const CallInst* call = cast<CallInst>(I);
|
|
if (InlineAsm* ila = dyn_cast<InlineAsm>(call->getOperand(0))) {
|
|
Out << "InlineAsm* " << getCppName(ila) << " = InlineAsm::get("
|
|
<< getCppName(ila->getFunctionType()) << ", \""
|
|
<< ila->getAsmString() << "\", \""
|
|
<< ila->getConstraintString() << "\","
|
|
<< (ila->hasSideEffects() ? "true" : "false") << ");";
|
|
nl(Out);
|
|
}
|
|
if (call->getNumOperands() > 3) {
|
|
Out << "std::vector<Value*> " << iName << "_params;";
|
|
nl(Out);
|
|
for (unsigned i = 1; i < call->getNumOperands(); ++i) {
|
|
Out << iName << "_params.push_back(" << opNames[i] << ");";
|
|
nl(Out);
|
|
}
|
|
Out << "CallInst* " << iName << " = new CallInst("
|
|
<< opNames[0] << ", " << iName << "_params, \"";
|
|
} else if (call->getNumOperands() == 3) {
|
|
Out << "CallInst* " << iName << " = new CallInst("
|
|
<< opNames[0] << ", " << opNames[1] << ", " << opNames[2] << ", \"";
|
|
} else if (call->getNumOperands() == 2) {
|
|
Out << "CallInst* " << iName << " = new CallInst("
|
|
<< opNames[0] << ", " << opNames[1] << ", \"";
|
|
} else {
|
|
Out << "CallInst* " << iName << " = new CallInst(" << opNames[0]
|
|
<< ", \"";
|
|
}
|
|
printEscapedString(call->getName());
|
|
Out << "\", " << bbname << ");";
|
|
nl(Out) << iName << "->setCallingConv(";
|
|
printCallingConv(call->getCallingConv());
|
|
Out << ");";
|
|
nl(Out) << iName << "->setTailCall("
|
|
<< (call->isTailCall() ? "true":"false");
|
|
Out << ");";
|
|
break;
|
|
}
|
|
case Instruction::Select: {
|
|
const SelectInst* sel = cast<SelectInst>(I);
|
|
Out << "SelectInst* " << getCppName(sel) << " = new SelectInst(";
|
|
Out << opNames[0] << ", " << opNames[1] << ", " << opNames[2] << ", \"";
|
|
printEscapedString(sel->getName());
|
|
Out << "\", " << bbname << ");";
|
|
break;
|
|
}
|
|
case Instruction::UserOp1:
|
|
/// FALL THROUGH
|
|
case Instruction::UserOp2: {
|
|
/// FIXME: What should be done here?
|
|
break;
|
|
}
|
|
case Instruction::VAArg: {
|
|
const VAArgInst* va = cast<VAArgInst>(I);
|
|
Out << "VAArgInst* " << getCppName(va) << " = new VAArgInst("
|
|
<< opNames[0] << ", " << getCppName(va->getType()) << ", \"";
|
|
printEscapedString(va->getName());
|
|
Out << "\", " << bbname << ");";
|
|
break;
|
|
}
|
|
case Instruction::ExtractElement: {
|
|
const ExtractElementInst* eei = cast<ExtractElementInst>(I);
|
|
Out << "ExtractElementInst* " << getCppName(eei)
|
|
<< " = new ExtractElementInst(" << opNames[0]
|
|
<< ", " << opNames[1] << ", \"";
|
|
printEscapedString(eei->getName());
|
|
Out << "\", " << bbname << ");";
|
|
break;
|
|
}
|
|
case Instruction::InsertElement: {
|
|
const InsertElementInst* iei = cast<InsertElementInst>(I);
|
|
Out << "InsertElementInst* " << getCppName(iei)
|
|
<< " = new InsertElementInst(" << opNames[0]
|
|
<< ", " << opNames[1] << ", " << opNames[2] << ", \"";
|
|
printEscapedString(iei->getName());
|
|
Out << "\", " << bbname << ");";
|
|
