llvm-6502/lib/Target/X86/X86ISelLowering.cpp
Evan Cheng 0085a28d13 - Use a different wrapper node for RIP-relative GV, etc.
- Proper support for both small static and PIC modes under X86-64
- Some (non-optimal) support for medium modes.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@32046 91177308-0d34-0410-b5e6-96231b3b80d8
2006-11-30 21:55:46 +00:00

5660 lines
207 KiB
C++

//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that X86 uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//
#include "X86.h"
#include "X86InstrBuilder.h"
#include "X86ISelLowering.h"
#include "X86MachineFunctionInfo.h"
#include "X86TargetMachine.h"
#include "llvm/CallingConv.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/Intrinsics.h"
#include "llvm/ADT/VectorExtras.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/ADT/StringExtras.h"
using namespace llvm;
// FIXME: temporary.
static cl::opt<bool> EnableFastCC("enable-x86-fastcc", cl::Hidden,
cl::desc("Enable fastcc on X86"));
X86TargetLowering::X86TargetLowering(TargetMachine &TM)
: TargetLowering(TM) {
Subtarget = &TM.getSubtarget<X86Subtarget>();
X86ScalarSSE = Subtarget->hasSSE2();
X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
// Set up the TargetLowering object.
// X86 is weird, it always uses i8 for shift amounts and setcc results.
setShiftAmountType(MVT::i8);
setSetCCResultType(MVT::i8);
setSetCCResultContents(ZeroOrOneSetCCResult);
setSchedulingPreference(SchedulingForRegPressure);
setShiftAmountFlavor(Mask); // shl X, 32 == shl X, 0
setStackPointerRegisterToSaveRestore(X86StackPtr);
if (!Subtarget->isTargetDarwin())
// Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
setUseUnderscoreSetJmpLongJmp(true);
// Add legal addressing mode scale values.
addLegalAddressScale(8);
addLegalAddressScale(4);
addLegalAddressScale(2);
// Enter the ones which require both scale + index last. These are more
// expensive.
addLegalAddressScale(9);
addLegalAddressScale(5);
addLegalAddressScale(3);
// Set up the register classes.
addRegisterClass(MVT::i8, X86::GR8RegisterClass);
addRegisterClass(MVT::i16, X86::GR16RegisterClass);
addRegisterClass(MVT::i32, X86::GR32RegisterClass);
if (Subtarget->is64Bit())
addRegisterClass(MVT::i64, X86::GR64RegisterClass);
setLoadXAction(ISD::SEXTLOAD, MVT::i1, Expand);
// Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
// operation.
setOperationAction(ISD::UINT_TO_FP , MVT::i1 , Promote);
setOperationAction(ISD::UINT_TO_FP , MVT::i8 , Promote);
setOperationAction(ISD::UINT_TO_FP , MVT::i16 , Promote);
if (Subtarget->is64Bit()) {
setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Expand);
setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote);
} else {
if (X86ScalarSSE)
// If SSE i64 SINT_TO_FP is not available, expand i32 UINT_TO_FP.
setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Expand);
else
setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote);
}
// Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
// this operation.
setOperationAction(ISD::SINT_TO_FP , MVT::i1 , Promote);
setOperationAction(ISD::SINT_TO_FP , MVT::i8 , Promote);
// SSE has no i16 to fp conversion, only i32
if (X86ScalarSSE)
setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote);
else {
setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Custom);
setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom);
}
if (!Subtarget->is64Bit()) {
// Custom lower SINT_TO_FP and FP_TO_SINT from/to i64 in 32-bit mode.
setOperationAction(ISD::SINT_TO_FP , MVT::i64 , Custom);
setOperationAction(ISD::FP_TO_SINT , MVT::i64 , Custom);
}
// Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
// this operation.
setOperationAction(ISD::FP_TO_SINT , MVT::i1 , Promote);
setOperationAction(ISD::FP_TO_SINT , MVT::i8 , Promote);
if (X86ScalarSSE) {
setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Promote);
} else {
setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Custom);
setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom);
}
// Handle FP_TO_UINT by promoting the destination to a larger signed
// conversion.
setOperationAction(ISD::FP_TO_UINT , MVT::i1 , Promote);
setOperationAction(ISD::FP_TO_UINT , MVT::i8 , Promote);
setOperationAction(ISD::FP_TO_UINT , MVT::i16 , Promote);
if (Subtarget->is64Bit()) {
setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Expand);
setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote);
} else {
if (X86ScalarSSE && !Subtarget->hasSSE3())
// Expand FP_TO_UINT into a select.
// FIXME: We would like to use a Custom expander here eventually to do
// the optimal thing for SSE vs. the default expansion in the legalizer.
setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Expand);
else
// With SSE3 we can use fisttpll to convert to a signed i64.
setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote);
}
setOperationAction(ISD::BIT_CONVERT , MVT::f32 , Expand);
setOperationAction(ISD::BIT_CONVERT , MVT::i32 , Expand);
setOperationAction(ISD::BR_JT , MVT::Other, Expand);
setOperationAction(ISD::BRCOND , MVT::Other, Custom);
setOperationAction(ISD::BR_CC , MVT::Other, Expand);
setOperationAction(ISD::SELECT_CC , MVT::Other, Expand);
setOperationAction(ISD::MEMMOVE , MVT::Other, Expand);
if (Subtarget->is64Bit())
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16 , Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand);
setOperationAction(ISD::FP_ROUND_INREG , MVT::f32 , Expand);
setOperationAction(ISD::FREM , MVT::f64 , Expand);
setOperationAction(ISD::CTPOP , MVT::i8 , Expand);
setOperationAction(ISD::CTTZ , MVT::i8 , Expand);
setOperationAction(ISD::CTLZ , MVT::i8 , Expand);
setOperationAction(ISD::CTPOP , MVT::i16 , Expand);
setOperationAction(ISD::CTTZ , MVT::i16 , Expand);
setOperationAction(ISD::CTLZ , MVT::i16 , Expand);
setOperationAction(ISD::CTPOP , MVT::i32 , Expand);
setOperationAction(ISD::CTTZ , MVT::i32 , Expand);
setOperationAction(ISD::CTLZ , MVT::i32 , Expand);
if (Subtarget->is64Bit()) {
setOperationAction(ISD::CTPOP , MVT::i64 , Expand);
setOperationAction(ISD::CTTZ , MVT::i64 , Expand);
setOperationAction(ISD::CTLZ , MVT::i64 , Expand);
}
setOperationAction(ISD::READCYCLECOUNTER , MVT::i64 , Custom);
setOperationAction(ISD::BSWAP , MVT::i16 , Expand);
// These should be promoted to a larger select which is supported.
setOperationAction(ISD::SELECT , MVT::i1 , Promote);
setOperationAction(ISD::SELECT , MVT::i8 , Promote);
// X86 wants to expand cmov itself.
setOperationAction(ISD::SELECT , MVT::i16 , Custom);
setOperationAction(ISD::SELECT , MVT::i32 , Custom);
setOperationAction(ISD::SELECT , MVT::f32 , Custom);
setOperationAction(ISD::SELECT , MVT::f64 , Custom);
setOperationAction(ISD::SETCC , MVT::i8 , Custom);
setOperationAction(ISD::SETCC , MVT::i16 , Custom);
setOperationAction(ISD::SETCC , MVT::i32 , Custom);
setOperationAction(ISD::SETCC , MVT::f32 , Custom);
setOperationAction(ISD::SETCC , MVT::f64 , Custom);
if (Subtarget->is64Bit()) {
setOperationAction(ISD::SELECT , MVT::i64 , Custom);
setOperationAction(ISD::SETCC , MVT::i64 , Custom);
}
// X86 ret instruction may pop stack.
setOperationAction(ISD::RET , MVT::Other, Custom);
// Darwin ABI issue.
setOperationAction(ISD::ConstantPool , MVT::i32 , Custom);
setOperationAction(ISD::JumpTable , MVT::i32 , Custom);
setOperationAction(ISD::GlobalAddress , MVT::i32 , Custom);
setOperationAction(ISD::ExternalSymbol , MVT::i32 , Custom);
if (Subtarget->is64Bit()) {
setOperationAction(ISD::ConstantPool , MVT::i64 , Custom);
setOperationAction(ISD::JumpTable , MVT::i64 , Custom);
setOperationAction(ISD::GlobalAddress , MVT::i64 , Custom);
setOperationAction(ISD::ExternalSymbol, MVT::i64 , Custom);
}
// 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
setOperationAction(ISD::SHL_PARTS , MVT::i32 , Custom);
setOperationAction(ISD::SRA_PARTS , MVT::i32 , Custom);
setOperationAction(ISD::SRL_PARTS , MVT::i32 , Custom);
// X86 wants to expand memset / memcpy itself.
setOperationAction(ISD::MEMSET , MVT::Other, Custom);
setOperationAction(ISD::MEMCPY , MVT::Other, Custom);
// We don't have line number support yet.
setOperationAction(ISD::LOCATION, MVT::Other, Expand);
setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
// FIXME - use subtarget debug flags
if (!Subtarget->isTargetDarwin() &&
!Subtarget->isTargetELF() &&
!Subtarget->isTargetCygwin())
setOperationAction(ISD::DEBUG_LABEL, MVT::Other, Expand);
// VASTART needs to be custom lowered to use the VarArgsFrameIndex
setOperationAction(ISD::VASTART , MVT::Other, Custom);
// Use the default implementation.
setOperationAction(ISD::VAARG , MVT::Other, Expand);
setOperationAction(ISD::VACOPY , MVT::Other, Expand);
setOperationAction(ISD::VAEND , MVT::Other, Expand);
setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
if (Subtarget->is64Bit())
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Expand);
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
if (X86ScalarSSE) {
// Set up the FP register classes.
addRegisterClass(MVT::f32, X86::FR32RegisterClass);
addRegisterClass(MVT::f64, X86::FR64RegisterClass);
// Use ANDPD to simulate FABS.
setOperationAction(ISD::FABS , MVT::f64, Custom);
setOperationAction(ISD::FABS , MVT::f32, Custom);
// Use XORP to simulate FNEG.
setOperationAction(ISD::FNEG , MVT::f64, Custom);
setOperationAction(ISD::FNEG , MVT::f32, Custom);
// We don't support sin/cos/fmod
setOperationAction(ISD::FSIN , MVT::f64, Expand);
setOperationAction(ISD::FCOS , MVT::f64, Expand);
setOperationAction(ISD::FREM , MVT::f64, Expand);
setOperationAction(ISD::FSIN , MVT::f32, Expand);
setOperationAction(ISD::FCOS , MVT::f32, Expand);
setOperationAction(ISD::FREM , MVT::f32, Expand);
// Expand FP immediates into loads from the stack, except for the special
// cases we handle.
setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
addLegalFPImmediate(+0.0); // xorps / xorpd
} else {
// Set up the FP register classes.
addRegisterClass(MVT::f64, X86::RFPRegisterClass);
setOperationAction(ISD::UNDEF, MVT::f64, Expand);
if (!UnsafeFPMath) {
setOperationAction(ISD::FSIN , MVT::f64 , Expand);
setOperationAction(ISD::FCOS , MVT::f64 , Expand);
}
setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
addLegalFPImmediate(+0.0); // FLD0
addLegalFPImmediate(+1.0); // FLD1
addLegalFPImmediate(-0.0); // FLD0/FCHS
addLegalFPImmediate(-1.0); // FLD1/FCHS
}
// First set operation action for all vector types to expand. Then we
// will selectively turn on ones that can be effectively codegen'd.
for (unsigned VT = (unsigned)MVT::Vector + 1;
VT != (unsigned)MVT::LAST_VALUETYPE; VT++) {
setOperationAction(ISD::ADD , (MVT::ValueType)VT, Expand);
setOperationAction(ISD::SUB , (MVT::ValueType)VT, Expand);
setOperationAction(ISD::FADD, (MVT::ValueType)VT, Expand);
setOperationAction(ISD::FSUB, (MVT::ValueType)VT, Expand);
setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
setOperationAction(ISD::FMUL, (MVT::ValueType)VT, Expand);
setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Expand);
setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Expand);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
}
if (Subtarget->hasMMX()) {
addRegisterClass(MVT::v8i8, X86::VR64RegisterClass);
addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
// FIXME: add MMX packed arithmetics
setOperationAction(ISD::BUILD_VECTOR, MVT::v8i8, Expand);
setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Expand);
setOperationAction(ISD::BUILD_VECTOR, MVT::v2i32, Expand);
}
if (Subtarget->hasSSE1()) {
addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
setOperationAction(ISD::FADD, MVT::v4f32, Legal);
setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
setOperationAction(ISD::LOAD, MVT::v4f32, Legal);
setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f32, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
setOperationAction(ISD::SELECT, MVT::v4f32, Custom);
}
if (Subtarget->hasSSE2()) {
addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
setOperationAction(ISD::ADD, MVT::v16i8, Legal);
setOperationAction(ISD::ADD, MVT::v8i16, Legal);
setOperationAction(ISD::ADD, MVT::v4i32, Legal);
setOperationAction(ISD::SUB, MVT::v16i8, Legal);
setOperationAction(ISD::SUB, MVT::v8i16, Legal);
setOperationAction(ISD::SUB, MVT::v4i32, Legal);
setOperationAction(ISD::MUL, MVT::v8i16, Legal);
setOperationAction(ISD::FADD, MVT::v2f64, Legal);
setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Custom);
setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
// Implement v4f32 insert_vector_elt in terms of SSE2 v8i16 ones.
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
// Custom lower build_vector, vector_shuffle, and extract_vector_elt.
for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Custom);
}
setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
// Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
setOperationAction(ISD::AND, (MVT::ValueType)VT, Promote);
AddPromotedToType (ISD::AND, (MVT::ValueType)VT, MVT::v2i64);
setOperationAction(ISD::OR, (MVT::ValueType)VT, Promote);
AddPromotedToType (ISD::OR, (MVT::ValueType)VT, MVT::v2i64);
setOperationAction(ISD::XOR, (MVT::ValueType)VT, Promote);
AddPromotedToType (ISD::XOR, (MVT::ValueType)VT, MVT::v2i64);
setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Promote);
AddPromotedToType (ISD::LOAD, (MVT::ValueType)VT, MVT::v2i64);
setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v2i64);
}
// Custom lower v2i64 and v2f64 selects.
setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
setOperationAction(ISD::LOAD, MVT::v2i64, Legal);
setOperationAction(ISD::SELECT, MVT::v2f64, Custom);
setOperationAction(ISD::SELECT, MVT::v2i64, Custom);
}
// We want to custom lower some of our intrinsics.
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
// We have target-specific dag combine patterns for the following nodes:
setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
setTargetDAGCombine(ISD::SELECT);
computeRegisterProperties();
// FIXME: These should be based on subtarget info. Plus, the values should
// be smaller when we are in optimizing for size mode.
maxStoresPerMemset = 16; // For %llvm.memset -> sequence of stores
maxStoresPerMemcpy = 16; // For %llvm.memcpy -> sequence of stores
maxStoresPerMemmove = 16; // For %llvm.memmove -> sequence of stores
allowUnalignedMemoryAccesses = true; // x86 supports it!
}
//===----------------------------------------------------------------------===//
// C Calling Convention implementation
//===----------------------------------------------------------------------===//
/// AddLiveIn - This helper function adds the specified physical register to the
/// MachineFunction as a live in value. It also creates a corresponding virtual
/// register for it.
static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg,
TargetRegisterClass *RC) {
assert(RC->contains(PReg) && "Not the correct regclass!");
unsigned VReg = MF.getSSARegMap()->createVirtualRegister(RC);
MF.addLiveIn(PReg, VReg);
return VReg;
}
/// HowToPassCCCArgument - Returns how an formal argument of the specified type
/// should be passed. If it is through stack, returns the size of the stack
/// slot; if it is through XMM register, returns the number of XMM registers
/// are needed.
static void
HowToPassCCCArgument(MVT::ValueType ObjectVT, unsigned NumXMMRegs,
unsigned &ObjSize, unsigned &ObjXMMRegs) {
ObjXMMRegs = 0;
switch (ObjectVT) {
default: assert(0 && "Unhandled argument type!");
case MVT::i8: ObjSize = 1; break;
case MVT::i16: ObjSize = 2; break;
case MVT::i32: ObjSize = 4; break;
case MVT::i64: ObjSize = 8; break;
case MVT::f32: ObjSize = 4; break;
case MVT::f64: ObjSize = 8; break;
case MVT::v16i8:
case MVT::v8i16:
case MVT::v4i32:
case MVT::v2i64:
case MVT::v4f32:
case MVT::v2f64:
if (NumXMMRegs < 4)
ObjXMMRegs = 1;
else
ObjSize = 16;
break;
}
}
SDOperand X86TargetLowering::LowerCCCArguments(SDOperand Op, SelectionDAG &DAG) {
unsigned NumArgs = Op.Val->getNumValues() - 1;
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo *MFI = MF.getFrameInfo();
SDOperand Root = Op.getOperand(0);
std::vector<SDOperand> ArgValues;
// Add DAG nodes to load the arguments... On entry to a function on the X86,
// the stack frame looks like this:
//
// [ESP] -- return address
// [ESP + 4] -- first argument (leftmost lexically)
// [ESP + 8] -- second argument, if first argument is <= 4 bytes in size
// ...
//
unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot
unsigned NumXMMRegs = 0; // XMM regs used for parameter passing.
static const unsigned XMMArgRegs[] = {
X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
};
for (unsigned i = 0; i < NumArgs; ++i) {
MVT::ValueType ObjectVT = Op.getValue(i).getValueType();
unsigned ArgIncrement = 4;
unsigned ObjSize = 0;
unsigned ObjXMMRegs = 0;
HowToPassCCCArgument(ObjectVT, NumXMMRegs, ObjSize, ObjXMMRegs);
if (ObjSize > 4)
ArgIncrement = ObjSize;
SDOperand ArgValue;
if (ObjXMMRegs) {
// Passed in a XMM register.
unsigned Reg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs],
X86::VR128RegisterClass);
ArgValue= DAG.getCopyFromReg(Root, Reg, ObjectVT);
ArgValues.push_back(ArgValue);
NumXMMRegs += ObjXMMRegs;
} else {
// XMM arguments have to be aligned on 16-byte boundary.
if (ObjSize == 16)
ArgOffset = ((ArgOffset + 15) / 16) * 16;
// Create the frame index object for this incoming parameter...
int FI = MFI->CreateFixedObject(ObjSize, ArgOffset);
SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
ArgValue = DAG.getLoad(Op.Val->getValueType(i), Root, FIN, NULL, 0);
ArgValues.push_back(ArgValue);
ArgOffset += ArgIncrement; // Move on to the next argument...
}
}
ArgValues.push_back(Root);
// If the function takes variable number of arguments, make a frame index for
// the start of the first vararg value... for expansion of llvm.va_start.
bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
if (isVarArg)
VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
RegSaveFrameIndex = 0xAAAAAAA; // X86-64 only.
ReturnAddrIndex = 0; // No return address slot generated yet.
BytesToPopOnReturn = 0; // Callee pops nothing.