break;
|
|
}
|
|
case Instruction::ShuffleVector: {
|
|
const ShuffleVectorInst* svi = cast<ShuffleVectorInst>(I);
|
|
Out << "ShuffleVectorInst* " << getCppName(svi)
|
|
<< " = new ShuffleVectorInst(" << opNames[0]
|
|
<< ", " << opNames[1] << ", " << opNames[2] << ", \"";
|
|
printEscapedString(svi->getName());
|
|
Out << "\", " << bbname << ");";
|
|
break;
|
|
}
|
|
}
|
|
DefinedValues.insert(I);
|
|
nl(Out);
|
|
delete [] opNames;
|
|
}
|
|
|
|
// Print out the types, constants and declarations needed by one function
|
|
void CppWriter::printFunctionUses(const Function* F) {
|
|
|
|
nl(Out) << "// Type Definitions"; nl(Out);
|
|
if (!is_inline) {
|
|
// Print the function's return type
|
|
printType(F->getReturnType());
|
|
|
|
// Print the function's function type
|
|
printType(F->getFunctionType());
|
|
|
|
// Print the types of each of the function's arguments
|
|
for(Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
|
|
AI != AE; ++AI) {
|
|
printType(AI->getType());
|
|
}
|
|
}
|
|
|
|
// Print type definitions for every type referenced by an instruction and
|
|
// make a note of any global values or constants that are referenced
|
|
std::vector<GlobalValue*> gvs;
|
|
std::vector<Constant*> consts;
|
|
for (Function::const_iterator BB = F->begin(), BE = F->end(); BB != BE; ++BB){
|
|
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
|
|
I != E; ++I) {
|
|
// Print the type of the instruction itself
|
|
printType(I->getType());
|
|
|
|
// Print the type of each of the instruction's operands
|
|
for (unsigned i = 0; i < I->getNumOperands(); ++i) {
|
|
Value* operand = I->getOperand(i);
|
|
printType(operand->getType());
|
|
if (GlobalValue* GV = dyn_cast<GlobalValue>(operand))
|
|
gvs.push_back(GV);
|
|
else if (Constant* C = dyn_cast<Constant>(operand))
|
|
consts.push_back(C);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Print the function declarations for any functions encountered
|
|
nl(Out) << "// Function Declarations"; nl(Out);
|
|
for (std::vector<GlobalValue*>::iterator I = gvs.begin(), E = gvs.end();
|
|
I != E; ++I) {
|
|
if (Function* Fun = dyn_cast<Function>(*I)) {
|
|
if (!is_inline || Fun != F)
|
|
printFunctionHead(Fun);
|
|
}
|
|
}
|
|
|
|
// Print the global variable declarations for any variables encountered
|
|
nl(Out) << "// Global Variable Declarations"; nl(Out);
|
|
for (std::vector<GlobalValue*>::iterator I = gvs.begin(), E = gvs.end();
|
|
I != E; ++I) {
|
|
if (GlobalVariable* F = dyn_cast<GlobalVariable>(*I))
|
|
printVariableHead(F);
|
|
}
|
|
|
|
// Print the constants found
|
|
nl(Out) << "// Constant Definitions"; nl(Out);
|
|
for (std::vector<Constant*>::iterator I = consts.begin(), E = consts.end();
|
|
I != E; ++I) {
|
|
printConstant(*I);
|
|
}
|
|
|
|
// Process the global variables definitions now that all the constants have
|
|
// been emitted. These definitions just couple the gvars with their constant
|
|
// initializers.