BytesCallerReserves = ArgOffset;
// If this is a struct return on, the callee pops the hidden struct
// pointer. This is common for Darwin/X86, Linux & Mingw32 targets.
if (MF.getFunction()->getCallingConv() == CallingConv::CSRet)
BytesToPopOnReturn = 4;
// Return the new list of results.
std::vector<MVT::ValueType> RetVTs(Op.Val->value_begin(),
Op.Val->value_end());
return DAG.getNode(ISD::MERGE_VALUES, RetVTs, &ArgValues[0],ArgValues.size());
}
SDOperand X86TargetLowering::LowerCCCCallTo(SDOperand Op, SelectionDAG &DAG) {
SDOperand Chain = Op.getOperand(0);
unsigned CallingConv= cast<ConstantSDNode>(Op.getOperand(1))->getValue();
bool isTailCall = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
SDOperand Callee = Op.getOperand(4);
MVT::ValueType RetVT= Op.Val->getValueType(0);
unsigned NumOps = (Op.getNumOperands() - 5) / 2;
// Keep track of the number of XMM regs passed so far.
unsigned NumXMMRegs = 0;
static const unsigned XMMArgRegs[] = {
X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
};
// Count how many bytes are to be pushed on the stack.
unsigned NumBytes = 0;
for (unsigned i = 0; i != NumOps; ++i) {
SDOperand Arg = Op.getOperand(5+2*i);
switch (Arg.getValueType()) {
default: assert(0 && "Unexpected ValueType for argument!");
case MVT::i8:
case MVT::i16:
case MVT::i32:
case MVT::f32:
NumBytes += 4;
break;
case MVT::i64:
case MVT::f64:
NumBytes += 8;
break;
case MVT::v16i8:
case MVT::v8i16:
case MVT::v4i32:
case MVT::v2i64:
case MVT::v4f32:
case MVT::v2f64:
if (NumXMMRegs < 4)
++NumXMMRegs;
else {
// XMM arguments have to be aligned on 16-byte boundary.
NumBytes = ((NumBytes + 15) / 16) * 16;
NumBytes += 16;
}
break;
}
}
Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
// Arguments go on the stack in reverse order, as specified by the ABI.
unsigned ArgOffset = 0;
NumXMMRegs = 0;
std::vector<std::pair<unsigned, SDOperand> > RegsToPass;
std::vector<SDOperand> MemOpChains;
SDOperand StackPtr = DAG.getRegister(X86StackPtr, getPointerTy());
for (unsigned i = 0; i != NumOps; ++i) {
SDOperand Arg = Op.getOperand(5+2*i);
switch (Arg.getValueType()) {
default: assert(0 && "Unexpected ValueType for argument!");
case MVT::i8:
case MVT::i16: {
// Promote the integer to 32 bits. If the input type is signed use a
// sign extend, otherwise use a zero extend.
unsigned ExtOp =
dyn_cast<ConstantSDNode>(Op.getOperand(5+2*i+1))->getValue() ?
ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
Arg = DAG.getNode(ExtOp, MVT::i32, Arg);
}
// Fallthrough
case MVT::i32:
case MVT::f32: {
SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
ArgOffset += 4;
break;
}
case MVT::i64:
case MVT::f64: {
SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
ArgOffset += 8;
break;
}
case MVT::v16i8:
case MVT::v8i16:
case MVT::v4i32:
case MVT::v2i64:
case MVT::v4f32:
case MVT::v2f64:
if (NumXMMRegs < 4) {
RegsToPass.push_back(std::make_pair(XMMArgRegs[NumXMMRegs], Arg));
NumXMMRegs++;
} else {
// XMM arguments have to be aligned on 16-byte boundary.
ArgOffset = ((ArgOffset + 15) / 16) * 16;
SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
ArgOffset += 16;
}
}
}
if (!MemOpChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
&MemOpChains[0], MemOpChains.size());
// Build a sequence of copy-to-reg nodes chained together with token chain
// and flag operands which copy the outgoing args into registers.
SDOperand InFlag;
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
InFlag);
InFlag = Chain.getValue(1);
}
// If the callee is a GlobalAddress node (quite common, every direct call is)
// turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
// We should use extra load for direct calls to dllimported functions
if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(), true))
Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
} else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
std::vector<MVT::ValueType> NodeTys;
NodeTys.push_back(MVT::Other); // Returns a chain
NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use.
std::vector<SDOperand> Ops;
Ops.push_back(Chain);
Ops.push_back(Callee);
// Add argument registers to the end of the list so that they are known live
// into the call.
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
Ops.push_back(DAG.getRegister(RegsToPass[i].first,
RegsToPass[i].second.getValueType()));
if (InFlag.Val)
Ops.push_back(InFlag);
Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
NodeTys, &Ops[0], Ops.size());
InFlag = Chain.getValue(1);
// Create the CALLSEQ_END node.
unsigned NumBytesForCalleeToPush = 0;
// If this is is a call to a struct-return function, the callee
// pops the hidden struct pointer, so we have to push it back.
// This is common for Darwin/X86, Linux & Mingw32 targets.
if (CallingConv == CallingConv::CSRet)
NumBytesForCalleeToPush = 4;
NodeTys.clear();
NodeTys.push_back(MVT::Other); // Returns a chain
if (RetVT != MVT::Other)
NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use.
Ops.clear();
Ops.push_back(Chain);
Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
Ops.push_back(DAG.getConstant(NumBytesForCalleeToPush, getPointerTy()));
Ops.push_back(InFlag);
Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
if (RetVT != MVT::Other)
InFlag = Chain.getValue(1);
std::vector<SDOperand> ResultVals;
NodeTys.clear();
switch (RetVT) {
default: assert(0 && "Unknown value type to return!");
case MVT::Other: break;
case MVT::i8:
Chain = DAG.getCopyFromReg(Chain, X86::AL, MVT::i8, InFlag).getValue(1);
ResultVals.push_back(Chain.getValue(0));
NodeTys.push_back(MVT::i8);
break;
case MVT::i16:
Chain = DAG.getCopyFromReg(Chain, X86::AX, MVT::i16, InFlag).getValue(1);
ResultVals.push_back(Chain.getValue(0));
NodeTys.push_back(MVT::i16);
break;
case MVT::i32:
if (Op.Val->getValueType(1) == MVT::i32) {
Chain = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag).getValue(1);
ResultVals.push_back(Chain.getValue(0));
Chain = DAG.getCopyFromReg(Chain, X86::EDX, MVT::i32,
Chain.getValue(2)).getValue(1);
ResultVals.push_back(Chain.getValue(0));
NodeTys.push_back(MVT::i32);
} else {
Chain = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag).getValue(1);
ResultVals.push_back(Chain.getValue(0));
}
NodeTys.push_back(MVT::i32);
break;
case MVT::v16i8:
case MVT::v8i16:
case MVT::v4i32:
case MVT::v2i64:
case MVT::v4f32:
case MVT::v2f64:
Chain = DAG.getCopyFromReg(Chain, X86::XMM0, RetVT, InFlag).getValue(1);
ResultVals.push_back(Chain.getValue(0));
NodeTys.push_back(RetVT);
break;
case MVT::f32:
case MVT::f64: {
std::vector<MVT::ValueType> Tys;
Tys.push_back(MVT::f64);
Tys.push_back(MVT::Other);
Tys.push_back(MVT::Flag);
std::vector<SDOperand> Ops;
Ops.push_back(Chain);
Ops.push_back(InFlag);
SDOperand RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys,
&Ops[0], Ops.size());
Chain = RetVal.getValue(1);
InFlag = RetVal.getValue(2);
if (X86ScalarSSE) {
// FIXME: Currently the FST is flagged to the FP_GET_RESULT. This
// shouldn't be necessary except that RFP cannot be live across
// multiple blocks. When stackifier is fixed, they can be uncoupled.
MachineFunction &MF = DAG.getMachineFunction();
int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
Tys.clear();
Tys.push_back(MVT::Other);
Ops.clear();
Ops.push_back(Chain);
Ops.push_back(RetVal);
Ops.push_back(StackSlot);
Ops.push_back(DAG.getValueType(RetVT));
Ops.push_back(InFlag);
Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
RetVal = DAG.getLoad(RetVT, Chain, StackSlot, NULL, 0);
Chain = RetVal.getValue(1);
}
if (RetVT == MVT::f32 && !X86ScalarSSE)
// FIXME: we would really like to remember that this FP_ROUND
// operation is okay to eliminate if we allow excess FP precision.
RetVal = DAG.getNode(ISD::FP_ROUND, MVT::f32, RetVal);
ResultVals.push_back(RetVal);
NodeTys.push_back(RetVT);
break;
}
}
// If the function returns void, just return the chain.
if (ResultVals.empty())
return Chain;
// Otherwise, merge everything together with a MERGE_VALUES node.
NodeTys.push_back(MVT::Other);
ResultVals.push_back(Chain);
SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys,
&ResultVals[0], ResultVals.size());
return Res.getValue(Op.ResNo);
}
//===----------------------------------------------------------------------===//
// X86-64 C Calling Convention implementation
//===----------------------------------------------------------------------===//
/// HowToPassX86_64CCCArgument - Returns how an formal argument of the specified
/// type should be passed. If it is through stack, returns the size of the stack
/// slot; if it is through integer or XMM register, returns the number of
/// integer or XMM registers are needed.
static void
HowToPassX86_64CCCArgument(MVT::ValueType ObjectVT,
unsigned NumIntRegs, unsigned NumXMMRegs,
unsigned &ObjSize, unsigned &ObjIntRegs,
unsigned &ObjXMMRegs) {
ObjSize = 0;
ObjIntRegs = 0;
ObjXMMRegs = 0;
switch (ObjectVT) {
default: assert(0 && "Unhandled argument type!");
case MVT::i8:
case MVT::i16:
case MVT::i32:
case MVT::i64:
if (NumIntRegs < 6)
ObjIntRegs = 1;
else {
switch (ObjectVT) {
default: break;
case MVT::i8: ObjSize = 1; break;
case MVT::i16: ObjSize = 2; break;
case MVT::i32: ObjSize = 4; break;
case MVT::i64: ObjSize = 8; break;
}
}
break;
case MVT::f32:
case MVT::f64:
case MVT::v16i8:
case MVT::v8i16:
case MVT::v4i32:
case MVT::v2i64:
case MVT::v4f32:
case MVT::v2f64:
if (NumXMMRegs < 8)
ObjXMMRegs = 1;
else {
switch (ObjectVT) {
default: break;
case MVT::f32: ObjSize = 4; break;
case MVT::f64: ObjSize = 8; break;
case MVT::v16i8:
case MVT::v8i16:
case MVT::v4i32:
case MVT::v2i64:
case MVT::v4f32:
case MVT::v2f64: ObjSize = 16; break;
}
break;
}
}
}
SDOperand
X86TargetLowering::LowerX86_64CCCArguments(SDOperand Op, SelectionDAG &DAG) {
unsigned NumArgs = Op.Val->getNumValues() - 1;
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo *MFI = MF.getFrameInfo();
SDOperand Root = Op.getOperand(0);
bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
std::vector<SDOperand> ArgValues;
// Add DAG nodes to load the arguments... On entry to a function on the X86,
// the stack frame looks like this:
//
// [RSP] -- return address
// [RSP + 8] -- first nonreg argument (leftmost lexically)
// [RSP +16] -- second nonreg argument, if 1st argument is <= 8 bytes in size
// ...
//
unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot
unsigned NumIntRegs = 0; // Int regs used for parameter passing.
unsigned NumXMMRegs = 0; // XMM regs used for parameter passing.
static const unsigned GPR8ArgRegs[] = {
X86::DIL, X86::SIL, X86::DL, X86::CL, X86::R8B, X86::R9B
};
static const unsigned GPR16ArgRegs[] = {
X86::DI, X86::SI, X86::DX, X86::CX, X86::R8W, X86::R9W
};
static const unsigned GPR32ArgRegs[] = {
X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D
};
static const unsigned GPR64ArgRegs[] = {
X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
};
static const unsigned XMMArgRegs[] = {
X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
};
for (unsigned i = 0; i < NumArgs; ++i) {
MVT::ValueType ObjectVT = Op.getValue(i).getValueType();
unsigned ArgIncrement = 8;
unsigned ObjSize = 0;
unsigned ObjIntRegs = 0;
unsigned ObjXMMRegs = 0;
// FIXME: __int128 and long double support?
HowToPassX86_64CCCArgument(ObjectVT, NumIntRegs, NumXMMRegs,
ObjSize, ObjIntRegs, ObjXMMRegs);
if (ObjSize > 8)
ArgIncrement = ObjSize;
unsigned Reg = 0;
SDOperand ArgValue;
if (ObjIntRegs || ObjXMMRegs) {
switch (ObjectVT) {
default: assert(0 && "Unhandled argument type!");
case MVT::i8:
case MVT::i16:
case MVT::i32:
case MVT::i64: {
TargetRegisterClass *RC = NULL;
switch (ObjectVT) {
default: break;
case MVT::i8:
RC = X86::GR8RegisterClass;
Reg = GPR8ArgRegs[NumIntRegs];
break;
case MVT::i16:
RC = X86::GR16RegisterClass;
Reg = GPR16ArgRegs[NumIntRegs];
break;
case MVT::i32:
RC = X86::GR32RegisterClass;
Reg = GPR32ArgRegs[NumIntRegs];
break;
case MVT::i64:
RC = X86::GR64RegisterClass;
Reg = GPR64ArgRegs[NumIntRegs];
break;
}
Reg = AddLiveIn(MF, Reg, RC);
ArgValue = DAG.getCopyFromReg(Root, Reg, ObjectVT);
break;
}
case MVT::f32:
case MVT::f64:
case MVT::v16i8:
case MVT::v8i16:
case MVT::v4i32:
case MVT::v2i64:
case MVT::v4f32:
case MVT::v2f64: {
TargetRegisterClass *RC= (ObjectVT == MVT::f32) ?
X86::FR32RegisterClass : ((ObjectVT == MVT::f64) ?
X86::FR64RegisterClass : X86::VR128RegisterClass);
Reg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs], RC);
ArgValue = DAG.getCopyFromReg(Root, Reg, ObjectVT);
break;
}
}
NumIntRegs += ObjIntRegs;
NumXMMRegs += ObjXMMRegs;
} else if (ObjSize) {
// XMM arguments have to be aligned on 16-byte boundary.
if (ObjSize == 16)
ArgOffset = ((ArgOffset + 15) / 16) * 16;
// Create the SelectionDAG nodes corresponding to a load from this
// parameter.
int FI = MFI->CreateFixedObject(ObjSize, ArgOffset);
SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
ArgValue = DAG.getLoad(Op.Val->getValueType(i), Root, FIN, NULL, 0);
ArgOffset += ArgIncrement; // Move on to the next argument.
}
ArgValues.push_back(ArgValue);
}
// If the function takes variable number of arguments, make a frame index for
// the start of the first vararg value... for expansion of llvm.va_start.
if (isVarArg) {
// For X86-64, if there are vararg parameters that are passed via
// registers, then we must store them to their spots on the stack so they
// may be loaded by deferencing the result of va_next.
VarArgsGPOffset = NumIntRegs * 8;
VarArgsFPOffset = 6 * 8 + NumXMMRegs * 16;
VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
RegSaveFrameIndex = MFI->CreateStackObject(6 * 8 + 8 * 16, 16);
// Store the integer parameter registers.
std::vector<SDOperand> MemOps;
SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
SDOperand FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
DAG.getConstant(VarArgsGPOffset, getPointerTy()));
for (; NumIntRegs != 6; ++NumIntRegs) {
unsigned VReg = AddLiveIn(MF, GPR64ArgRegs[NumIntRegs],
X86::GR64RegisterClass);
SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::i64);
SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
MemOps.push_back(Store);
FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
DAG.getConstant(8, getPointerTy()));
}
// Now store the XMM (fp + vector) parameter registers.
FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
DAG.getConstant(VarArgsFPOffset, getPointerTy()));
for (; NumXMMRegs != 8; ++NumXMMRegs) {
unsigned VReg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs],
X86::VR128RegisterClass);
SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::v4f32);
SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
MemOps.push_back(Store);
FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
DAG.getConstant(16, getPointerTy()));
}
if (!MemOps.empty())
Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
&MemOps[0], MemOps.size());
}
ArgValues.push_back(Root);
ReturnAddrIndex = 0; // No return address slot generated yet.
BytesToPopOnReturn = 0; // Callee pops nothing.
BytesCallerReserves = ArgOffset;
// Return the new list of results.
std::vector<MVT::ValueType> RetVTs(Op.Val->value_begin(),
Op.Val->value_end());
return DAG.getNode(ISD::MERGE_VALUES, RetVTs, &ArgValues[0],ArgValues.size());
}
SDOperand
X86TargetLowering::LowerX86_64CCCCallTo(SDOperand Op, SelectionDAG &DAG) {
SDOperand Chain = Op.getOperand(0);
bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
bool isTailCall = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
SDOperand Callee = Op.getOperand(4);
MVT::ValueType RetVT= Op.Val->getValueType(0);
unsigned NumOps = (Op.getNumOperands() - 5) / 2;
// Count how many bytes are to be pushed on the stack.
unsigned NumBytes = 0;
unsigned NumIntRegs = 0; // Int regs used for parameter passing.
unsigned NumXMMRegs = 0; // XMM regs used for parameter passing.
static const unsigned GPR8ArgRegs[] = {
X86::DIL, X86::SIL, X86::DL, X86::CL, X86::R8B, X86::R9B
};
static const unsigned GPR16ArgRegs[] = {
X86::DI, X86::SI, X86::DX, X86::CX, X86::R8W, X86::R9W
};
static const unsigned GPR32ArgRegs[] = {
X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D
};
static const unsigned GPR64ArgRegs[] = {
X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
};
static const unsigned XMMArgRegs[] = {
X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
};
for (unsigned i = 0; i != NumOps; ++i) {
SDOperand Arg = Op.getOperand(5+2*i);
MVT::ValueType ArgVT = Arg.getValueType();
switch (ArgVT) {
default: assert(0 && "Unknown value type!");
case MVT::i8:
case MVT::i16:
case MVT::i32:
case MVT::i64:
if (NumIntRegs < 6)
++NumIntRegs;
else
NumBytes += 8;
break;
case MVT::f32:
case MVT::f64:
case MVT::v16i8:
case MVT::v8i16:
case MVT::v4i32:
case MVT::v2i64:
case MVT::v4f32:
case MVT::v2f64:
if (NumXMMRegs < 8)
NumXMMRegs++;
else if (ArgVT == MVT::f32 || ArgVT == MVT::f64)
NumBytes += 8;
else {
// XMM arguments have to be aligned on 16-byte boundary.
NumBytes = ((NumBytes + 15) / 16) * 16;
NumBytes += 16;
}
break;
}
}
Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
// Arguments go on the stack in reverse order, as specified by the ABI.
unsigned ArgOffset = 0;
NumIntRegs = 0;
NumXMMRegs = 0;
std::vector<std::pair<unsigned, SDOperand> > RegsToPass;
std::vector<SDOperand> MemOpChains;
SDOperand StackPtr = DAG.getRegister(X86StackPtr, getPointerTy());
for (unsigned i = 0; i != NumOps; ++i) {
SDOperand Arg = Op.getOperand(5+2*i);
MVT::ValueType ArgVT = Arg.getValueType();
switch (ArgVT) {
default: assert(0 && "Unexpected ValueType for argument!");
case MVT::i8:
case MVT::i16:
case MVT::i32:
case MVT::i64:
if (NumIntRegs < 6) {
unsigned Reg = 0;
switch (ArgVT) {
default: break;
case MVT::i8: Reg = GPR8ArgRegs[NumIntRegs]; break;
case MVT::i16: Reg = GPR16ArgRegs[NumIntRegs]; break;
case MVT::i32: Reg = GPR32ArgRegs[NumIntRegs]; break;
case MVT::i64: Reg = GPR64ArgRegs[NumIntRegs]; break;
}
RegsToPass.push_back(std::make_pair(Reg, Arg));
++NumIntRegs;
} else {
SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
ArgOffset += 8;
}
break;
case MVT::f32:
case MVT::f64:
case MVT::v16i8:
case MVT::v8i16:
case MVT::v4i32:
case MVT::v2i64:
case MVT::v4f32:
case MVT::v2f64:
if (NumXMMRegs < 8) {
RegsToPass.push_back(std::make_pair(XMMArgRegs[NumXMMRegs], Arg));
NumXMMRegs++;
} else {
if (ArgVT != MVT::f32 && ArgVT != MVT::f64) {
// XMM arguments have to be aligned on 16-byte boundary.
ArgOffset = ((ArgOffset + 15) / 16) * 16;
}
SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
if (ArgVT == MVT::f32 || ArgVT == MVT::f64)
ArgOffset += 8;
else
ArgOffset += 16;
}
}
}
if (!MemOpChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
&MemOpChains[0], MemOpChains.size());
// Build a sequence of copy-to-reg nodes chained together with token chain
// and flag operands which copy the outgoing args into registers.
SDOperand InFlag;
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
InFlag);
InFlag = Chain.getValue(1);
}
if (isVarArg) {
// From AMD64 ABI document:
// For calls that may call functions that use varargs or stdargs
// (prototype-less calls or calls to functions containing ellipsis (...) in
// the declaration) %al is used as hidden argument to specify the number
// of SSE registers used. The contents of %al do not need to match exactly
// the number of registers, but must be an ubound on the number of SSE
// registers used and is in the range 0 - 8 inclusive.
Chain = DAG.getCopyToReg(Chain, X86::AL,
DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
InFlag = Chain.getValue(1);
}
// If the callee is a GlobalAddress node (quite common, every direct call is)
// turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
// We should use extra load for direct calls to dllimported functions
if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(), true))
Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
} else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
std::vector<MVT::ValueType> NodeTys;
NodeTys.push_back(MVT::Other); // Returns a chain
NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use.
std::vector<SDOperand> Ops;
Ops.push_back(Chain);
Ops.push_back(Callee);
// Add argument registers to the end of the list so that they are known live
// into the call.
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
Ops.push_back(DAG.getRegister(RegsToPass[i].first,
RegsToPass[i].second.getValueType()));
if (InFlag.Val)
Ops.push_back(InFlag);
// FIXME: Do not generate X86ISD::TAILCALL for now.
Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
NodeTys, &Ops[0], Ops.size());
InFlag = Chain.getValue(1);
NodeTys.clear();
NodeTys.push_back(MVT::Other); // Returns a chain
if (RetVT != MVT::Other)
NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use.
Ops.clear();
Ops.push_back(Chain);
Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
Ops.push_back(DAG.getConstant(0, getPointerTy()));
Ops.push_back(InFlag);
Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
if (RetVT != MVT::Other)
InFlag = Chain.getValue(1);
std::vector<SDOperand> ResultVals;
NodeTys.clear();
switch (RetVT) {
default: assert(0 && "Unknown value type to return!");
case MVT::Other: break;
case MVT::i8:
Chain = DAG.getCopyFromReg(Chain, X86::AL, MVT::i8, InFlag).getValue(1);
ResultVals.push_back(Chain.getValue(0));
NodeTys.push_back(MVT::i8);
break;
case MVT::i16:
Chain = DAG.getCopyFromReg(Chain, X86::AX, MVT::i16, InFlag).getValue(1);
ResultVals.push_back(Chain.getValue(0));
NodeTys.push_back(MVT::i16);
break;
case MVT::i32:
Chain = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag).getValue(1);
ResultVals.push_back(Chain.getValue(0));
NodeTys.push_back(MVT::i32);
break;
case MVT::i64:
if (Op.Val->getValueType(1) == MVT::i64) {
// FIXME: __int128 support?
Chain = DAG.getCopyFromReg(Chain, X86::RAX, MVT::i64, InFlag).getValue(1);
ResultVals.push_back(Chain.getValue(0));
Chain = DAG.getCopyFromReg(Chain, X86::RDX, MVT::i64,
Chain.getValue(2)).getValue(1);
ResultVals.push_back(Chain.getValue(0));
NodeTys.push_back(MVT::i64);
} else {
Chain = DAG.getCopyFromReg(Chain, X86::RAX, MVT::i64, InFlag).getValue(1);
ResultVals.push_back(Chain.getValue(0));
}
NodeTys.push_back(MVT::i64);
break;
case MVT::f32:
case MVT::f64:
case MVT::v16i8:
case MVT::v8i16:
case MVT::v4i32:
case MVT::v2i64:
case MVT::v4f32:
case MVT::v2f64:
// FIXME: long double support?
Chain = DAG.getCopyFromReg(Chain, X86::XMM0, RetVT, InFlag).getValue(1);
ResultVals.push_back(Chain.getValue(0));
NodeTys.push_back(RetVT);
break;
}
// If the function returns void, just return the chain.
if (ResultVals.empty())
return Chain;
// Otherwise, merge everything together with a MERGE_VALUES node.
NodeTys.push_back(MVT::Other);
ResultVals.push_back(Chain);
SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys,
&ResultVals[0], ResultVals.size());
return Res.getValue(Op.ResNo);
}
//===----------------------------------------------------------------------===//
// Fast Calling Convention implementation
//===----------------------------------------------------------------------===//
//
// The X86 'fast' calling convention passes up to two integer arguments in
// registers (an appropriate portion of EAX/EDX), passes arguments in C order,
// and requires that the callee pop its arguments off the stack (allowing proper
// tail calls), and has the same return value conventions as C calling convs.
//
// This calling convention always arranges for the callee pop value to be 8n+4
// bytes, which is needed for tail recursion elimination and stack alignment
// reasons.
//
// Note that this can be enhanced in the future to pass fp vals in registers
// (when we have a global fp allocator) and do other tricks.
//
/// HowToPassFastCCArgument - Returns how an formal argument of the specified
/// type should be passed. If it is through stack, returns the size of the stack
/// slot; if it is through integer or XMM register, returns the number of
/// integer or XMM registers are needed.
static void
HowToPassFastCCArgument(MVT::ValueType ObjectVT,
unsigned NumIntRegs, unsigned NumXMMRegs,
unsigned &ObjSize, unsigned &ObjIntRegs,
unsigned &ObjXMMRegs) {
ObjSize = 0;
ObjIntRegs = 0;
ObjXMMRegs = 0;
switch (ObjectVT) {
default: assert(0 && "Unhandled argument type!");
case MVT::i8:
#if FASTCC_NUM_INT_ARGS_INREGS > 0
if (NumIntRegs < FASTCC_NUM_INT_ARGS_INREGS)
ObjIntRegs = 1;
else
#endif
ObjSize = 1;
break;
case MVT::i16:
#if FASTCC_NUM_INT_ARGS_INREGS > 0
if (NumIntRegs < FASTCC_NUM_INT_ARGS_INREGS)
ObjIntRegs = 1;
else
#endif
ObjSize = 2;
break;
case MVT::i32:
#if FASTCC_NUM_INT_ARGS_INREGS > 0
if (NumIntRegs < FASTCC_NUM_INT_ARGS_INREGS)
ObjIntRegs = 1;
else
#endif
ObjSize = 4;
break;
case MVT::i64:
#if FASTCC_NUM_INT_ARGS_INREGS > 0
if (NumIntRegs+2 <= FASTCC_NUM_INT_ARGS_INREGS) {
ObjIntRegs = 2;
} else if (NumIntRegs+1 <= FASTCC_NUM_INT_ARGS_INREGS) {
ObjIntRegs = 1;
ObjSize = 4;
} else
#endif
ObjSize = 8;
case MVT::f32:
ObjSize = 4;
break;
case MVT::f64:
ObjSize = 8;
break;
case MVT::v16i8:
case MVT::v8i16:
case MVT::v4i32:
case MVT::v2i64:
case MVT::v4f32:
case MVT::v2f64:
if (NumXMMRegs < 4)
ObjXMMRegs = 1;
else
ObjSize = 16;
break;
}
}
SDOperand
X86TargetLowering::LowerFastCCArguments(SDOperand Op, SelectionDAG &DAG) {
unsigned NumArgs = Op.Val->getNumValues()-1;
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo *MFI = MF.getFrameInfo();
SDOperand Root = Op.getOperand(0);
std::vector<SDOperand> ArgValues;
// Add DAG nodes to load the arguments... On entry to a function the stack
// frame looks like this:
//
// [ESP] -- return address
// [ESP + 4] -- first nonreg argument (leftmost lexically)
// [ESP + 8] -- second nonreg argument, if 1st argument is <= 4 bytes in size
// ...
unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot
// Keep track of the number of integer regs passed so far. This can be either
// 0 (neither EAX or EDX used), 1 (EAX is used) or 2 (EAX and EDX are both
// used).
unsigned NumIntRegs = 0;
unsigned NumXMMRegs = 0; // XMM regs used for parameter passing.
static const unsigned XMMArgRegs[] = {
X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
};
for (unsigned i = 0; i < NumArgs; ++i) {
MVT::ValueType ObjectVT = Op.getValue(i).getValueType();
unsigned ArgIncrement = 4;
unsigned ObjSize = 0;
unsigned ObjIntRegs = 0;
unsigned ObjXMMRegs = 0;
HowToPassFastCCArgument(ObjectVT, NumIntRegs, NumXMMRegs,
ObjSize, ObjIntRegs, ObjXMMRegs);
if (ObjSize > 4)
ArgIncrement = ObjSize;
unsigned Reg = 0;
SDOperand ArgValue;
if (ObjIntRegs || ObjXMMRegs) {
switch (ObjectVT) {
default: assert(0 && "Unhandled argument type!");
case MVT::i8:
Reg = AddLiveIn(MF, NumIntRegs ? X86::DL : X86::AL,
X86::GR8RegisterClass);
ArgValue = DAG.getCopyFromReg(Root, Reg, MVT::i8);
break;
case MVT::i16:
Reg = AddLiveIn(MF, NumIntRegs ? X86::DX : X86::AX,
X86::GR16RegisterClass);
ArgValue = DAG.getCopyFromReg(Root, Reg, MVT::i16);
break;
case MVT::i32:
Reg = AddLiveIn(MF, NumIntRegs ? X86::EDX : X86::EAX,
X86::GR32RegisterClass);
ArgValue = DAG.getCopyFromReg(Root, Reg, MVT::i32);
break;
case MVT::i64:
Reg = AddLiveIn(MF, NumIntRegs ? X86::EDX : X86::EAX,
X86::GR32RegisterClass);
ArgValue = DAG.getCopyFromReg(Root, Reg, MVT::i32);
if (ObjIntRegs == 2) {
Reg = AddLiveIn(MF, X86::EDX, X86::GR32RegisterClass);
SDOperand ArgValue2 = DAG.getCopyFromReg(Root, Reg, MVT::i32);
ArgValue= DAG.getNode(ISD::BUILD_PAIR, MVT::i64, ArgValue, ArgValue2);
}
break;
case MVT::v16i8:
case MVT::v8i16:
case MVT::v4i32:
case MVT::v2i64:
case MVT::v4f32:
case MVT::v2f64:
Reg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs], X86::VR128RegisterClass);
ArgValue = DAG.getCopyFromReg(Root, Reg, ObjectVT);
break;
}
NumIntRegs += ObjIntRegs;
NumXMMRegs += ObjXMMRegs;
}
if (ObjSize) {
// XMM arguments have to be aligned on 16-byte boundary.
if (ObjSize == 16)
ArgOffset = ((ArgOffset + 15) / 16) * 16;
// Create the SelectionDAG nodes corresponding to a load from this
// parameter.
int FI = MFI->CreateFixedObject(ObjSize, ArgOffset);
SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
if (ObjectVT == MVT::i64 && ObjIntRegs) {
SDOperand ArgValue2 = DAG.getLoad(Op.Val->getValueType(i), Root, FIN,
NULL, 0);
ArgValue = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, ArgValue, ArgValue2);
} else
ArgValue = DAG.getLoad(Op.Val->getValueType(i), Root, FIN, NULL, 0);
ArgOffset += ArgIncrement; // Move on to the next argument.
}
ArgValues.push_back(ArgValue);
}
ArgValues.push_back(Root);
// Make sure the instruction takes 8n+4 bytes to make sure the start of the
// arguments and the arguments after the retaddr has been pushed are aligned.
if ((ArgOffset & 7) == 0)
ArgOffset += 4;
VarArgsFrameIndex = 0xAAAAAAA; // fastcc functions can't have varargs.
RegSaveFrameIndex = 0xAAAAAAA; // X86-64 only.
ReturnAddrIndex = 0; // No return address slot generated yet.
BytesToPopOnReturn = ArgOffset; // Callee pops all stack arguments.
BytesCallerReserves = 0;
// Finally, inform the code generator which regs we return values in.
switch (getValueType(MF.getFunction()->getReturnType())) {
default: assert(0 && "Unknown type!");
case MVT::isVoid: break;
case MVT::i1:
case MVT::i8:
case MVT::i16:
case MVT::i32:
MF.addLiveOut(X86::EAX);
break;
case MVT::i64:
MF.addLiveOut(X86::EAX);
MF.addLiveOut(X86::EDX);
break;
case MVT::f32:
case MVT::f64:
MF.addLiveOut(X86::ST0);
break;
case MVT::v16i8:
case MVT::v8i16:
case MVT::v4i32:
case MVT::v2i64:
case MVT::v4f32:
case MVT::v2f64:
MF.addLiveOut(X86::XMM0);
break;
}
// Return the new list of results.
std::vector<MVT::ValueType> RetVTs(Op.Val->value_begin(),
Op.Val->value_end());
return DAG.getNode(ISD::MERGE_VALUES, RetVTs, &ArgValues[0],ArgValues.size());
}
SDOperand X86TargetLowering::LowerFastCCCallTo(SDOperand Op, SelectionDAG &DAG,
bool isFastCall) {
SDOperand Chain = Op.getOperand(0);
bool isTailCall = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
SDOperand Callee = Op.getOperand(4);
MVT::ValueType RetVT= Op.Val->getValueType(0);
unsigned NumOps = (Op.getNumOperands() - 5) / 2;
// Count how many bytes are to be pushed on the stack.
unsigned NumBytes = 0;
// Keep track of the number of integer regs passed so far. This can be either
// 0 (neither EAX or EDX used), 1 (EAX is used) or 2 (EAX and EDX are both
// used).
unsigned NumIntRegs = 0;
unsigned NumXMMRegs = 0; // XMM regs used for parameter passing.
static const unsigned GPRArgRegs[][2] = {
{ X86::AL, X86::DL },
{ X86::AX, X86::DX },
{ X86::EAX, X86::EDX }
};
#if 0
static const unsigned FastCallGPRArgRegs[][2] = {
{ X86::CL, X86::DL },
{ X86::CX, X86::DX },
{ X86::ECX, X86::EDX }
};
#endif
static const unsigned XMMArgRegs[] = {
X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
};
for (unsigned i = 0; i != NumOps; ++i) {
SDOperand Arg = Op.getOperand(5+2*i);
switch (Arg.getValueType()) {
default: assert(0 && "Unknown value type!");
case MVT::i8:
case MVT::i16:
case MVT::i32: {
unsigned MaxNumIntRegs = (isFastCall ? 2 : FASTCC_NUM_INT_ARGS_INREGS);
if (NumIntRegs < MaxNumIntRegs) {
++NumIntRegs;
break;
}
} // Fall through
case MVT::f32:
NumBytes += 4;
break;
case MVT::f64:
NumBytes += 8;
break;
case MVT::v16i8:
case MVT::v8i16:
case MVT::v4i32:
case MVT::v2i64:
case MVT::v4f32:
case MVT::v2f64:
if (isFastCall) {
assert(0 && "Unknown value type!");
} else {
if (NumXMMRegs < 4)
NumXMMRegs++;
else {
// XMM arguments have to be aligned on 16-byte boundary.
NumBytes = ((NumBytes + 15) / 16) * 16;
NumBytes += 16;
}
}
break;
}
}
// Make sure the instruction takes 8n+4 bytes to make sure the start of the
// arguments and the arguments after the retaddr has been pushed are aligned.
if ((NumBytes & 7) == 0)
NumBytes += 4;
Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
// Arguments go on the stack in reverse order, as specified by the ABI.
unsigned ArgOffset = 0;
NumIntRegs = 0;
std::vector<std::pair<unsigned, SDOperand> > RegsToPass;
std::vector<SDOperand> MemOpChains;
SDOperand StackPtr = DAG.getRegister(X86StackPtr, getPointerTy());
for (unsigned i = 0; i != NumOps; ++i) {
SDOperand Arg = Op.getOperand(5+2*i);
switch (Arg.getValueType()) {
default: assert(0 && "Unexpected ValueType for argument!");
case MVT::i8:
case MVT::i16:
case MVT::i32: {
unsigned MaxNumIntRegs = (isFastCall ? 2 : FASTCC_NUM_INT_ARGS_INREGS);
if (NumIntRegs < MaxNumIntRegs) {
RegsToPass.push_back(
std::make_pair(GPRArgRegs[Arg.getValueType()-MVT::i8][NumIntRegs],
Arg));
++NumIntRegs;
break;
}
} // Fall through
case MVT::f32: {
SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
ArgOffset += 4;
break;
}
case MVT::f64: {
SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
ArgOffset += 8;
break;
}
case MVT::v16i8:
case MVT::v8i16:
case MVT::v4i32:
case MVT::v2i64:
case MVT::v4f32:
case MVT::v2f64:
if (isFastCall) {
assert(0 && "Unexpected ValueType for argument!");
} else {
if (NumXMMRegs < 4) {
RegsToPass.push_back(std::make_pair(XMMArgRegs[NumXMMRegs], Arg));
NumXMMRegs++;
} else {
// XMM arguments have to be aligned on 16-byte boundary.
ArgOffset = ((ArgOffset + 15) / 16) * 16;
SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
ArgOffset += 16;
}
}
break;
}
}
if (!MemOpChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
&MemOpChains[0], MemOpChains.size());
// Build a sequence of copy-to-reg nodes chained together with token chain
// and flag operands which copy the outgoing args into registers.
SDOperand InFlag;
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
InFlag);
InFlag = Chain.getValue(1);
}
// If the callee is a GlobalAddress node (quite common, every direct call is)
// turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
// We should use extra load for direct calls to dllimported functions
if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(), true))
Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
} else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
std::vector<MVT::ValueType> NodeTys;
NodeTys.push_back(MVT::Other); // Returns a chain
NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use.
std::vector<SDOperand> Ops;
Ops.push_back(Chain);
Ops.push_back(Callee);
// Add argument registers to the end of the list so that they are known live
// into the call.
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
Ops.push_back(DAG.getRegister(RegsToPass[i].first,
RegsToPass[i].second.getValueType()));
if (InFlag.Val)
Ops.push_back(InFlag);
// FIXME: Do not generate X86ISD::TAILCALL for now.
Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
NodeTys, &Ops[0], Ops.size());
InFlag = Chain.getValue(1);
NodeTys.clear();
NodeTys.push_back(MVT::Other); // Returns a chain
if (RetVT != MVT::Other)
NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use.