|
|
nl(Out) << "// Global Variable Definitions"; nl(Out);
|
|
for (std::vector<GlobalValue*>::iterator I = gvs.begin(), E = gvs.end();
|
|
I != E; ++I) {
|
|
if (GlobalVariable* GV = dyn_cast<GlobalVariable>(*I))
|
|
printVariableBody(GV);
|
|
}
|
|
}
|
|
|
|
void CppWriter::printFunctionHead(const Function* F) {
|
|
nl(Out) << "Function* " << getCppName(F);
|
|
if (is_inline) {
|
|
Out << " = mod->getFunction(\"";
|
|
printEscapedString(F->getName());
|
|
Out << "\", " << getCppName(F->getFunctionType()) << ");";
|
|
nl(Out) << "if (!" << getCppName(F) << ") {";
|
|
nl(Out) << getCppName(F);
|
|
}
|
|
Out<< " = new Function(";
|
|
nl(Out,1) << "/*Type=*/" << getCppName(F->getFunctionType()) << ",";
|
|
nl(Out) << "/*Linkage=*/";
|
|
printLinkageType(F->getLinkage());
|
|
Out << ",";
|
|
nl(Out) << "/*Name=*/\"";
|
|
printEscapedString(F->getName());
|
|
Out << "\", mod); " << (F->isExternal()? "// (external, no body)" : "");
|
|
nl(Out,-1);
|
|
printCppName(F);
|
|
Out << "->setCallingConv(";
|
|
printCallingConv(F->getCallingConv());
|
|
Out << ");";
|
|
nl(Out);
|
|
if (F->hasSection()) {
|
|
printCppName(F);
|
|
Out << "->setSection(\"" << F->getSection() << "\");";
|
|
nl(Out);
|
|
}
|
|
if (F->getAlignment()) {
|
|
printCppName(F);
|
|
Out << "->setAlignment(" << F->getAlignment() << ");";
|
|
nl(Out);
|
|
}
|
|
if (is_inline) {
|
|
Out << "}";
|
|
nl(Out);
|
|
}
|
|
}
|
|
|
|
void CppWriter::printFunctionBody(const Function *F) {
|
|
if (F->isExternal())
|
|
return; // external functions have no bodies.
|
|
|
|
// Clear the DefinedValues and ForwardRefs maps because we can't have
|
|
// cross-function forward refs
|
|
ForwardRefs.clear();
|
|
DefinedValues.clear();
|
|
|
|
// Create all the argument values
|
|
if (!is_inline) {
|
|
if (!F->arg_empty()) {
|
|
Out << "Function::arg_iterator args = " << getCppName(F)
|
|
<< "->arg_begin();";
|
|
nl(Out);
|
|
}
|
|
for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
|
|
AI != AE; ++AI) {
|
|
Out << "Value* " << getCppName(AI) << " = args++;";
|
|
nl(Out);
|
|
if (AI->hasName()) {
|
|
Out << getCppName(AI) << "->setName(\"" << AI->getName() << "\");";
|
|
nl(Out);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Create all the basic blocks
|
|
nl(Out);
|
|
for (Function::const_iterator BI = F->begin(), BE = F->end();
|
|
BI != BE; ++BI) {
|
|
std::string bbname(getCppName(BI));
|
|
Out << "BasicBlock* " << bbname << " = new BasicBlock(\"";
|
|
if (BI->hasName())
|
|
printEscapedString(BI->getName());
|
|
Out << "\"," << getCppName(BI->getParent()) << ",0);";
|
|
nl(Out);
|
|
}
|
|
|
|
// Output all of its basic blocks... for the function
|
|
for (Function::const_iterator BI = F->begin(), BE = F->end();
|
|
BI != BE; ++BI) {
|
|
std::string bbname(getCppName(BI));
|
|
nl(Out) << "// Block " << BI->getName() << " (" << bbname << ")";
|
|
nl(Out);
|
|
|
|
// Output all of the instructions in the basic block...
|
|
for (BasicBlock::const_iterator I = BI->begin(), E = BI->end();
|
|
I != E; ++I) {
|
|
printInstruction(I,bbname);
|
|
}
|
|
}
|
|
|
|
// Loop over the ForwardRefs and resolve them now that all instructions
|
|
// are generated.
|
|
if (!ForwardRefs.empty()) {
|
|
nl(Out) << "// Resolve Forward References";
|
|
nl(Out);
|
|
}
|
|
|
|
while (!ForwardRefs.empty()) {
|
|
ForwardRefMap::iterator I = ForwardRefs.begin();
|
|
Out << I->second << "->replaceAllUsesWith("
|
|
<< getCppName(I->first) << "); delete " << I->second << ";";
|
|
nl(Out);
|
|
ForwardRefs.erase(I);
|
|
}
|
|
}
|
|
|
|
void CppWriter::printInline(const std::string& fname, const std::string& func) {
|
|
const Function* F = TheModule->getNamedFunction(func);
|
|
if (!F) {
|
|
error(std::string("Function '") + func + "' not found in input module");
|
|
return;
|
|
}
|
|
if (F->isExternal()) {
|
|
error(std::string("Function '") + func + "' is external!");
|
|
return;
|
|
}
|
|
nl(Out) << "BasicBlock* " << fname << "(Module* mod, Function *"
|
|
<< getCppName(F);
|
|
unsigned arg_count = 1;
|
|
for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
|
|
AI != AE; ++AI) {
|
|
Out << ", Value* arg_" << arg_count;
|
|
}
|
|
Out << ") {";
|
|
nl(Out);
|
|
is_inline = true;
|
|
printFunctionUses(F);
|
|
printFunctionBody(F);
|
|
is_inline = false;
|
|
Out << "return " << getCppName(F->begin()) << ";";
|
|
nl(Out) << "}";
|
|
nl(Out);
|
|
}
|
|
|
|
void CppWriter::printModuleBody() {
|
|
// Print out all the type definitions
|
|
nl(Out) << "// Type Definitions"; nl(Out);
|
|
printTypes(TheModule);
|
|
|
|
// Functions can call each other and global variables can reference them so
|
|
// define all the functions first before emitting their function bodies.
|
|
nl(Out) << "// Function Declarations"; nl(Out);
|
|
for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
|
|
I != E; ++I)
|
|
printFunctionHead(I);
|
|
|
|
// Process the global variables declarations. We can't initialze them until
|
|
// after the constants are printed so just print a header for each global
|
|
nl(Out) << "// Global Variable Declarations\n"; nl(Out);
|
|
for (Module::const_global_iterator I = TheModule->global_begin(),
|
|
E = TheModule->global_end(); I != E; ++I) {
|
|
printVariableHead(I);
|
|
}
|
|
|
|
// Print out all the constants definitions. Constants don't recurse except
|
|
// through GlobalValues. All GlobalValues have been declared at this point
|
|
// so we can proceed to generate the constants.
|
|
nl(Out) << "// Constant Definitions"; nl(Out);
|
|
printConstants(TheModule);
|
|
|
|
// Process the global variables definitions now that all the constants have
|
|
// been emitted. These definitions just couple the gvars with their constant
|
|
// initializers.
|
|
nl(Out) << "// Global Variable Definitions"; nl(Out);
|
|
for (Module::const_global_iterator I = TheModule->global_begin(),
|
|
E = TheModule->global_end(); I != E; ++I) {
|
|
printVariableBody(I);
|
|
}
|
|
|
|
// Finally, we can safely put out all of the function bodies.
|
|
nl(Out) << "// Function Definitions"; nl(Out);
|
|
for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
|
|
I != E; ++I) {
|
|
if (!I->isExternal()) {
|
|
nl(Out) << "// Function: " << I->getName() << " (" << getCppName(I)
|
|
<< ")";
|
|
nl(Out) << "{";
|
|
nl(Out,1);
|
|
printFunctionBody(I);
|
|
nl(Out,-1) << "}";
|
|
nl(Out);
|
|
}
|
|
}
|
|
}
|
|
|
|
void CppWriter::printProgram(
|
|
const std::string& fname,
|
|
const std::string& mName
|
|
) {
|
|
Out << "#include <llvm/Module.h>\n";