Ops.clear();
Ops.push_back(Chain);
Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
Ops.push_back(InFlag);
Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
if (RetVT != MVT::Other)
InFlag = Chain.getValue(1);
std::vector<SDOperand> ResultVals;
NodeTys.clear();
switch (RetVT) {
default: assert(0 && "Unknown value type to return!");
case MVT::Other: break;
case MVT::i8:
Chain = DAG.getCopyFromReg(Chain, X86::AL, MVT::i8, InFlag).getValue(1);
ResultVals.push_back(Chain.getValue(0));
NodeTys.push_back(MVT::i8);
break;
case MVT::i16:
Chain = DAG.getCopyFromReg(Chain, X86::AX, MVT::i16, InFlag).getValue(1);
ResultVals.push_back(Chain.getValue(0));
NodeTys.push_back(MVT::i16);
break;
case MVT::i32:
if (Op.Val->getValueType(1) == MVT::i32) {
Chain = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag).getValue(1);
ResultVals.push_back(Chain.getValue(0));
Chain = DAG.getCopyFromReg(Chain, X86::EDX, MVT::i32,
Chain.getValue(2)).getValue(1);
ResultVals.push_back(Chain.getValue(0));
NodeTys.push_back(MVT::i32);
} else {
Chain = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag).getValue(1);
ResultVals.push_back(Chain.getValue(0));
}
NodeTys.push_back(MVT::i32);
break;
case MVT::v16i8:
case MVT::v8i16:
case MVT::v4i32:
case MVT::v2i64:
case MVT::v4f32:
case MVT::v2f64:
if (isFastCall) {
assert(0 && "Unknown value type to return!");
} else {
Chain = DAG.getCopyFromReg(Chain, X86::XMM0, RetVT, InFlag).getValue(1);
ResultVals.push_back(Chain.getValue(0));
NodeTys.push_back(RetVT);
}
break;
case MVT::f32:
case MVT::f64: {
std::vector<MVT::ValueType> Tys;
Tys.push_back(MVT::f64);
Tys.push_back(MVT::Other);
Tys.push_back(MVT::Flag);
std::vector<SDOperand> Ops;
Ops.push_back(Chain);
Ops.push_back(InFlag);
SDOperand RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys,
&Ops[0], Ops.size());
Chain = RetVal.getValue(1);
InFlag = RetVal.getValue(2);
if (X86ScalarSSE) {
// FIXME: Currently the FST is flagged to the FP_GET_RESULT. This
// shouldn't be necessary except that RFP cannot be live across
// multiple blocks. When stackifier is fixed, they can be uncoupled.
MachineFunction &MF = DAG.getMachineFunction();
int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
Tys.clear();
Tys.push_back(MVT::Other);
Ops.clear();
Ops.push_back(Chain);
Ops.push_back(RetVal);
Ops.push_back(StackSlot);
Ops.push_back(DAG.getValueType(RetVT));
Ops.push_back(InFlag);
Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
RetVal = DAG.getLoad(RetVT, Chain, StackSlot, NULL, 0);
Chain = RetVal.getValue(1);
}
if (RetVT == MVT::f32 && !X86ScalarSSE)
// FIXME: we would really like to remember that this FP_ROUND
// operation is okay to eliminate if we allow excess FP precision.
RetVal = DAG.getNode(ISD::FP_ROUND, MVT::f32, RetVal);
ResultVals.push_back(RetVal);
NodeTys.push_back(RetVT);
break;
}
}
// If the function returns void, just return the chain.
if (ResultVals.empty())
return Chain;
// Otherwise, merge everything together with a MERGE_VALUES node.
NodeTys.push_back(MVT::Other);
ResultVals.push_back(Chain);
SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys,
&ResultVals[0], ResultVals.size());
return Res.getValue(Op.ResNo);
}
//===----------------------------------------------------------------------===//
// StdCall Calling Convention implementation
//===----------------------------------------------------------------------===//
// StdCall calling convention seems to be standard for many Windows' API
// routines and around. It differs from C calling convention just a little:
// callee should clean up the stack, not caller. Symbols should be also
// decorated in some fancy way :) It doesn't support any vector arguments.
/// HowToPassStdCallCCArgument - Returns how an formal argument of the specified
/// type should be passed. Returns the size of the stack slot
static void
HowToPassStdCallCCArgument(MVT::ValueType ObjectVT, unsigned &ObjSize) {
switch (ObjectVT) {
default: assert(0 && "Unhandled argument type!");
case MVT::i8: ObjSize = 1; break;
case MVT::i16: ObjSize = 2; break;
case MVT::i32: ObjSize = 4; break;
case MVT::i64: ObjSize = 8; break;
case MVT::f32: ObjSize = 4; break;
case MVT::f64: ObjSize = 8; break;
}
}
SDOperand X86TargetLowering::LowerStdCallCCArguments(SDOperand Op,
SelectionDAG &DAG) {
unsigned NumArgs = Op.Val->getNumValues() - 1;
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo *MFI = MF.getFrameInfo();
SDOperand Root = Op.getOperand(0);
std::vector<SDOperand> ArgValues;
// Add DAG nodes to load the arguments... On entry to a function on the X86,
// the stack frame looks like this:
//
// [ESP] -- return address
// [ESP + 4] -- first argument (leftmost lexically)
// [ESP + 8] -- second argument, if first argument is <= 4 bytes in size
// ...
//
unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot
for (unsigned i = 0; i < NumArgs; ++i) {
MVT::ValueType ObjectVT = Op.getValue(i).getValueType();
unsigned ArgIncrement = 4;
unsigned ObjSize = 0;
HowToPassStdCallCCArgument(ObjectVT, ObjSize);
if (ObjSize > 4)
ArgIncrement = ObjSize;
SDOperand ArgValue;
// Create the frame index object for this incoming parameter...
int FI = MFI->CreateFixedObject(ObjSize, ArgOffset);
SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
ArgValue = DAG.getLoad(Op.Val->getValueType(i), Root, FIN, NULL, 0);
ArgValues.push_back(ArgValue);
ArgOffset += ArgIncrement; // Move on to the next argument...
}
ArgValues.push_back(Root);
// If the function takes variable number of arguments, make a frame index for
// the start of the first vararg value... for expansion of llvm.va_start.
bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
if (isVarArg) {
BytesToPopOnReturn = 0; // Callee pops nothing.
BytesCallerReserves = ArgOffset;
VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
} else {
BytesToPopOnReturn = ArgOffset; // Callee pops everything..
BytesCallerReserves = 0;
}
RegSaveFrameIndex = 0xAAAAAAA; // X86-64 only.
ReturnAddrIndex = 0; // No return address slot generated yet.
MF.getInfo<X86FunctionInfo>()->setBytesToPopOnReturn(BytesToPopOnReturn);
// Return the new list of results.
std::vector<MVT::ValueType> RetVTs(Op.Val->value_begin(),
Op.Val->value_end());
return DAG.getNode(ISD::MERGE_VALUES, RetVTs, &ArgValues[0],ArgValues.size());
}
SDOperand X86TargetLowering::LowerStdCallCCCallTo(SDOperand Op,
SelectionDAG &DAG) {
SDOperand Chain = Op.getOperand(0);
bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
bool isTailCall = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
SDOperand Callee = Op.getOperand(4);
MVT::ValueType RetVT= Op.Val->getValueType(0);
unsigned NumOps = (Op.getNumOperands() - 5) / 2;
// Count how many bytes are to be pushed on the stack.
unsigned NumBytes = 0;
for (unsigned i = 0; i != NumOps; ++i) {
SDOperand Arg = Op.getOperand(5+2*i);
switch (Arg.getValueType()) {
default: assert(0 && "Unexpected ValueType for argument!");
case MVT::i8:
case MVT::i16:
case MVT::i32:
case MVT::f32:
NumBytes += 4;
break;
case MVT::i64:
case MVT::f64:
NumBytes += 8;
break;
}
}
Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
// Arguments go on the stack in reverse order, as specified by the ABI.
unsigned ArgOffset = 0;
std::vector<SDOperand> MemOpChains;
SDOperand StackPtr = DAG.getRegister(X86StackPtr, getPointerTy());
for (unsigned i = 0; i != NumOps; ++i) {
SDOperand Arg = Op.getOperand(5+2*i);
switch (Arg.getValueType()) {
default: assert(0 && "Unexpected ValueType for argument!");
case MVT::i8:
case MVT::i16: {
// Promote the integer to 32 bits. If the input type is signed use a
// sign extend, otherwise use a zero extend.
unsigned ExtOp =
dyn_cast<ConstantSDNode>(Op.getOperand(5+2*i+1))->getValue() ?
ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
Arg = DAG.getNode(ExtOp, MVT::i32, Arg);
}
// Fallthrough
case MVT::i32:
case MVT::f32: {
SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
ArgOffset += 4;
break;
}
case MVT::i64:
case MVT::f64: {
SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
ArgOffset += 8;
break;
}
}
}
if (!MemOpChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
&MemOpChains[0], MemOpChains.size());
// If the callee is a GlobalAddress node (quite common, every direct call is)
// turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
// We should use extra load for direct calls to dllimported functions
if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(), true))
Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
} else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
std::vector<MVT::ValueType> NodeTys;
NodeTys.push_back(MVT::Other); // Returns a chain
NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use.
std::vector<SDOperand> Ops;
Ops.push_back(Chain);
Ops.push_back(Callee);
Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
NodeTys, &Ops[0], Ops.size());
SDOperand InFlag = Chain.getValue(1);
// Create the CALLSEQ_END node.
unsigned NumBytesForCalleeToPush;
if (isVarArg) {
NumBytesForCalleeToPush = 0;
} else {
NumBytesForCalleeToPush = NumBytes;
}
NodeTys.clear();
NodeTys.push_back(MVT::Other); // Returns a chain
if (RetVT != MVT::Other)
NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use.
Ops.clear();
Ops.push_back(Chain);
Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
Ops.push_back(DAG.getConstant(NumBytesForCalleeToPush, getPointerTy()));
Ops.push_back(InFlag);
Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
if (RetVT != MVT::Other)
InFlag = Chain.getValue(1);
std::vector<SDOperand> ResultVals;
NodeTys.clear();
switch (RetVT) {
default: assert(0 && "Unknown value type to return!");
case MVT::Other: break;
case MVT::i8:
Chain = DAG.getCopyFromReg(Chain, X86::AL, MVT::i8, InFlag).getValue(1);
ResultVals.push_back(Chain.getValue(0));
NodeTys.push_back(MVT::i8);
break;
case MVT::i16:
Chain = DAG.getCopyFromReg(Chain, X86::AX, MVT::i16, InFlag).getValue(1);
ResultVals.push_back(Chain.getValue(0));
NodeTys.push_back(MVT::i16);
break;
case MVT::i32:
if (Op.Val->getValueType(1) == MVT::i32) {
Chain = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag).getValue(1);
ResultVals.push_back(Chain.getValue(0));
Chain = DAG.getCopyFromReg(Chain, X86::EDX, MVT::i32,
Chain.getValue(2)).getValue(1);
ResultVals.push_back(Chain.getValue(0));
NodeTys.push_back(MVT::i32);
} else {
Chain = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag).getValue(1);
ResultVals.push_back(Chain.getValue(0));
}
NodeTys.push_back(MVT::i32);
break;
case MVT::f32:
case MVT::f64: {
std::vector<MVT::ValueType> Tys;
Tys.push_back(MVT::f64);
Tys.push_back(MVT::Other);
Tys.push_back(MVT::Flag);
std::vector<SDOperand> Ops;
Ops.push_back(Chain);
Ops.push_back(InFlag);
SDOperand RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys,
&Ops[0], Ops.size());
Chain = RetVal.getValue(1);
InFlag = RetVal.getValue(2);
if (X86ScalarSSE) {
// FIXME: Currently the FST is flagged to the FP_GET_RESULT. This
// shouldn't be necessary except that RFP cannot be live across
// multiple blocks. When stackifier is fixed, they can be uncoupled.
MachineFunction &MF = DAG.getMachineFunction();
int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
Tys.clear();
Tys.push_back(MVT::Other);
Ops.clear();
Ops.push_back(Chain);
Ops.push_back(RetVal);
Ops.push_back(StackSlot);
Ops.push_back(DAG.getValueType(RetVT));
Ops.push_back(InFlag);
Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
RetVal = DAG.getLoad(RetVT, Chain, StackSlot, NULL, 0);
Chain = RetVal.getValue(1);
}
if (RetVT == MVT::f32 && !X86ScalarSSE)
// FIXME: we would really like to remember that this FP_ROUND
// operation is okay to eliminate if we allow excess FP precision.
RetVal = DAG.getNode(ISD::FP_ROUND, MVT::f32, RetVal);
ResultVals.push_back(RetVal);
NodeTys.push_back(RetVT);
break;
}
}
// If the function returns void, just return the chain.
if (ResultVals.empty())
return Chain;
// Otherwise, merge everything together with a MERGE_VALUES node.
NodeTys.push_back(MVT::Other);
ResultVals.push_back(Chain);
SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys,
&ResultVals[0], ResultVals.size());
return Res.getValue(Op.ResNo);
}
//===----------------------------------------------------------------------===//
// FastCall Calling Convention implementation
//===----------------------------------------------------------------------===//
//
// The X86 'fastcall' calling convention passes up to two integer arguments in
// registers (an appropriate portion of ECX/EDX), passes arguments in C order,
// and requires that the callee pop its arguments off the stack (allowing proper
// tail calls), and has the same return value conventions as C calling convs.
//
// This calling convention always arranges for the callee pop value to be 8n+4
// bytes, which is needed for tail recursion elimination and stack alignment
// reasons.
//
/// HowToPassFastCallCCArgument - Returns how an formal argument of the
/// specified type should be passed. If it is through stack, returns the size of
/// the stack slot; if it is through integer register, returns the number of
/// integer registers are needed.
static void
HowToPassFastCallCCArgument(MVT::ValueType ObjectVT,
unsigned NumIntRegs,
unsigned &ObjSize,
unsigned &ObjIntRegs)
{
ObjSize = 0;
ObjIntRegs = 0;
switch (ObjectVT) {
default: assert(0 && "Unhandled argument type!");
case MVT::i8:
if (NumIntRegs < 2)
ObjIntRegs = 1;
else
ObjSize = 1;
break;
case MVT::i16:
if (NumIntRegs < 2)
ObjIntRegs = 1;
else
ObjSize = 2;
break;
case MVT::i32:
if (NumIntRegs < 2)
ObjIntRegs = 1;
else
ObjSize = 4;
break;
case MVT::i64:
if (NumIntRegs+2 <= 2) {
ObjIntRegs = 2;
} else if (NumIntRegs+1 <= 2) {
ObjIntRegs = 1;
ObjSize = 4;
} else
ObjSize = 8;
case MVT::f32:
ObjSize = 4;
break;
case MVT::f64:
ObjSize = 8;
break;
}
}
SDOperand
X86TargetLowering::LowerFastCallCCArguments(SDOperand Op, SelectionDAG &DAG) {
unsigned NumArgs = Op.Val->getNumValues()-1;
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo *MFI = MF.getFrameInfo();
SDOperand Root = Op.getOperand(0);
std::vector<SDOperand> ArgValues;
// Add DAG nodes to load the arguments... On entry to a function the stack
// frame looks like this:
//
// [ESP] -- return address
// [ESP + 4] -- first nonreg argument (leftmost lexically)
// [ESP + 8] -- second nonreg argument, if 1st argument is <= 4 bytes in size
// ...
unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot
// Keep track of the number of integer regs passed so far. This can be either
// 0 (neither ECX or EDX used), 1 (ECX is used) or 2 (ECX and EDX are both
// used).
unsigned NumIntRegs = 0;
for (unsigned i = 0; i < NumArgs; ++i) {
MVT::ValueType ObjectVT = Op.getValue(i).getValueType();
unsigned ArgIncrement = 4;
unsigned ObjSize = 0;
unsigned ObjIntRegs = 0;
HowToPassFastCallCCArgument(ObjectVT, NumIntRegs, ObjSize, ObjIntRegs);
if (ObjSize > 4)
ArgIncrement = ObjSize;
unsigned Reg = 0;
SDOperand ArgValue;
if (ObjIntRegs) {
switch (ObjectVT) {
default: assert(0 && "Unhandled argument type!");
case MVT::i8:
Reg = AddLiveIn(MF, NumIntRegs ? X86::DL : X86::CL,
X86::GR8RegisterClass);
ArgValue = DAG.getCopyFromReg(Root, Reg, MVT::i8);
break;
case MVT::i16:
Reg = AddLiveIn(MF, NumIntRegs ? X86::DX : X86::CX,
X86::GR16RegisterClass);
ArgValue = DAG.getCopyFromReg(Root, Reg, MVT::i16);
break;
case MVT::i32:
Reg = AddLiveIn(MF, NumIntRegs ? X86::EDX : X86::ECX,
X86::GR32RegisterClass);
ArgValue = DAG.getCopyFromReg(Root, Reg, MVT::i32);
break;
case MVT::i64:
Reg = AddLiveIn(MF, NumIntRegs ? X86::EDX : X86::ECX,
X86::GR32RegisterClass);
ArgValue = DAG.getCopyFromReg(Root, Reg, MVT::i32);
if (ObjIntRegs == 2) {
Reg = AddLiveIn(MF, X86::EDX, X86::GR32RegisterClass);
SDOperand ArgValue2 = DAG.getCopyFromReg(Root, Reg, MVT::i32);
ArgValue= DAG.getNode(ISD::BUILD_PAIR, MVT::i64, ArgValue, ArgValue2);
}
break;
}
NumIntRegs += ObjIntRegs;
}
if (ObjSize) {
// Create the SelectionDAG nodes corresponding to a load from this
// parameter.
int FI = MFI->CreateFixedObject(ObjSize, ArgOffset);
SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
if (ObjectVT == MVT::i64 && ObjIntRegs) {
SDOperand ArgValue2 = DAG.getLoad(Op.Val->getValueType(i), Root, FIN,
NULL, 0);
ArgValue = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, ArgValue, ArgValue2);
} else
ArgValue = DAG.getLoad(Op.Val->getValueType(i), Root, FIN, NULL, 0);
ArgOffset += ArgIncrement; // Move on to the next argument.
}
ArgValues.push_back(ArgValue);
}
ArgValues.push_back(Root);
// Make sure the instruction takes 8n+4 bytes to make sure the start of the
// arguments and the arguments after the retaddr has been pushed are aligned.
if ((ArgOffset & 7) == 0)
ArgOffset += 4;
VarArgsFrameIndex = 0xAAAAAAA; // fastcc functions can't have varargs.
RegSaveFrameIndex = 0xAAAAAAA; // X86-64 only.
ReturnAddrIndex = 0; // No return address slot generated yet.
BytesToPopOnReturn = ArgOffset; // Callee pops all stack arguments.
BytesCallerReserves = 0;
MF.getInfo<X86FunctionInfo>()->setBytesToPopOnReturn(BytesToPopOnReturn);
// Finally, inform the code generator which regs we return values in.
switch (getValueType(MF.getFunction()->getReturnType())) {
default: assert(0 && "Unknown type!");
case MVT::isVoid: break;
case MVT::i1:
case MVT::i8:
case MVT::i16:
case MVT::i32:
MF.addLiveOut(X86::ECX);
break;
case MVT::i64:
MF.addLiveOut(X86::ECX);
MF.addLiveOut(X86::EDX);
break;
case MVT::f32:
case MVT::f64:
MF.addLiveOut(X86::ST0);
break;
}
// Return the new list of results.
std::vector<MVT::ValueType> RetVTs(Op.Val->value_begin(),
Op.Val->value_end());
return DAG.getNode(ISD::MERGE_VALUES, RetVTs, &ArgValues[0],ArgValues.size());
}
SDOperand X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
if (ReturnAddrIndex == 0) {
// Set up a frame object for the return address.
MachineFunction &MF = DAG.getMachineFunction();
if (Subtarget->is64Bit())
ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(8, -8);
else
ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(4, -4);
}
return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
}
std::pair<SDOperand, SDOperand> X86TargetLowering::
LowerFrameReturnAddress(bool isFrameAddress, SDOperand Chain, unsigned Depth,
SelectionDAG &DAG) {
SDOperand Result;
if (Depth) // Depths > 0 not supported yet!
Result = DAG.getConstant(0, getPointerTy());
else {
SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
if (!isFrameAddress)
// Just load the return address
Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI,
NULL, 0);
else
Result = DAG.getNode(ISD::SUB, getPointerTy(), RetAddrFI,
DAG.getConstant(4, getPointerTy()));
}
return std::make_pair(Result, Chain);
}
/// translateX86CC - do a one to one translation of a ISD::CondCode to the X86
/// specific condition code. It returns a false if it cannot do a direct
/// translation. X86CC is the translated CondCode. LHS/RHS are modified as
/// needed.
static bool translateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
unsigned &X86CC, SDOperand &LHS, SDOperand &RHS,
SelectionDAG &DAG) {
X86CC = X86::COND_INVALID;
if (!isFP) {
if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
// X > -1 -> X == 0, jump !sign.
RHS = DAG.getConstant(0, RHS.getValueType());
X86CC = X86::COND_NS;
return true;
} else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
// X < 0 -> X == 0, jump on sign.
X86CC = X86::COND_S;
return true;
}
}
switch (SetCCOpcode) {
default: break;
case ISD::SETEQ: X86CC = X86::COND_E; break;
case ISD::SETGT: X86CC = X86::COND_G; break;
case ISD::SETGE: X86CC = X86::COND_GE; break;
case ISD::SETLT: X86CC = X86::COND_L; break;
case ISD::SETLE: X86CC = X86::COND_LE; break;
case ISD::SETNE: X86CC = X86::COND_NE; break;
case ISD::SETULT: X86CC = X86::COND_B; break;
case ISD::SETUGT: X86CC = X86::COND_A; break;
case ISD::SETULE: X86CC = X86::COND_BE; break;
case ISD::SETUGE: X86CC = X86::COND_AE; break;
}
} else {
// On a floating point condition, the flags are set as follows:
// ZF PF CF op
// 0 | 0 | 0 | X > Y
// 0 | 0 | 1 | X < Y
// 1 | 0 | 0 | X == Y
// 1 | 1 | 1 | unordered
bool Flip = false;
switch (SetCCOpcode) {
default: break;
case ISD::SETUEQ:
case ISD::SETEQ: X86CC = X86::COND_E; break;
case ISD::SETOLT: Flip = true; // Fallthrough
case ISD::SETOGT:
case ISD::SETGT: X86CC = X86::COND_A; break;
case ISD::SETOLE: Flip = true; // Fallthrough
case ISD::SETOGE:
case ISD::SETGE: X86CC = X86::COND_AE; break;
case ISD::SETUGT: Flip = true; // Fallthrough
case ISD::SETULT:
case ISD::SETLT: X86CC = X86::COND_B; break;
case ISD::SETUGE: Flip = true; // Fallthrough
case ISD::SETULE:
case ISD::SETLE: X86CC = X86::COND_BE; break;
case ISD::SETONE:
case ISD::SETNE: X86CC = X86::COND_NE; break;
case ISD::SETUO: X86CC = X86::COND_P; break;
case ISD::SETO: X86CC = X86::COND_NP; break;
}
if (Flip)
std::swap(LHS, RHS);
}
return X86CC != X86::COND_INVALID;
}
/// hasFPCMov - is there a floating point cmov for the specific X86 condition
/// code. Current x86 isa includes the following FP cmov instructions:
/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
static bool hasFPCMov(unsigned X86CC) {
switch (X86CC) {
default:
return false;
case X86::COND_B:
case X86::COND_BE:
case X86::COND_E:
case X86::COND_P:
case X86::COND_A:
case X86::COND_AE:
case X86::COND_NE:
case X86::COND_NP:
return true;
}
}
/// isUndefOrInRange - Op is either an undef node or a ConstantSDNode. Return
/// true if Op is undef or if its value falls within the specified range (L, H].
static bool isUndefOrInRange(SDOperand Op, unsigned Low, unsigned Hi) {
if (Op.getOpcode() == ISD::UNDEF)
return true;
unsigned Val = cast<ConstantSDNode>(Op)->getValue();
return (Val >= Low && Val < Hi);
}
/// isUndefOrEqual - Op is either an undef node or a ConstantSDNode. Return
/// true if Op is undef or if its value equal to the specified value.
static bool isUndefOrEqual(SDOperand Op, unsigned Val) {
if (Op.getOpcode() == ISD::UNDEF)
return true;
return cast<ConstantSDNode>(Op)->getValue() == Val;
}
/// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to PSHUFD.
bool X86::isPSHUFDMask(SDNode *N) {
assert(N->getOpcode() == ISD::BUILD_VECTOR);
if (N->getNumOperands() != 4)
return false;
// Check if the value doesn't reference the second vector.
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
SDOperand Arg = N->getOperand(i);
if (Arg.getOpcode() == ISD::UNDEF) continue;
assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
if (cast<ConstantSDNode>(Arg)->getValue() >= 4)
return false;
}
return true;
}
/// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to PSHUFHW.
bool X86::isPSHUFHWMask(SDNode *N) {
assert(N->getOpcode() == ISD::BUILD_VECTOR);
if (N->getNumOperands() != 8)
return false;
// Lower quadword copied in order.
for (unsigned i = 0; i != 4; ++i) {
SDOperand Arg = N->getOperand(i);
if (Arg.getOpcode() == ISD::UNDEF) continue;
assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
if (cast<ConstantSDNode>(Arg)->getValue() != i)
return false;
}
// Upper quadword shuffled.
for (unsigned i = 4; i != 8; ++i) {
SDOperand Arg = N->getOperand(i);
if (Arg.getOpcode() == ISD::UNDEF) continue;
assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
if (Val < 4 || Val > 7)
return false;
}
return true;
}
/// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to PSHUFLW.
bool X86::isPSHUFLWMask(SDNode *N) {
assert(N->getOpcode() == ISD::BUILD_VECTOR);
if (N->getNumOperands() != 8)
return false;
// Upper quadword copied in order.
for (unsigned i = 4; i != 8; ++i)
if (!isUndefOrEqual(N->getOperand(i), i))
return false;
// Lower quadword shuffled.
for (unsigned i = 0; i != 4; ++i)
if (!isUndefOrInRange(N->getOperand(i), 0, 4))
return false;
return true;
}
/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to SHUFP*.
static bool isSHUFPMask(std::vector<SDOperand> &N) {
unsigned NumElems = N.size();
if (NumElems != 2 && NumElems != 4) return false;
unsigned Half = NumElems / 2;
for (unsigned i = 0; i < Half; ++i)
if (!isUndefOrInRange(N[i], 0, NumElems))
return false;
for (unsigned i = Half; i < NumElems; ++i)
if (!isUndefOrInRange(N[i], NumElems, NumElems*2))
return false;
return true;
}
bool X86::isSHUFPMask(SDNode *N) {
assert(N->getOpcode() == ISD::BUILD_VECTOR);
std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
return ::isSHUFPMask(Ops);
}
/// isCommutedSHUFP - Returns true if the shuffle mask is except
/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
/// half elements to come from vector 1 (which would equal the dest.) and
/// the upper half to come from vector 2.
static bool isCommutedSHUFP(std::vector<SDOperand> &Ops) {
unsigned NumElems = Ops.size();
if (NumElems != 2 && NumElems != 4) return false;
unsigned Half = NumElems / 2;
for (unsigned i = 0; i < Half; ++i)
if (!isUndefOrInRange(Ops[i], NumElems, NumElems*2))
return false;
for (unsigned i = Half; i < NumElems; ++i)
if (!isUndefOrInRange(Ops[i], 0, NumElems))
return false;
return true;
}
static bool isCommutedSHUFP(SDNode *N) {
assert(N->getOpcode() == ISD::BUILD_VECTOR);
std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
return isCommutedSHUFP(Ops);
}
/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
bool X86::isMOVHLPSMask(SDNode *N) {
assert(N->getOpcode() == ISD::BUILD_VECTOR);
if (N->getNumOperands() != 4)
return false;
// Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
return isUndefOrEqual(N->getOperand(0), 6) &&
isUndefOrEqual(N->getOperand(1), 7) &&
isUndefOrEqual(N->getOperand(2), 2) &&
isUndefOrEqual(N->getOperand(3), 3);
}
/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
/// <2, 3, 2, 3>
bool X86::isMOVHLPS_v_undef_Mask(SDNode *N) {
assert(N->getOpcode() == ISD::BUILD_VECTOR);
if (N->getNumOperands() != 4)
return false;
// Expect bit0 == 2, bit1 == 3, bit2 == 2, bit3 == 3
return isUndefOrEqual(N->getOperand(0), 2) &&
isUndefOrEqual(N->getOperand(1), 3) &&
isUndefOrEqual(N->getOperand(2), 2) &&
isUndefOrEqual(N->getOperand(3), 3);
}
/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
bool X86::isMOVLPMask(SDNode *N) {
assert(N->getOpcode() == ISD::BUILD_VECTOR);
unsigned NumElems = N->getNumOperands();
if (NumElems != 2 && NumElems != 4)
return false;
for (unsigned i = 0; i < NumElems/2; ++i)
if (!isUndefOrEqual(N->getOperand(i), i + NumElems))
return false;
for (unsigned i = NumElems/2; i < NumElems; ++i)
if (!isUndefOrEqual(N->getOperand(i), i))
return false;
return true;
}
/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
/// and MOVLHPS.
bool X86::isMOVHPMask(SDNode *N) {
assert(N->getOpcode() == ISD::BUILD_VECTOR);
unsigned NumElems = N->getNumOperands();
if (NumElems != 2 && NumElems != 4)
return false;
for (unsigned i = 0; i < NumElems/2; ++i)
if (!isUndefOrEqual(N->getOperand(i), i))
return false;
for (unsigned i = 0; i < NumElems/2; ++i) {
SDOperand Arg = N->getOperand(i + NumElems/2);
if (!isUndefOrEqual(Arg, i + NumElems))
return false;
}
return true;
}
/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to UNPCKL.
bool static isUNPCKLMask(std::vector<SDOperand> &N, bool V2IsSplat = false) {
unsigned NumElems = N.size();
if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
return false;
for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
SDOperand BitI = N[i];
SDOperand BitI1 = N[i+1];
if (!isUndefOrEqual(BitI, j))
return false;
if (V2IsSplat) {
if (isUndefOrEqual(BitI1, NumElems))
return false;
} else {
if (!isUndefOrEqual(BitI1, j + NumElems))
return false;
}
}
return true;
}
bool X86::isUNPCKLMask(SDNode *N, bool V2IsSplat) {
assert(N->getOpcode() == ISD::BUILD_VECTOR);
std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
return ::isUNPCKLMask(Ops, V2IsSplat);
}
/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to UNPCKH.
bool static isUNPCKHMask(std::vector<SDOperand> &N, bool V2IsSplat = false) {
unsigned NumElems = N.size();
if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
return false;
for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
SDOperand BitI = N[i];
SDOperand BitI1 = N[i+1];
if (!isUndefOrEqual(BitI, j + NumElems/2))
return false;
if (V2IsSplat) {
if (isUndefOrEqual(BitI1, NumElems))
return false;
} else {
if (!isUndefOrEqual(BitI1, j + NumElems/2 + NumElems))
return false;
}
}
return true;
}
bool X86::isUNPCKHMask(SDNode *N, bool V2IsSplat) {
assert(N->getOpcode() == ISD::BUILD_VECTOR);
std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
return ::isUNPCKHMask(Ops, V2IsSplat);
}
/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
/// <0, 0, 1, 1>
bool X86::isUNPCKL_v_undef_Mask(SDNode *N) {
assert(N->getOpcode() == ISD::BUILD_VECTOR);
unsigned NumElems = N->getNumOperands();
if (NumElems != 4 && NumElems != 8 && NumElems != 16)
return false;
for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
SDOperand BitI = N->getOperand(i);
SDOperand BitI1 = N->getOperand(i+1);
if (!isUndefOrEqual(BitI, j))
return false;
if (!isUndefOrEqual(BitI1, j))
return false;
}
return true;
}
/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to MOVSS,
/// MOVSD, and MOVD, i.e. setting the lowest element.
static bool isMOVLMask(std::vector<SDOperand> &N) {
unsigned NumElems = N.size();
if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
return false;
if (!isUndefOrEqual(N[0], NumElems))
return false;
for (unsigned i = 1; i < NumElems; ++i) {
SDOperand Arg = N[i];
if (!isUndefOrEqual(Arg, i))
return false;
}
return true;
}
bool X86::isMOVLMask(SDNode *N) {
assert(N->getOpcode() == ISD::BUILD_VECTOR);
std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
return ::isMOVLMask(Ops);
}
/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
/// of what x86 movss want. X86 movs requires the lowest element to be lowest
/// element of vector 2 and the other elements to come from vector 1 in order.
static bool isCommutedMOVL(std::vector<SDOperand> &Ops, bool V2IsSplat = false,
bool V2IsUndef = false) {
unsigned NumElems = Ops.size();
if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
return false;
if (!isUndefOrEqual(Ops[0], 0))
return false;
for (unsigned i = 1; i < NumElems; ++i) {
SDOperand Arg = Ops[i];
if (!(isUndefOrEqual(Arg, i+NumElems) ||
(V2IsUndef && isUndefOrInRange(Arg, NumElems, NumElems*2)) ||
(V2IsSplat && isUndefOrEqual(Arg, NumElems))))
return false;
}
return true;
}
static bool isCommutedMOVL(SDNode *N, bool V2IsSplat = false,
bool V2IsUndef = false) {
assert(N->getOpcode() == ISD::BUILD_VECTOR);
std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
return isCommutedMOVL(Ops, V2IsSplat, V2IsUndef);
}
/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
bool X86::isMOVSHDUPMask(SDNode *N) {
assert(N->getOpcode() == ISD::BUILD_VECTOR);
if (N->getNumOperands() != 4)
return false;
// Expect 1, 1, 3, 3
for (unsigned i = 0; i < 2; ++i) {
SDOperand Arg = N->getOperand(i);
if (Arg.getOpcode() == ISD::UNDEF) continue;
assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
if (Val != 1) return false;
}
bool HasHi = false;
for (unsigned i = 2; i < 4; ++i) {
SDOperand Arg = N->getOperand(i);
if (Arg.getOpcode() == ISD::UNDEF) continue;
assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
if (Val != 3) return false;
HasHi = true;
}
// Don't use movshdup if it can be done with a shufps.
return HasHi;
}
/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
bool X86::isMOVSLDUPMask(SDNode *N) {
assert(N->getOpcode() == ISD::BUILD_VECTOR);
if (N->getNumOperands() != 4)
return false;
// Expect 0, 0, 2, 2
for (unsigned i = 0; i < 2; ++i) {
SDOperand Arg = N->getOperand(i);
if (Arg.getOpcode() == ISD::UNDEF) continue;
assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
if (Val != 0) return false;
}
bool HasHi = false;
for (unsigned i = 2; i < 4; ++i) {
SDOperand Arg = N->getOperand(i);
if (Arg.getOpcode() == ISD::UNDEF) continue;
assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
if (Val != 2) return false;
HasHi = true;
}
// Don't use movshdup if it can be done with a shufps.
return HasHi;
}
/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
/// a splat of a single element.
static bool isSplatMask(SDNode *N) {
assert(N->getOpcode() == ISD::BUILD_VECTOR);
// This is a splat operation if each element of the permute is the same, and
// if the value doesn't reference the second vector.
unsigned NumElems = N->getNumOperands();
SDOperand ElementBase;
unsigned i = 0;
for (; i != NumElems; ++i) {
SDOperand Elt = N->getOperand(i);
if (isa<ConstantSDNode>(Elt)) {
ElementBase = Elt;
break;
}
}
if (!ElementBase.Val)
return false;
for (; i != NumElems; ++i) {
SDOperand Arg = N->getOperand(i);
if (Arg.getOpcode() == ISD::UNDEF) continue;
assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
if (Arg != ElementBase) return false;
}
// Make sure it is a splat of the first vector operand.
return cast<ConstantSDNode>(ElementBase)->getValue() < NumElems;
}
/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
/// a splat of a single element and it's a 2 or 4 element mask.
bool X86::isSplatMask(SDNode *N) {
assert(N->getOpcode() == ISD::BUILD_VECTOR);
// We can only splat 64-bit, and 32-bit quantities with a single instruction.
if (N->getNumOperands() != 4 && N->getNumOperands() != 2)
return false;
return ::isSplatMask(N);
}
/// isSplatLoMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a splat of zero element.
bool X86::isSplatLoMask(SDNode *N) {
assert(N->getOpcode() == ISD::BUILD_VECTOR);
for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
if (!isUndefOrEqual(N->getOperand(i), 0))
return false;
return true;
}
/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
/// instructions.
unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
unsigned NumOperands = N->getNumOperands();
unsigned Shift = (NumOperands == 4) ? 2 : 1;
unsigned Mask = 0;
for (unsigned i = 0; i < NumOperands; ++i) {
unsigned Val = 0;
SDOperand Arg = N->getOperand(NumOperands-i-1);
if (Arg.getOpcode() != ISD::UNDEF)
Val = cast<ConstantSDNode>(Arg)->getValue();
if (Val >= NumOperands) Val -= NumOperands;
Mask |= Val;
if (i != NumOperands - 1)
Mask <<= Shift;
}
return Mask;
}
/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
/// instructions.
unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
unsigned Mask = 0;
// 8 nodes, but we only care about the last 4.
for (unsigned i = 7; i >= 4; --i) {
unsigned Val = 0;
SDOperand Arg = N->getOperand(i);
if (Arg.getOpcode() != ISD::UNDEF)
Val = cast<ConstantSDNode>(Arg)->getValue();
Mask |= (Val - 4);
if (i != 4)
Mask <<= 2;
}
return Mask;
}
/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
/// instructions.
unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
unsigned Mask = 0;
// 8 nodes, but we only care about the first 4.
for (int i = 3; i >= 0; --i) {
unsigned Val = 0;
SDOperand Arg = N->getOperand(i);
if (Arg.getOpcode() != ISD::UNDEF)
Val = cast<ConstantSDNode>(Arg)->getValue();
Mask |= Val;
if (i != 0)
Mask <<= 2;
}
return Mask;
}
/// isPSHUFHW_PSHUFLWMask - true if the specified VECTOR_SHUFFLE operand
/// specifies a 8 element shuffle that can be broken into a pair of
/// PSHUFHW and PSHUFLW.
static bool isPSHUFHW_PSHUFLWMask(SDNode *N) {
assert(N->getOpcode() == ISD::BUILD_VECTOR);
if (N->getNumOperands() != 8)
return false;
// Lower quadword shuffled.
for (unsigned i = 0; i != 4; ++i) {
SDOperand Arg = N->getOperand(i);
if (Arg.getOpcode() == ISD::UNDEF) continue;
assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
if (Val > 4)
return false;
}
// Upper quadword shuffled.
for (unsigned i = 4; i != 8; ++i) {
SDOperand Arg = N->getOperand(i);
if (Arg.getOpcode() == ISD::UNDEF) continue;
assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
if (Val < 4 || Val > 7)
return false;
}
return true;
}
/// CommuteVectorShuffle - Swap vector_shuffle operandsas well as
/// values in ther permute mask.