|
|
Out << "#include <llvm/DerivedTypes.h>\n";
|
|
Out << "#include <llvm/Constants.h>\n";
|
|
Out << "#include <llvm/GlobalVariable.h>\n";
|
|
Out << "#include <llvm/Function.h>\n";
|
|
Out << "#include <llvm/CallingConv.h>\n";
|
|
Out << "#include <llvm/BasicBlock.h>\n";
|
|
Out << "#include <llvm/Instructions.h>\n";
|
|
Out << "#include <llvm/InlineAsm.h>\n";
|
|
Out << "#include <llvm/Support/MathExtras.h>\n";
|
|
Out << "#include <llvm/Pass.h>\n";
|
|
Out << "#include <llvm/PassManager.h>\n";
|
|
Out << "#include <llvm/Analysis/Verifier.h>\n";
|
|
Out << "#include <llvm/Assembly/PrintModulePass.h>\n";
|
|
Out << "#include <algorithm>\n";
|
|
Out << "#include <iostream>\n\n";
|
|
Out << "using namespace llvm;\n\n";
|
|
Out << "Module* " << fname << "();\n\n";
|
|
Out << "int main(int argc, char**argv) {\n";
|
|
Out << " Module* Mod = makeLLVMModule();\n";
|
|
Out << " verifyModule(*Mod, PrintMessageAction);\n";
|
|
Out << " std::cerr.flush();\n";
|
|
Out << " std::cout.flush();\n";
|
|
Out << " PassManager PM;\n";
|
|
Out << " PM.add(new PrintModulePass(&std::cout));\n";
|
|
Out << " PM.run(*Mod);\n";
|
|
Out << " return 0;\n";
|
|
Out << "}\n\n";
|
|
printModule(fname,mName);
|
|
}
|
|
|
|
void CppWriter::printModule(
|
|
const std::string& fname,
|
|
const std::string& mName
|
|
) {
|
|
nl(Out) << "Module* " << fname << "() {";
|
|
nl(Out,1) << "// Module Construction";
|
|
nl(Out) << "Module* mod = new Module(\"" << mName << "\");";
|
|
nl(Out) << "mod->setEndianness(";
|
|
switch (TheModule->getEndianness()) {
|
|
case Module::LittleEndian: Out << "Module::LittleEndian);"; break;
|
|
case Module::BigEndian: Out << "Module::BigEndian);"; break;
|
|
case Module::AnyEndianness:Out << "Module::AnyEndianness);"; break;
|
|
}
|
|
nl(Out) << "mod->setPointerSize(";
|
|
switch (TheModule->getPointerSize()) {
|
|
case Module::Pointer32: Out << "Module::Pointer32);"; break;
|
|
case Module::Pointer64: Out << "Module::Pointer64);"; break;
|
|
case Module::AnyPointerSize: Out << "Module::AnyPointerSize);"; break;
|
|
}
|
|
nl(Out);
|
|
if (!TheModule->getTargetTriple().empty()) {
|
|
Out << "mod->setTargetTriple(\"" << TheModule->getTargetTriple()
|
|
<< "\");";
|
|
nl(Out);
|
|
}
|
|
|
|
if (!TheModule->getModuleInlineAsm().empty()) {
|
|
Out << "mod->setModuleInlineAsm(\"";
|
|
printEscapedString(TheModule->getModuleInlineAsm());
|
|
Out << "\");";
|
|
nl(Out);
|
|
}
|
|
|
|
// Loop over the dependent libraries and emit them.
|
|
Module::lib_iterator LI = TheModule->lib_begin();
|
|
Module::lib_iterator LE = TheModule->lib_end();
|
|
while (LI != LE) {
|
|
Out << "mod->addLibrary(\"" << *LI << "\");";
|
|
nl(Out);
|
|
++LI;
|
|
}
|
|
printModuleBody();
|
|
nl(Out) << "return mod;";
|
|
nl(Out,-1) << "}";
|
|
nl(Out);
|
|
}
|
|
|
|
void CppWriter::printContents(
|
|
const std::string& fname, // Name of generated function
|
|
const std::string& mName // Name of module generated module
|
|
) {
|
|
Out << "\nModule* " << fname << "(Module *mod) {\n";
|
|
Out << "\nmod->setModuleIdentifier(\"" << mName << "\");\n";
|
|
printModuleBody();
|
|
Out << "\nreturn mod;\n";
|
|
Out << "\n}\n";
|
|
}
|
|
|
|
void CppWriter::printFunction(
|
|
const std::string& fname, // Name of generated function
|
|
const std::string& funcName // Name of function to generate