static SDOperand CommuteVectorShuffle(SDOperand Op, SDOperand &V1,
SDOperand &V2, SDOperand &Mask,
SelectionDAG &DAG) {
MVT::ValueType VT = Op.getValueType();
MVT::ValueType MaskVT = Mask.getValueType();
MVT::ValueType EltVT = MVT::getVectorBaseType(MaskVT);
unsigned NumElems = Mask.getNumOperands();
std::vector<SDOperand> MaskVec;
for (unsigned i = 0; i != NumElems; ++i) {
SDOperand Arg = Mask.getOperand(i);
if (Arg.getOpcode() == ISD::UNDEF) {
MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
continue;
}
assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
if (Val < NumElems)
MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
else
MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
}
std::swap(V1, V2);
Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
}
/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
/// match movhlps. The lower half elements should come from upper half of
/// V1 (and in order), and the upper half elements should come from the upper
/// half of V2 (and in order).
static bool ShouldXformToMOVHLPS(SDNode *Mask) {
unsigned NumElems = Mask->getNumOperands();
if (NumElems != 4)
return false;
for (unsigned i = 0, e = 2; i != e; ++i)
if (!isUndefOrEqual(Mask->getOperand(i), i+2))
return false;
for (unsigned i = 2; i != 4; ++i)
if (!isUndefOrEqual(Mask->getOperand(i), i+4))
return false;
return true;
}
/// isScalarLoadToVector - Returns true if the node is a scalar load that
/// is promoted to a vector.
static inline bool isScalarLoadToVector(SDNode *N) {
if (N->getOpcode() == ISD::SCALAR_TO_VECTOR) {
N = N->getOperand(0).Val;
return ISD::isNON_EXTLoad(N);
}
return false;
}
/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
/// match movlp{s|d}. The lower half elements should come from lower half of
/// V1 (and in order), and the upper half elements should come from the upper
/// half of V2 (and in order). And since V1 will become the source of the
/// MOVLP, it must be either a vector load or a scalar load to vector.
static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, SDNode *Mask) {
if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
return false;
// Is V2 is a vector load, don't do this transformation. We will try to use
// load folding shufps op.
if (ISD::isNON_EXTLoad(V2))
return false;
unsigned NumElems = Mask->getNumOperands();
if (NumElems != 2 && NumElems != 4)
return false;
for (unsigned i = 0, e = NumElems/2; i != e; ++i)
if (!isUndefOrEqual(Mask->getOperand(i), i))
return false;
for (unsigned i = NumElems/2; i != NumElems; ++i)
if (!isUndefOrEqual(Mask->getOperand(i), i+NumElems))
return false;
return true;
}
/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
/// all the same.
static bool isSplatVector(SDNode *N) {
if (N->getOpcode() != ISD::BUILD_VECTOR)
return false;
SDOperand SplatValue = N->getOperand(0);
for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
if (N->getOperand(i) != SplatValue)
return false;
return true;
}
/// isUndefShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
/// to an undef.
static bool isUndefShuffle(SDNode *N) {
if (N->getOpcode() != ISD::BUILD_VECTOR)
return false;
SDOperand V1 = N->getOperand(0);
SDOperand V2 = N->getOperand(1);
SDOperand Mask = N->getOperand(2);
unsigned NumElems = Mask.getNumOperands();
for (unsigned i = 0; i != NumElems; ++i) {
SDOperand Arg = Mask.getOperand(i);
if (Arg.getOpcode() != ISD::UNDEF) {
unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
if (Val < NumElems && V1.getOpcode() != ISD::UNDEF)
return false;
else if (Val >= NumElems && V2.getOpcode() != ISD::UNDEF)
return false;
}
}
return true;
}
/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
/// that point to V2 points to its first element.
static SDOperand NormalizeMask(SDOperand Mask, SelectionDAG &DAG) {
assert(Mask.getOpcode() == ISD::BUILD_VECTOR);
bool Changed = false;
std::vector<SDOperand> MaskVec;
unsigned NumElems = Mask.getNumOperands();
for (unsigned i = 0; i != NumElems; ++i) {
SDOperand Arg = Mask.getOperand(i);
if (Arg.getOpcode() != ISD::UNDEF) {
unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
if (Val > NumElems) {
Arg = DAG.getConstant(NumElems, Arg.getValueType());
Changed = true;
}
}
MaskVec.push_back(Arg);
}
if (Changed)
Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(),
&MaskVec[0], MaskVec.size());
return Mask;
}
/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
/// operation of specified width.
static SDOperand getMOVLMask(unsigned NumElems, SelectionDAG &DAG) {
MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT);
std::vector<SDOperand> MaskVec;
MaskVec.push_back(DAG.getConstant(NumElems, BaseVT));
for (unsigned i = 1; i != NumElems; ++i)
MaskVec.push_back(DAG.getConstant(i, BaseVT));
return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
}
/// getUnpacklMask - Returns a vector_shuffle mask for an unpackl operation
/// of specified width.
static SDOperand getUnpacklMask(unsigned NumElems, SelectionDAG &DAG) {
MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT);
std::vector<SDOperand> MaskVec;
for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
MaskVec.push_back(DAG.getConstant(i, BaseVT));
MaskVec.push_back(DAG.getConstant(i + NumElems, BaseVT));
}
return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
}
/// getUnpackhMask - Returns a vector_shuffle mask for an unpackh operation
/// of specified width.
static SDOperand getUnpackhMask(unsigned NumElems, SelectionDAG &DAG) {
MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT);
unsigned Half = NumElems/2;
std::vector<SDOperand> MaskVec;
for (unsigned i = 0; i != Half; ++i) {
MaskVec.push_back(DAG.getConstant(i + Half, BaseVT));
MaskVec.push_back(DAG.getConstant(i + NumElems + Half, BaseVT));
}
return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
}
/// getZeroVector - Returns a vector of specified type with all zero elements.
///
static SDOperand getZeroVector(MVT::ValueType VT, SelectionDAG &DAG) {
assert(MVT::isVector(VT) && "Expected a vector type");
unsigned NumElems = getVectorNumElements(VT);
MVT::ValueType EVT = MVT::getVectorBaseType(VT);
bool isFP = MVT::isFloatingPoint(EVT);
SDOperand Zero = isFP ? DAG.getConstantFP(0.0, EVT) : DAG.getConstant(0, EVT);
std::vector<SDOperand> ZeroVec(NumElems, Zero);
return DAG.getNode(ISD::BUILD_VECTOR, VT, &ZeroVec[0], ZeroVec.size());
}
/// PromoteSplat - Promote a splat of v8i16 or v16i8 to v4i32.
///
static SDOperand PromoteSplat(SDOperand Op, SelectionDAG &DAG) {
SDOperand V1 = Op.getOperand(0);
SDOperand Mask = Op.getOperand(2);
MVT::ValueType VT = Op.getValueType();
unsigned NumElems = Mask.getNumOperands();
Mask = getUnpacklMask(NumElems, DAG);
while (NumElems != 4) {
V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, Mask);
NumElems >>= 1;
}
V1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, V1);
MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
Mask = getZeroVector(MaskVT, DAG);
SDOperand Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v4i32, V1,
DAG.getNode(ISD::UNDEF, MVT::v4i32), Mask);
return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle);
}
/// isZeroNode - Returns true if Elt is a constant zero or a floating point
/// constant +0.0.
static inline bool isZeroNode(SDOperand Elt) {
return ((isa<ConstantSDNode>(Elt) &&
cast<ConstantSDNode>(Elt)->getValue() == 0) ||
(isa<ConstantFPSDNode>(Elt) &&
cast<ConstantFPSDNode>(Elt)->isExactlyValue(0.0)));
}
/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
/// vector and zero or undef vector.
static SDOperand getShuffleVectorZeroOrUndef(SDOperand V2, MVT::ValueType VT,
unsigned NumElems, unsigned Idx,
bool isZero, SelectionDAG &DAG) {
SDOperand V1 = isZero ? getZeroVector(VT, DAG) : DAG.getNode(ISD::UNDEF, VT);
MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
MVT::ValueType EVT = MVT::getVectorBaseType(MaskVT);
SDOperand Zero = DAG.getConstant(0, EVT);
std::vector<SDOperand> MaskVec(NumElems, Zero);
MaskVec[Idx] = DAG.getConstant(NumElems, EVT);
SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
&MaskVec[0], MaskVec.size());
return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
}
/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
///
static SDOperand LowerBuildVectorv16i8(SDOperand Op, unsigned NonZeros,
unsigned NumNonZero, unsigned NumZero,
SelectionDAG &DAG, TargetLowering &TLI) {
if (NumNonZero > 8)
return SDOperand();
SDOperand V(0, 0);
bool First = true;
for (unsigned i = 0; i < 16; ++i) {
bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
if (ThisIsNonZero && First) {
if (NumZero)
V = getZeroVector(MVT::v8i16, DAG);
else
V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
First = false;
}
if ((i & 1) != 0) {
SDOperand ThisElt(0, 0), LastElt(0, 0);
bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
if (LastIsNonZero) {
LastElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i-1));
}
if (ThisIsNonZero) {
ThisElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i));
ThisElt = DAG.getNode(ISD::SHL, MVT::i16,
ThisElt, DAG.getConstant(8, MVT::i8));
if (LastIsNonZero)
ThisElt = DAG.getNode(ISD::OR, MVT::i16, ThisElt, LastElt);
} else
ThisElt = LastElt;
if (ThisElt.Val)
V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, ThisElt,
DAG.getConstant(i/2, TLI.getPointerTy()));
}
}
return DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, V);
}
/// LowerBuildVectorv16i8 - Custom lower build_vector of v8i16.
///
static SDOperand LowerBuildVectorv8i16(SDOperand Op, unsigned NonZeros,
unsigned NumNonZero, unsigned NumZero,
SelectionDAG &DAG, TargetLowering &TLI) {
if (NumNonZero > 4)
return SDOperand();
SDOperand V(0, 0);
bool First = true;
for (unsigned i = 0; i < 8; ++i) {
bool isNonZero = (NonZeros & (1 << i)) != 0;
if (isNonZero) {
if (First) {
if (NumZero)
V = getZeroVector(MVT::v8i16, DAG);
else
V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
First = false;
}
V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, Op.getOperand(i),
DAG.getConstant(i, TLI.getPointerTy()));
}
}
return V;
}
SDOperand
X86TargetLowering::LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
// All zero's are handled with pxor.
if (ISD::isBuildVectorAllZeros(Op.Val))
return Op;
// All one's are handled with pcmpeqd.
if (ISD::isBuildVectorAllOnes(Op.Val))
return Op;
MVT::ValueType VT = Op.getValueType();
MVT::ValueType EVT = MVT::getVectorBaseType(VT);
unsigned EVTBits = MVT::getSizeInBits(EVT);
unsigned NumElems = Op.getNumOperands();
unsigned NumZero = 0;
unsigned NumNonZero = 0;
unsigned NonZeros = 0;
std::set<SDOperand> Values;
for (unsigned i = 0; i < NumElems; ++i) {
SDOperand Elt = Op.getOperand(i);
if (Elt.getOpcode() != ISD::UNDEF) {
Values.insert(Elt);
if (isZeroNode(Elt))
NumZero++;
else {
NonZeros |= (1 << i);
NumNonZero++;
}
}
}
if (NumNonZero == 0)
// Must be a mix of zero and undef. Return a zero vector.
return getZeroVector(VT, DAG);
// Splat is obviously ok. Let legalizer expand it to a shuffle.
if (Values.size() == 1)
return SDOperand();
// Special case for single non-zero element.
if (NumNonZero == 1) {
unsigned Idx = CountTrailingZeros_32(NonZeros);
SDOperand Item = Op.getOperand(Idx);
Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
if (Idx == 0)
// Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
return getShuffleVectorZeroOrUndef(Item, VT, NumElems, Idx,
NumZero > 0, DAG);
if (EVTBits == 32) {
// Turn it into a shuffle of zero and zero-extended scalar to vector.
Item = getShuffleVectorZeroOrUndef(Item, VT, NumElems, 0, NumZero > 0,
DAG);
MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
MVT::ValueType MaskEVT = MVT::getVectorBaseType(MaskVT);
std::vector<SDOperand> MaskVec;
for (unsigned i = 0; i < NumElems; i++)
MaskVec.push_back(DAG.getConstant((i == Idx) ? 0 : 1, MaskEVT));
SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
&MaskVec[0], MaskVec.size());
return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Item,
DAG.getNode(ISD::UNDEF, VT), Mask);
}
}
// Let legalizer expand 2-wide build_vector's.
if (EVTBits == 64)
return SDOperand();
// If element VT is < 32 bits, convert it to inserts into a zero vector.
if (EVTBits == 8) {
SDOperand V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
*this);
if (V.Val) return V;
}
if (EVTBits == 16) {
SDOperand V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
*this);
if (V.Val) return V;
}
// If element VT is == 32 bits, turn it into a number of shuffles.
std::vector<SDOperand> V(NumElems);
if (NumElems == 4 && NumZero > 0) {
for (unsigned i = 0; i < 4; ++i) {
bool isZero = !(NonZeros & (1 << i));
if (isZero)
V[i] = getZeroVector(VT, DAG);
else
V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
}
for (unsigned i = 0; i < 2; ++i) {
switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
default: break;
case 0:
V[i] = V[i*2]; // Must be a zero vector.
break;
case 1:
V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2+1], V[i*2],
getMOVLMask(NumElems, DAG));
break;
case 2:
V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
getMOVLMask(NumElems, DAG));
break;
case 3:
V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
getUnpacklMask(NumElems, DAG));
break;
}
}
// Take advantage of the fact GR32 to VR128 scalar_to_vector (i.e. movd)
// clears the upper bits.
// FIXME: we can do the same for v4f32 case when we know both parts of
// the lower half come from scalar_to_vector (loadf32). We should do
// that in post legalizer dag combiner with target specific hooks.
if (MVT::isInteger(EVT) && (NonZeros & (0x3 << 2)) == 0)
return V[0];
MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
MVT::ValueType EVT = MVT::getVectorBaseType(MaskVT);
std::vector<SDOperand> MaskVec;
bool Reverse = (NonZeros & 0x3) == 2;
for (unsigned i = 0; i < 2; ++i)
if (Reverse)
MaskVec.push_back(DAG.getConstant(1-i, EVT));
else
MaskVec.push_back(DAG.getConstant(i, EVT));
Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
for (unsigned i = 0; i < 2; ++i)
if (Reverse)
MaskVec.push_back(DAG.getConstant(1-i+NumElems, EVT));
else
MaskVec.push_back(DAG.getConstant(i+NumElems, EVT));
SDOperand ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
&MaskVec[0], MaskVec.size());
return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[0], V[1], ShufMask);
}
if (Values.size() > 2) {
// Expand into a number of unpckl*.
// e.g. for v4f32
// Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
// : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
// Step 2: unpcklps X, Y ==> <3, 2, 1, 0>
SDOperand UnpckMask = getUnpacklMask(NumElems, DAG);
for (unsigned i = 0; i < NumElems; ++i)
V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
NumElems >>= 1;
while (NumElems != 0) {
for (unsigned i = 0; i < NumElems; ++i)
V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i], V[i + NumElems],
UnpckMask);
NumElems >>= 1;
}
return V[0];
}
return SDOperand();
}
SDOperand
X86TargetLowering::LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
SDOperand V1 = Op.getOperand(0);
SDOperand V2 = Op.getOperand(1);
SDOperand PermMask = Op.getOperand(2);
MVT::ValueType VT = Op.getValueType();
unsigned NumElems = PermMask.getNumOperands();
bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
bool V1IsSplat = false;
bool V2IsSplat = false;
if (isUndefShuffle(Op.Val))
return DAG.getNode(ISD::UNDEF, VT);
if (isSplatMask(PermMask.Val)) {
if (NumElems <= 4) return Op;
// Promote it to a v4i32 splat.
return PromoteSplat(Op, DAG);
}
if (X86::isMOVLMask(PermMask.Val))
return (V1IsUndef) ? V2 : Op;
if (X86::isMOVSHDUPMask(PermMask.Val) ||
X86::isMOVSLDUPMask(PermMask.Val) ||
X86::isMOVHLPSMask(PermMask.Val) ||
X86::isMOVHPMask(PermMask.Val) ||
X86::isMOVLPMask(PermMask.Val))
return Op;
if (ShouldXformToMOVHLPS(PermMask.Val) ||
ShouldXformToMOVLP(V1.Val, V2.Val, PermMask.Val))
return CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
bool Commuted = false;
V1IsSplat = isSplatVector(V1.Val);
V2IsSplat = isSplatVector(V2.Val);
if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
std::swap(V1IsSplat, V2IsSplat);
std::swap(V1IsUndef, V2IsUndef);
Commuted = true;
}
if (isCommutedMOVL(PermMask.Val, V2IsSplat, V2IsUndef)) {
if (V2IsUndef) return V1;
Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
if (V2IsSplat) {
// V2 is a splat, so the mask may be malformed. That is, it may point
// to any V2 element. The instruction selectior won't like this. Get
// a corrected mask and commute to form a proper MOVS{S|D}.
SDOperand NewMask = getMOVLMask(NumElems, DAG);
if (NewMask.Val != PermMask.Val)
Op = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
}
return Op;
}
if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
X86::isUNPCKLMask(PermMask.Val) ||
X86::isUNPCKHMask(PermMask.Val))
return Op;
if (V2IsSplat) {
// Normalize mask so all entries that point to V2 points to its first
// element then try to match unpck{h|l} again. If match, return a
// new vector_shuffle with the corrected mask.
SDOperand NewMask = NormalizeMask(PermMask, DAG);
if (NewMask.Val != PermMask.Val) {
if (X86::isUNPCKLMask(PermMask.Val, true)) {
SDOperand NewMask = getUnpacklMask(NumElems, DAG);
return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
} else if (X86::isUNPCKHMask(PermMask.Val, true)) {
SDOperand NewMask = getUnpackhMask(NumElems, DAG);
return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
}
}
}
// Normalize the node to match x86 shuffle ops if needed
if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(PermMask.Val))
Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
if (Commuted) {
// Commute is back and try unpck* again.
Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
X86::isUNPCKLMask(PermMask.Val) ||
X86::isUNPCKHMask(PermMask.Val))
return Op;
}
// If VT is integer, try PSHUF* first, then SHUFP*.
if (MVT::isInteger(VT)) {
if (X86::isPSHUFDMask(PermMask.Val) ||
X86::isPSHUFHWMask(PermMask.Val) ||
X86::isPSHUFLWMask(PermMask.Val)) {
if (V2.getOpcode() != ISD::UNDEF)
return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
return Op;
}
if (X86::isSHUFPMask(PermMask.Val))
return Op;
// Handle v8i16 shuffle high / low shuffle node pair.
if (VT == MVT::v8i16 && isPSHUFHW_PSHUFLWMask(PermMask.Val)) {
MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT);
std::vector<SDOperand> MaskVec;
for (unsigned i = 0; i != 4; ++i)
MaskVec.push_back(PermMask.getOperand(i));
for (unsigned i = 4; i != 8; ++i)
MaskVec.push_back(DAG.getConstant(i, BaseVT));
SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
&MaskVec[0], MaskVec.size());
V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
MaskVec.clear();
for (unsigned i = 0; i != 4; ++i)
MaskVec.push_back(DAG.getConstant(i, BaseVT));
for (unsigned i = 4; i != 8; ++i)
MaskVec.push_back(PermMask.getOperand(i));
Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0],MaskVec.size());
return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
}
} else {
// Floating point cases in the other order.
if (X86::isSHUFPMask(PermMask.Val))
return Op;
if (X86::isPSHUFDMask(PermMask.Val) ||
X86::isPSHUFHWMask(PermMask.Val) ||
X86::isPSHUFLWMask(PermMask.Val)) {
if (V2.getOpcode() != ISD::UNDEF)
return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
return Op;
}
}
if (NumElems == 4) {
MVT::ValueType MaskVT = PermMask.getValueType();
MVT::ValueType MaskEVT = MVT::getVectorBaseType(MaskVT);
std::vector<std::pair<int, int> > Locs;
Locs.reserve(NumElems);
std::vector<SDOperand> Mask1(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
std::vector<SDOperand> Mask2(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
unsigned NumHi = 0;
unsigned NumLo = 0;
// If no more than two elements come from either vector. This can be
// implemented with two shuffles. First shuffle gather the elements.
// The second shuffle, which takes the first shuffle as both of its
// vector operands, put the elements into the right order.
for (unsigned i = 0; i != NumElems; ++i) {
SDOperand Elt = PermMask.getOperand(i);
if (Elt.getOpcode() == ISD::UNDEF) {
Locs[i] = std::make_pair(-1, -1);
} else {
unsigned Val = cast<ConstantSDNode>(Elt)->getValue();
if (Val < NumElems) {
Locs[i] = std::make_pair(0, NumLo);
Mask1[NumLo] = Elt;
NumLo++;
} else {
Locs[i] = std::make_pair(1, NumHi);
if (2+NumHi < NumElems)
Mask1[2+NumHi] = Elt;
NumHi++;
}
}
}
if (NumLo <= 2 && NumHi <= 2) {
V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
&Mask1[0], Mask1.size()));
for (unsigned i = 0; i != NumElems; ++i) {
if (Locs[i].first == -1)
continue;
else {
unsigned Idx = (i < NumElems/2) ? 0 : NumElems;
Idx += Locs[i].first * (NumElems/2) + Locs[i].second;
Mask2[i] = DAG.getConstant(Idx, MaskEVT);
}
}
return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1,
DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
&Mask2[0], Mask2.size()));
}
// Break it into (shuffle shuffle_hi, shuffle_lo).
Locs.clear();
std::vector<SDOperand> LoMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
std::vector<SDOperand> HiMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
std::vector<SDOperand> *MaskPtr = &LoMask;
unsigned MaskIdx = 0;
unsigned LoIdx = 0;
unsigned HiIdx = NumElems/2;
for (unsigned i = 0; i != NumElems; ++i) {
if (i == NumElems/2) {
MaskPtr = &HiMask;
MaskIdx = 1;
LoIdx = 0;
HiIdx = NumElems/2;
}
SDOperand Elt = PermMask.getOperand(i);
if (Elt.getOpcode() == ISD::UNDEF) {
Locs[i] = std::make_pair(-1, -1);
} else if (cast<ConstantSDNode>(Elt)->getValue() < NumElems) {
Locs[i] = std::make_pair(MaskIdx, LoIdx);
(*MaskPtr)[LoIdx] = Elt;
LoIdx++;
} else {
Locs[i] = std::make_pair(MaskIdx, HiIdx);
(*MaskPtr)[HiIdx] = Elt;
HiIdx++;
}
}
SDOperand LoShuffle =
DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
&LoMask[0], LoMask.size()));
SDOperand HiShuffle =
DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
&HiMask[0], HiMask.size()));
std::vector<SDOperand> MaskOps;
for (unsigned i = 0; i != NumElems; ++i) {
if (Locs[i].first == -1) {
MaskOps.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
} else {
unsigned Idx = Locs[i].first * NumElems + Locs[i].second;
MaskOps.push_back(DAG.getConstant(Idx, MaskEVT));
}
}
return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, LoShuffle, HiShuffle,
DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
&MaskOps[0], MaskOps.size()));
}
return SDOperand();
}
SDOperand
X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
if (!isa<ConstantSDNode>(Op.getOperand(1)))
return SDOperand();
MVT::ValueType VT = Op.getValueType();
// TODO: handle v16i8.
if (MVT::getSizeInBits(VT) == 16) {
// Transform it so it match pextrw which produces a 32-bit result.
MVT::ValueType EVT = (MVT::ValueType)(VT+1);
SDOperand Extract = DAG.getNode(X86ISD::PEXTRW, EVT,
Op.getOperand(0), Op.getOperand(1));
SDOperand Assert = DAG.getNode(ISD::AssertZext, EVT, Extract,
DAG.getValueType(VT));
return DAG.getNode(ISD::TRUNCATE, VT, Assert);
} else if (MVT::getSizeInBits(VT) == 32) {
SDOperand Vec = Op.getOperand(0);
unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
if (Idx == 0)
return Op;
// SHUFPS the element to the lowest double word, then movss.
MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
std::vector<SDOperand> IdxVec;
IdxVec.push_back(DAG.getConstant(Idx, MVT::getVectorBaseType(MaskVT)));
IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(MaskVT)));
IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(MaskVT)));
IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(MaskVT)));
SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
&IdxVec[0], IdxVec.size());
Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
DAG.getConstant(0, getPointerTy()));
} else if (MVT::getSizeInBits(VT) == 64) {
SDOperand Vec = Op.getOperand(0);
unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
if (Idx == 0)
return Op;
// UNPCKHPD the element to the lowest double word, then movsd.
// Note if the lower 64 bits of the result of the UNPCKHPD is then stored
// to a f64mem, the whole operation is folded into a single MOVHPDmr.
MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
std::vector<SDOperand> IdxVec;
IdxVec.push_back(DAG.getConstant(1, MVT::getVectorBaseType(MaskVT)));
IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(MaskVT)));
SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
&IdxVec[0], IdxVec.size());
Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
DAG.getConstant(0, getPointerTy()));
}
return SDOperand();
}
SDOperand
X86TargetLowering::LowerINSERT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
// Transform it so it match pinsrw which expects a 16-bit value in a GR32
// as its second argument.
MVT::ValueType VT = Op.getValueType();
MVT::ValueType BaseVT = MVT::getVectorBaseType(VT);
SDOperand N0 = Op.getOperand(0);
SDOperand N1 = Op.getOperand(1);
SDOperand N2 = Op.getOperand(2);
if (MVT::getSizeInBits(BaseVT) == 16) {
if (N1.getValueType() != MVT::i32)
N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
if (N2.getValueType() != MVT::i32)
N2 = DAG.getConstant(cast<ConstantSDNode>(N2)->getValue(), MVT::i32);
return DAG.getNode(X86ISD::PINSRW, VT, N0, N1, N2);
} else if (MVT::getSizeInBits(BaseVT) == 32) {
unsigned Idx = cast<ConstantSDNode>(N2)->getValue();
if (Idx == 0) {
// Use a movss.
N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, N1);
MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT);
std::vector<SDOperand> MaskVec;
MaskVec.push_back(DAG.getConstant(4, BaseVT));
for (unsigned i = 1; i <= 3; ++i)
MaskVec.push_back(DAG.getConstant(i, BaseVT));
return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, N0, N1,
DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
&MaskVec[0], MaskVec.size()));
} else {
// Use two pinsrw instructions to insert a 32 bit value.
Idx <<= 1;
if (MVT::isFloatingPoint(N1.getValueType())) {
if (ISD::isNON_EXTLoad(N1.Val)) {
// Just load directly from f32mem to GR32.
LoadSDNode *LD = cast<LoadSDNode>(N1);
N1 = DAG.getLoad(MVT::i32, LD->getChain(), LD->getBasePtr(),
LD->getSrcValue(), LD->getSrcValueOffset());
} else {
N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v4f32, N1);
N1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, N1);
N1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32, N1,
DAG.getConstant(0, getPointerTy()));
}
}
N0 = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, N0);
N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1,
DAG.getConstant(Idx, getPointerTy()));
N1 = DAG.getNode(ISD::SRL, MVT::i32, N1, DAG.getConstant(16, MVT::i8));
N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1,
DAG.getConstant(Idx+1, getPointerTy()));
return DAG.getNode(ISD::BIT_CONVERT, VT, N0);
}
}
return SDOperand();
}
SDOperand
X86TargetLowering::LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
SDOperand AnyExt = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, Op.getOperand(0));
return DAG.getNode(X86ISD::S2VEC, Op.getValueType(), AnyExt);
}
// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
// one of the above mentioned nodes. It has to be wrapped because otherwise
// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
// be used to form addressing mode. These wrapped nodes will be selected
// into MOV32ri.
SDOperand
X86TargetLowering::LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
SDOperand Result = DAG.getTargetConstantPool(CP->getConstVal(),
getPointerTy(),
CP->getAlignment());
// Use X86ISD::WrapperRIP if we are in X86-64 small / medium PIC mode.
TargetMachine &tm = getTargetMachine();
unsigned WrapperOpcode = (Subtarget->is64Bit() &&
(tm.getCodeModel() == CodeModel::Small ||
tm.getCodeModel() == CodeModel::Medium) &&
tm.getRelocationModel() == Reloc::PIC_)
? X86ISD::WrapperRIP : X86ISD::Wrapper;
Result = DAG.getNode(WrapperOpcode, getPointerTy(), Result);
if (Subtarget->isTargetDarwin()) {
// With PIC, the address is actually $g + Offset.
if (!Subtarget->is64Bit() &&
getTargetMachine().getRelocationModel() == Reloc::PIC_)
Result = DAG.getNode(ISD::ADD, getPointerTy(),
DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()), Result);
}
return Result;
}
SDOperand
X86TargetLowering::LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
SDOperand Result = DAG.getTargetGlobalAddress(GV, getPointerTy());
// Use X86ISD::WrapperRIP if we are in X86-64 small / medium PIC mode.
TargetMachine &tm = getTargetMachine();
unsigned WrapperOpcode = (Subtarget->is64Bit() &&
(tm.getCodeModel() == CodeModel::Small ||
tm.getCodeModel() == CodeModel::Medium) &&
tm.getRelocationModel() == Reloc::PIC_)
? X86ISD::WrapperRIP : X86ISD::Wrapper;
Result = DAG.getNode(WrapperOpcode, getPointerTy(), Result);
if (Subtarget->isTargetDarwin()) {
// With PIC, the address is actually $g + Offset.
if (!Subtarget->is64Bit() &&
getTargetMachine().getRelocationModel() == Reloc::PIC_)
Result = DAG.getNode(ISD::ADD, getPointerTy(),
DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
Result);
// For Darwin, external and weak symbols are indirect, so we want to load
// the value at address GV, not the value of GV itself. This means that
// the GlobalAddress must be in the base or index register of the address,
// not the GV offset field.
if (getTargetMachine().getRelocationModel() != Reloc::Static &&
Subtarget->GVRequiresExtraLoad(GV, false))
Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), Result, NULL, 0);
} else if (Subtarget->GVRequiresExtraLoad(GV, false)) {
Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), Result, NULL, 0);
}
return Result;
}
SDOperand
X86TargetLowering::LowerExternalSymbol(SDOperand Op, SelectionDAG &DAG) {
const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
SDOperand Result = DAG.getTargetExternalSymbol(Sym, getPointerTy());
// Use X86ISD::WrapperRIP if we are in X86-64 small / medium PIC mode.
TargetMachine &tm = getTargetMachine();
unsigned WrapperOpcode = (Subtarget->is64Bit() &&
(tm.getCodeModel() == CodeModel::Small ||
tm.getCodeModel() == CodeModel::Medium) &&
tm.getRelocationModel() == Reloc::PIC_)
? X86ISD::WrapperRIP : X86ISD::Wrapper;
Result = DAG.getNode(WrapperOpcode, getPointerTy(), Result);
if (Subtarget->isTargetDarwin()) {
// With PIC, the address is actually $g + Offset.
if (!Subtarget->is64Bit() &&
getTargetMachine().getRelocationModel() == Reloc::PIC_)
Result = DAG.getNode(ISD::ADD, getPointerTy(),
DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
Result);
}
return Result;
}
SDOperand X86TargetLowering::LowerShift(SDOperand Op, SelectionDAG &DAG) {
assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
"Not an i64 shift!");
bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
SDOperand ShOpLo = Op.getOperand(0);
SDOperand ShOpHi = Op.getOperand(1);
SDOperand ShAmt = Op.getOperand(2);
SDOperand Tmp1 = isSRA ?
DAG.getNode(ISD::SRA, MVT::i32, ShOpHi, DAG.getConstant(31, MVT::i8)) :
DAG.getConstant(0, MVT::i32);
SDOperand Tmp2, Tmp3;
if (Op.getOpcode() == ISD::SHL_PARTS) {
Tmp2 = DAG.getNode(X86ISD::SHLD, MVT::i32, ShOpHi, ShOpLo, ShAmt);
Tmp3 = DAG.getNode(ISD::SHL, MVT::i32, ShOpLo, ShAmt);
} else {
Tmp2 = DAG.getNode(X86ISD::SHRD, MVT::i32, ShOpLo, ShOpHi, ShAmt);
Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, MVT::i32, ShOpHi, ShAmt);
}
const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
SDOperand AndNode = DAG.getNode(ISD::AND, MVT::i8, ShAmt,
DAG.getConstant(32, MVT::i8));
SDOperand COps[]={DAG.getEntryNode(), AndNode, DAG.getConstant(0, MVT::i8)};
SDOperand InFlag = DAG.getNode(X86ISD::CMP, VTs, 2, COps, 3).getValue(1);
SDOperand Hi, Lo;
SDOperand CC = DAG.getConstant(X86::COND_NE, MVT::i8);
VTs = DAG.getNodeValueTypes(MVT::i32, MVT::Flag);
SmallVector<SDOperand, 4> Ops;
if (Op.getOpcode() == ISD::SHL_PARTS) {
Ops.push_back(Tmp2);
Ops.push_back(Tmp3);
Ops.push_back(CC);
Ops.push_back(InFlag);
Hi = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
InFlag = Hi.getValue(1);
Ops.clear();
Ops.push_back(Tmp3);
Ops.push_back(Tmp1);
Ops.push_back(CC);
Ops.push_back(InFlag);
Lo = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
} else {
Ops.push_back(Tmp2);
Ops.push_back(Tmp3);
Ops.push_back(CC);
Ops.push_back(InFlag);
Lo = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
InFlag = Lo.getValue(1);
Ops.clear();
Ops.push_back(Tmp3);
Ops.push_back(Tmp1);
Ops.push_back(CC);
Ops.push_back(InFlag);
Hi = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
}
VTs = DAG.getNodeValueTypes(MVT::i32, MVT::i32);
Ops.clear();
Ops.push_back(Lo);
Ops.push_back(Hi);
return DAG.getNode(ISD::MERGE_VALUES, VTs, 2, &Ops[0], Ops.size());
}
SDOperand X86TargetLowering::LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
assert(Op.getOperand(0).getValueType() <= MVT::i64 &&
Op.getOperand(0).getValueType() >= MVT::i16 &&
"Unknown SINT_TO_FP to lower!");
SDOperand Result;
MVT::ValueType SrcVT = Op.getOperand(0).getValueType();
unsigned Size = MVT::getSizeInBits(SrcVT)/8;
MachineFunction &MF = DAG.getMachineFunction();
int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Op.getOperand(0),
StackSlot, NULL, 0);
// Build the FILD
std::vector<MVT::ValueType> Tys;
Tys.push_back(MVT::f64);
Tys.push_back(MVT::Other);
if (X86ScalarSSE) Tys.push_back(MVT::Flag);
std::vector<SDOperand> Ops;
Ops.push_back(Chain);
Ops.push_back(StackSlot);
Ops.push_back(DAG.getValueType(SrcVT));
Result = DAG.getNode(X86ScalarSSE ? X86ISD::FILD_FLAG :X86ISD::FILD,
Tys, &Ops[0], Ops.size());
if (X86ScalarSSE) {
Chain = Result.getValue(1);
SDOperand InFlag = Result.getValue(2);
// FIXME: Currently the FST is flagged to the FILD_FLAG. This
// shouldn't be necessary except that RFP cannot be live across
// multiple blocks. When stackifier is fixed, they can be uncoupled.
MachineFunction &MF = DAG.getMachineFunction();
int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
std::vector<MVT::ValueType> Tys;
Tys.push_back(MVT::Other);
std::vector<SDOperand> Ops;
Ops.push_back(Chain);
Ops.push_back(Result);
Ops.push_back(StackSlot);
Ops.push_back(DAG.getValueType(Op.getValueType()));
Ops.push_back(InFlag);
Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot, NULL, 0);
}
return Result;
}
SDOperand X86TargetLowering::LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
assert(Op.getValueType() <= MVT::i64 && Op.getValueType() >= MVT::i16 &&
"Unknown FP_TO_SINT to lower!");
// We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
// stack slot.
MachineFunction &MF = DAG.getMachineFunction();
unsigned MemSize = MVT::getSizeInBits(Op.getValueType())/8;
int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
unsigned Opc;
switch (Op.getValueType()) {
default: assert(0 && "Invalid FP_TO_SINT to lower!");
case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
}
SDOperand Chain = DAG.getEntryNode();
SDOperand Value = Op.getOperand(0);
if (X86ScalarSSE) {
assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!");
Chain = DAG.getStore(Chain, Value, StackSlot, NULL, 0);
std::vector<MVT::ValueType> Tys;
Tys.push_back(MVT::f64);
Tys.push_back(MVT::Other);
std::vector<SDOperand> Ops;
Ops.push_back(Chain);
Ops.push_back(StackSlot);
Ops.push_back(DAG.getValueType(Op.getOperand(0).getValueType()));
Value = DAG.getNode(X86ISD::FLD, Tys, &Ops[0], Ops.size());
Chain = Value.getValue(1);
SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
}
// Build the FP_TO_INT*_IN_MEM
std::vector<SDOperand> Ops;
Ops.push_back(Chain);
Ops.push_back(Value);
Ops.push_back(StackSlot);
SDOperand FIST = DAG.getNode(Opc, MVT::Other, &Ops[0], Ops.size());
// Load the result.