|
|
) {
|
|
const Function* F = TheModule->getNamedFunction(funcName);
|
|
if (!F) {
|
|
error(std::string("Function '") + funcName + "' not found in input module");
|
|
return;
|
|
}
|
|
Out << "\nFunction* " << fname << "(Module *mod) {\n";
|
|
printFunctionUses(F);
|
|
printFunctionHead(F);
|
|
printFunctionBody(F);
|
|
Out << "return " << getCppName(F) << ";\n";
|
|
Out << "}\n";
|
|
}
|
|
|
|
void CppWriter::printVariable(
|
|
const std::string& fname, /// Name of generated function
|
|
const std::string& varName // Name of variable to generate
|
|
) {
|
|
const GlobalVariable* GV = TheModule->getNamedGlobal(varName);
|
|
|
|
if (!GV) {
|
|
error(std::string("Variable '") + varName + "' not found in input module");
|
|
return;
|
|
}
|
|
Out << "\nGlobalVariable* " << fname << "(Module *mod) {\n";
|
|
printVariableUses(GV);
|
|
printVariableHead(GV);
|
|
printVariableBody(GV);
|
|
Out << "return " << getCppName(GV) << ";\n";
|
|
Out << "}\n";
|
|
}
|
|
|
|
void CppWriter::printType(
|
|
const std::string& fname, /// Name of generated function
|
|
const std::string& typeName // Name of type to generate
|
|
) {
|
|
const Type* Ty = TheModule->getTypeByName(typeName);
|
|
if (!Ty) {
|
|
error(std::string("Type '") + typeName + "' not found in input module");
|
|
return;
|
|
}
|
|
Out << "\nType* " << fname << "(Module *mod) {\n";
|
|
printType(Ty);
|
|
Out << "return " << getCppName(Ty) << ";\n";
|
|
Out << "}\n";
|
|
}
|
|
|
|
} // end anonymous llvm
|
|
|
|
namespace llvm {
|
|
|
|
void WriteModuleToCppFile(Module* mod, std::ostream& o) {
|
|
// Initialize a CppWriter for us to use
|
|
CppWriter W(o, mod);
|
|
|
|
// Emit a header
|
|
o << "// Generated by llvm2cpp - DO NOT MODIFY!\n\n";
|
|
|
|
// Get the name of the function we're supposed to generate
|
|
std::string fname = FuncName.getValue();
|
|
|
|
// Get the name of the thing we are to generate
|
|
std::string tgtname = NameToGenerate.getValue();
|
|
if (GenerationType == GenModule ||
|
|
GenerationType == GenContents ||
|
|
GenerationType == GenProgram) {
|
|
if (tgtname == "!bad!") {
|
|
if (mod->getModuleIdentifier() == "-")
|
|
tgtname = "<stdin>";
|
|
else
|
|
tgtname = mod->getModuleIdentifier();
|
|
}
|
|
} else if (tgtname == "!bad!") {
|
|
W.error("You must use the -for option with -gen-{function,variable,type}");
|
|
}
|
|
|
|
switch (WhatToGenerate(GenerationType)) {
|
|
case GenProgram:
|
|
if (fname.empty())
|
|
fname = "makeLLVMModule";
|
|
W.printProgram(fname,tgtname);
|
|
break;
|
|
case GenModule:
|
|
if (fname.empty())
|
|
fname = "makeLLVMModule";
|
|
W.printModule(fname,tgtname);
|
|
break;
|
|
case GenContents:
|
|
if (fname.empty())
|
|
fname = "makeLLVMModuleContents";
|
|
W.printContents(fname,tgtname);
|
|
break;
|
|
case GenFunction:
|
|
if (fname.empty())
|
|
fname = "makeLLVMFunction";
|
|
W.printFunction(fname,tgtname);
|
|
break;
|
|
case GenInline:
|
|
if (fname.empty())
|
|
fname = "makeLLVMInline";
|
|
W.printInline(fname,tgtname);
|
|
break;
|
|
case GenVariable:
|
|
if (fname.empty())
|
|
fname = "makeLLVMVariable";
|
|
W.printVariable(fname,tgtname);
|
|
break;
|
|
case GenType:
|
|
if (fname.empty())
|
|
fname = "makeLLVMType";
|
|
W.printType(fname,tgtname);
|
|
break;
|
|
default:
|
|
W.error("Invalid generation option");
|
|
}
|
|
}
|
|
|
|
}
|