return DAG.getLoad(Op.getValueType(), FIST, StackSlot, NULL, 0);
}
SDOperand X86TargetLowering::LowerFABS(SDOperand Op, SelectionDAG &DAG) {
MVT::ValueType VT = Op.getValueType();
const Type *OpNTy = MVT::getTypeForValueType(VT);
std::vector<Constant*> CV;
if (VT == MVT::f64) {
CV.push_back(ConstantFP::get(OpNTy, BitsToDouble(~(1ULL << 63))));
CV.push_back(ConstantFP::get(OpNTy, 0.0));
} else {
CV.push_back(ConstantFP::get(OpNTy, BitsToFloat(~(1U << 31))));
CV.push_back(ConstantFP::get(OpNTy, 0.0));
CV.push_back(ConstantFP::get(OpNTy, 0.0));
CV.push_back(ConstantFP::get(OpNTy, 0.0));
}
Constant *CS = ConstantStruct::get(CV);
SDOperand CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4);
std::vector<MVT::ValueType> Tys;
Tys.push_back(VT);
Tys.push_back(MVT::Other);
SmallVector<SDOperand, 3> Ops;
Ops.push_back(DAG.getEntryNode());
Ops.push_back(CPIdx);
Ops.push_back(DAG.getSrcValue(NULL));
SDOperand Mask = DAG.getNode(X86ISD::LOAD_PACK, Tys, &Ops[0], Ops.size());
return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask);
}
SDOperand X86TargetLowering::LowerFNEG(SDOperand Op, SelectionDAG &DAG) {
MVT::ValueType VT = Op.getValueType();
const Type *OpNTy = MVT::getTypeForValueType(VT);
std::vector<Constant*> CV;
if (VT == MVT::f64) {
CV.push_back(ConstantFP::get(OpNTy, BitsToDouble(1ULL << 63)));
CV.push_back(ConstantFP::get(OpNTy, 0.0));
} else {
CV.push_back(ConstantFP::get(OpNTy, BitsToFloat(1U << 31)));
CV.push_back(ConstantFP::get(OpNTy, 0.0));
CV.push_back(ConstantFP::get(OpNTy, 0.0));
CV.push_back(ConstantFP::get(OpNTy, 0.0));
}
Constant *CS = ConstantStruct::get(CV);
SDOperand CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4);
std::vector<MVT::ValueType> Tys;
Tys.push_back(VT);
Tys.push_back(MVT::Other);
SmallVector<SDOperand, 3> Ops;
Ops.push_back(DAG.getEntryNode());
Ops.push_back(CPIdx);
Ops.push_back(DAG.getSrcValue(NULL));
SDOperand Mask = DAG.getNode(X86ISD::LOAD_PACK, Tys, &Ops[0], Ops.size());
return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask);
}
SDOperand X86TargetLowering::LowerSETCC(SDOperand Op, SelectionDAG &DAG,
SDOperand Chain) {
assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
SDOperand Cond;
SDOperand Op0 = Op.getOperand(0);
SDOperand Op1 = Op.getOperand(1);
SDOperand CC = Op.getOperand(2);
ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
const MVT::ValueType *VTs1 = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
const MVT::ValueType *VTs2 = DAG.getNodeValueTypes(MVT::i8, MVT::Flag);
bool isFP = MVT::isFloatingPoint(Op.getOperand(1).getValueType());
unsigned X86CC;
if (translateX86CC(cast<CondCodeSDNode>(CC)->get(), isFP, X86CC,
Op0, Op1, DAG)) {
SDOperand Ops1[] = { Chain, Op0, Op1 };
Cond = DAG.getNode(X86ISD::CMP, VTs1, 2, Ops1, 3).getValue(1);
SDOperand Ops2[] = { DAG.getConstant(X86CC, MVT::i8), Cond };
return DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
}
assert(isFP && "Illegal integer SetCC!");
SDOperand COps[] = { Chain, Op0, Op1 };
Cond = DAG.getNode(X86ISD::CMP, VTs1, 2, COps, 3).getValue(1);
switch (SetCCOpcode) {
default: assert(false && "Illegal floating point SetCC!");
case ISD::SETOEQ: { // !PF & ZF
SDOperand Ops1[] = { DAG.getConstant(X86::COND_NP, MVT::i8), Cond };
SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops1, 2);
SDOperand Ops2[] = { DAG.getConstant(X86::COND_E, MVT::i8),
Tmp1.getValue(1) };
SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2);
}
case ISD::SETUNE: { // PF | !ZF
SDOperand Ops1[] = { DAG.getConstant(X86::COND_P, MVT::i8), Cond };
SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops1, 2);
SDOperand Ops2[] = { DAG.getConstant(X86::COND_NE, MVT::i8),
Tmp1.getValue(1) };
SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2);
}
}
}
SDOperand X86TargetLowering::LowerSELECT(SDOperand Op, SelectionDAG &DAG) {
bool addTest = true;
SDOperand Chain = DAG.getEntryNode();
SDOperand Cond = Op.getOperand(0);
SDOperand CC;
const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
if (Cond.getOpcode() == ISD::SETCC)
Cond = LowerSETCC(Cond, DAG, Chain);
if (Cond.getOpcode() == X86ISD::SETCC) {
CC = Cond.getOperand(0);
// If condition flag is set by a X86ISD::CMP, then make a copy of it
// (since flag operand cannot be shared). Use it as the condition setting
// operand in place of the X86ISD::SETCC.
// If the X86ISD::SETCC has more than one use, then perhaps it's better
// to use a test instead of duplicating the X86ISD::CMP (for register
// pressure reason)?
SDOperand Cmp = Cond.getOperand(1);
unsigned Opc = Cmp.getOpcode();
bool IllegalFPCMov = !X86ScalarSSE &&
MVT::isFloatingPoint(Op.getValueType()) &&
!hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
if ((Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI) &&
!IllegalFPCMov) {
SDOperand Ops[] = { Chain, Cmp.getOperand(1), Cmp.getOperand(2) };
Cond = DAG.getNode(Opc, VTs, 2, Ops, 3);
addTest = false;
}
}
if (addTest) {
CC = DAG.getConstant(X86::COND_NE, MVT::i8);
SDOperand Ops[] = { Chain, Cond, DAG.getConstant(0, MVT::i8) };
Cond = DAG.getNode(X86ISD::CMP, VTs, 2, Ops, 3);
}
VTs = DAG.getNodeValueTypes(Op.getValueType(), MVT::Flag);
SmallVector<SDOperand, 4> Ops;
// X86ISD::CMOV means set the result (which is operand 1) to the RHS if
// condition is true.
Ops.push_back(Op.getOperand(2));
Ops.push_back(Op.getOperand(1));
Ops.push_back(CC);
Ops.push_back(Cond.getValue(1));
return DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
}
SDOperand X86TargetLowering::LowerBRCOND(SDOperand Op, SelectionDAG &DAG) {
bool addTest = true;
SDOperand Chain = Op.getOperand(0);
SDOperand Cond = Op.getOperand(1);
SDOperand Dest = Op.getOperand(2);
SDOperand CC;
const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
if (Cond.getOpcode() == ISD::SETCC)
Cond = LowerSETCC(Cond, DAG, Chain);
if (Cond.getOpcode() == X86ISD::SETCC) {
CC = Cond.getOperand(0);
// If condition flag is set by a X86ISD::CMP, then make a copy of it
// (since flag operand cannot be shared). Use it as the condition setting
// operand in place of the X86ISD::SETCC.
// If the X86ISD::SETCC has more than one use, then perhaps it's better
// to use a test instead of duplicating the X86ISD::CMP (for register
// pressure reason)?
SDOperand Cmp = Cond.getOperand(1);
unsigned Opc = Cmp.getOpcode();
if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI) {
SDOperand Ops[] = { Chain, Cmp.getOperand(1), Cmp.getOperand(2) };
Cond = DAG.getNode(Opc, VTs, 2, Ops, 3);
addTest = false;
}
}
if (addTest) {
CC = DAG.getConstant(X86::COND_NE, MVT::i8);
SDOperand Ops[] = { Chain, Cond, DAG.getConstant(0, MVT::i8) };
Cond = DAG.getNode(X86ISD::CMP, VTs, 2, Ops, 3);
}
return DAG.getNode(X86ISD::BRCOND, Op.getValueType(),
Cond, Op.getOperand(2), CC, Cond.getValue(1));
}
SDOperand X86TargetLowering::LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
SDOperand Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy());
// Use X86ISD::WrapperRIP if we are in X86-64 small / medium PIC mode.
TargetMachine &tm = getTargetMachine();
unsigned WrapperOpcode = (Subtarget->is64Bit() &&
(tm.getCodeModel() == CodeModel::Small ||
tm.getCodeModel() == CodeModel::Medium) &&
tm.getRelocationModel() == Reloc::PIC_)
? X86ISD::WrapperRIP : X86ISD::Wrapper;
Result = DAG.getNode(WrapperOpcode, getPointerTy(), Result);
if (Subtarget->isTargetDarwin()) {
// With PIC, the address is actually $g + Offset.
if (!Subtarget->is64Bit() &&
getTargetMachine().getRelocationModel() == Reloc::PIC_)
Result = DAG.getNode(ISD::ADD, getPointerTy(),
DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
Result);
}
return Result;
}
SDOperand X86TargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG) {
unsigned CallingConv= cast<ConstantSDNode>(Op.getOperand(1))->getValue();
if (Subtarget->is64Bit())
return LowerX86_64CCCCallTo(Op, DAG);
else
switch (CallingConv) {
default:
assert(0 && "Unsupported calling convention");
case CallingConv::Fast:
if (EnableFastCC) {
return LowerFastCCCallTo(Op, DAG, false);
}
// Falls through
case CallingConv::C:
case CallingConv::CSRet:
return LowerCCCCallTo(Op, DAG);
case CallingConv::X86_StdCall:
return LowerStdCallCCCallTo(Op, DAG);
case CallingConv::X86_FastCall:
return LowerFastCCCallTo(Op, DAG, true);
}
}
SDOperand X86TargetLowering::LowerRET(SDOperand Op, SelectionDAG &DAG) {
SDOperand Copy;
switch(Op.getNumOperands()) {
default:
assert(0 && "Do not know how to return this many arguments!");
abort();
case 1: // ret void.
return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Op.getOperand(0),
DAG.getConstant(getBytesToPopOnReturn(), MVT::i16));
case 3: {
MVT::ValueType ArgVT = Op.getOperand(1).getValueType();
if (MVT::isVector(ArgVT) ||
(Subtarget->is64Bit() && MVT::isFloatingPoint(ArgVT))) {
// Integer or FP vector result -> XMM0.
if (DAG.getMachineFunction().liveout_empty())
DAG.getMachineFunction().addLiveOut(X86::XMM0);
Copy = DAG.getCopyToReg(Op.getOperand(0), X86::XMM0, Op.getOperand(1),
SDOperand());
} else if (MVT::isInteger(ArgVT)) {
// Integer result -> EAX / RAX.
// The C calling convention guarantees the return value has been
// promoted to at least MVT::i32. The X86-64 ABI doesn't require the
// value to be promoted MVT::i64. So we don't have to extend it to
// 64-bit. Return the value in EAX, but mark RAX as liveout.
unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
if (DAG.getMachineFunction().liveout_empty())
DAG.getMachineFunction().addLiveOut(Reg);
Reg = (ArgVT == MVT::i64) ? X86::RAX : X86::EAX;
Copy = DAG.getCopyToReg(Op.getOperand(0), Reg, Op.getOperand(1),
SDOperand());
} else if (!X86ScalarSSE) {
// FP return with fp-stack value.
if (DAG.getMachineFunction().liveout_empty())
DAG.getMachineFunction().addLiveOut(X86::ST0);
std::vector<MVT::ValueType> Tys;
Tys.push_back(MVT::Other);
Tys.push_back(MVT::Flag);
std::vector<SDOperand> Ops;
Ops.push_back(Op.getOperand(0));
Ops.push_back(Op.getOperand(1));
Copy = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, &Ops[0], Ops.size());
} else {
// FP return with ScalarSSE (return on fp-stack).
if (DAG.getMachineFunction().liveout_empty())
DAG.getMachineFunction().addLiveOut(X86::ST0);
SDOperand MemLoc;
SDOperand Chain = Op.getOperand(0);
SDOperand Value = Op.getOperand(1);
if (ISD::isNON_EXTLoad(Value.Val) &&
(Chain == Value.getValue(1) || Chain == Value.getOperand(0))) {
Chain = Value.getOperand(0);
MemLoc = Value.getOperand(1);
} else {
// Spill the value to memory and reload it into top of stack.
unsigned Size = MVT::getSizeInBits(ArgVT)/8;
MachineFunction &MF = DAG.getMachineFunction();
int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
MemLoc = DAG.getFrameIndex(SSFI, getPointerTy());
Chain = DAG.getStore(Op.getOperand(0), Value, MemLoc, NULL, 0);
}
std::vector<MVT::ValueType> Tys;
Tys.push_back(MVT::f64);
Tys.push_back(MVT::Other);
std::vector<SDOperand> Ops;
Ops.push_back(Chain);
Ops.push_back(MemLoc);
Ops.push_back(DAG.getValueType(ArgVT));
Copy = DAG.getNode(X86ISD::FLD, Tys, &Ops[0], Ops.size());
Tys.clear();
Tys.push_back(MVT::Other);
Tys.push_back(MVT::Flag);
Ops.clear();
Ops.push_back(Copy.getValue(1));
Ops.push_back(Copy);
Copy = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, &Ops[0], Ops.size());
}
break;
}
case 5: {
unsigned Reg1 = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
unsigned Reg2 = Subtarget->is64Bit() ? X86::RDX : X86::EDX;
if (DAG.getMachineFunction().liveout_empty()) {
DAG.getMachineFunction().addLiveOut(Reg1);
DAG.getMachineFunction().addLiveOut(Reg2);
}
Copy = DAG.getCopyToReg(Op.getOperand(0), Reg2, Op.getOperand(3),
SDOperand());
Copy = DAG.getCopyToReg(Copy, Reg1, Op.getOperand(1), Copy.getValue(1));
break;
}
}
return DAG.getNode(X86ISD::RET_FLAG, MVT::Other,
Copy, DAG.getConstant(getBytesToPopOnReturn(), MVT::i16),
Copy.getValue(1));
}
SDOperand
X86TargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG) {
MachineFunction &MF = DAG.getMachineFunction();
const Function* Fn = MF.getFunction();
if (Fn->hasExternalLinkage() &&
Subtarget->isTargetCygwin() &&
Fn->getName() == "main")
MF.getInfo<X86FunctionInfo>()->setForceFramePointer(true);
unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
if (Subtarget->is64Bit())
return LowerX86_64CCCArguments(Op, DAG);
else
switch(CC) {
default:
assert(0 && "Unsupported calling convention");
case CallingConv::Fast:
if (EnableFastCC) {
return LowerFastCCArguments(Op, DAG);
}
// Falls through
case CallingConv::C:
case CallingConv::CSRet:
return LowerCCCArguments(Op, DAG);
case CallingConv::X86_StdCall:
MF.getInfo<X86FunctionInfo>()->setDecorationStyle(StdCall);
return LowerStdCallCCArguments(Op, DAG);
case CallingConv::X86_FastCall:
MF.getInfo<X86FunctionInfo>()->setDecorationStyle(FastCall);
return LowerFastCallCCArguments(Op, DAG);
}
}
SDOperand X86TargetLowering::LowerMEMSET(SDOperand Op, SelectionDAG &DAG) {
SDOperand InFlag(0, 0);
SDOperand Chain = Op.getOperand(0);
unsigned Align =
(unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
if (Align == 0) Align = 1;
ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
// If not DWORD aligned, call memset if size is less than the threshold.
// It knows how to align to the right boundary first.
if ((Align & 3) != 0 ||
(I && I->getValue() < Subtarget->getMinRepStrSizeThreshold())) {
MVT::ValueType IntPtr = getPointerTy();
const Type *IntPtrTy = getTargetData()->getIntPtrType();
std::vector<std::pair<SDOperand, const Type*> > Args;
Args.push_back(std::make_pair(Op.getOperand(1), IntPtrTy));
// Extend the ubyte argument to be an int value for the call.
SDOperand Val = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Op.getOperand(2));
Args.push_back(std::make_pair(Val, IntPtrTy));
Args.push_back(std::make_pair(Op.getOperand(3), IntPtrTy));
std::pair<SDOperand,SDOperand> CallResult =
LowerCallTo(Chain, Type::VoidTy, false, CallingConv::C, false,
DAG.getExternalSymbol("memset", IntPtr), Args, DAG);
return CallResult.second;
}
MVT::ValueType AVT;
SDOperand Count;
ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Op.getOperand(2));
unsigned BytesLeft = 0;
bool TwoRepStos = false;
if (ValC) {
unsigned ValReg;
uint64_t Val = ValC->getValue() & 255;
// If the value is a constant, then we can potentially use larger sets.
switch (Align & 3) {
case 2: // WORD aligned
AVT = MVT::i16;
ValReg = X86::AX;
Val = (Val << 8) | Val;
break;
case 0: // DWORD aligned
AVT = MVT::i32;
ValReg = X86::EAX;
Val = (Val << 8) | Val;
Val = (Val << 16) | Val;
if (Subtarget->is64Bit() && ((Align & 0xF) == 0)) { // QWORD aligned
AVT = MVT::i64;
ValReg = X86::RAX;
Val = (Val << 32) | Val;
}
break;
default: // Byte aligned
AVT = MVT::i8;
ValReg = X86::AL;
Count = Op.getOperand(3);
break;
}
if (AVT > MVT::i8) {
if (I) {
unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
Count = DAG.getConstant(I->getValue() / UBytes, getPointerTy());
BytesLeft = I->getValue() % UBytes;
} else {
assert(AVT >= MVT::i32 &&
"Do not use rep;stos if not at least DWORD aligned");
Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(),
Op.getOperand(3), DAG.getConstant(2, MVT::i8));
TwoRepStos = true;
}
}
Chain = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT),
InFlag);
InFlag = Chain.getValue(1);
} else {
AVT = MVT::i8;
Count = Op.getOperand(3);
Chain = DAG.getCopyToReg(Chain, X86::AL, Op.getOperand(2), InFlag);
InFlag = Chain.getValue(1);
}
Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
Count, InFlag);
InFlag = Chain.getValue(1);
Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
Op.getOperand(1), InFlag);
InFlag = Chain.getValue(1);
std::vector<MVT::ValueType> Tys;
Tys.push_back(MVT::Other);
Tys.push_back(MVT::Flag);
std::vector<SDOperand> Ops;
Ops.push_back(Chain);
Ops.push_back(DAG.getValueType(AVT));
Ops.push_back(InFlag);
Chain = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
if (TwoRepStos) {
InFlag = Chain.getValue(1);
Count = Op.getOperand(3);
MVT::ValueType CVT = Count.getValueType();
SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
Chain = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
Left, InFlag);
InFlag = Chain.getValue(1);
Tys.clear();
Tys.push_back(MVT::Other);
Tys.push_back(MVT::Flag);
Ops.clear();
Ops.push_back(Chain);
Ops.push_back(DAG.getValueType(MVT::i8));
Ops.push_back(InFlag);
Chain = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
} else if (BytesLeft) {
// Issue stores for the last 1 - 7 bytes.
SDOperand Value;
unsigned Val = ValC->getValue() & 255;
unsigned Offset = I->getValue() - BytesLeft;
SDOperand DstAddr = Op.getOperand(1);
MVT::ValueType AddrVT = DstAddr.getValueType();
if (BytesLeft >= 4) {
Val = (Val << 8) | Val;
Val = (Val << 16) | Val;
Value = DAG.getConstant(Val, MVT::i32);
Chain = DAG.getStore(Chain, Value,
DAG.getNode(ISD::ADD, AddrVT, DstAddr,
DAG.getConstant(Offset, AddrVT)),
NULL, 0);
BytesLeft -= 4;
Offset += 4;
}
if (BytesLeft >= 2) {
Value = DAG.getConstant((Val << 8) | Val, MVT::i16);
Chain = DAG.getStore(Chain, Value,
DAG.getNode(ISD::ADD, AddrVT, DstAddr,
DAG.getConstant(Offset, AddrVT)),
NULL, 0);
BytesLeft -= 2;
Offset += 2;
}
if (BytesLeft == 1) {
Value = DAG.getConstant(Val, MVT::i8);
Chain = DAG.getStore(Chain, Value,
DAG.getNode(ISD::ADD, AddrVT, DstAddr,
DAG.getConstant(Offset, AddrVT)),
NULL, 0);
}
}
return Chain;
}
SDOperand X86TargetLowering::LowerMEMCPY(SDOperand Op, SelectionDAG &DAG) {
SDOperand Chain = Op.getOperand(0);
unsigned Align =
(unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
if (Align == 0) Align = 1;
ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
// If not DWORD aligned, call memcpy if size is less than the threshold.
// It knows how to align to the right boundary first.
if ((Align & 3) != 0 ||
(I && I->getValue() < Subtarget->getMinRepStrSizeThreshold())) {
MVT::ValueType IntPtr = getPointerTy();
const Type *IntPtrTy = getTargetData()->getIntPtrType();
std::vector<std::pair<SDOperand, const Type*> > Args;
Args.push_back(std::make_pair(Op.getOperand(1), IntPtrTy));
Args.push_back(std::make_pair(Op.getOperand(2), IntPtrTy));
Args.push_back(std::make_pair(Op.getOperand(3), IntPtrTy));
std::pair<SDOperand,SDOperand> CallResult =
LowerCallTo(Chain, Type::VoidTy, false, CallingConv::C, false,
DAG.getExternalSymbol("memcpy", IntPtr), Args, DAG);
return CallResult.second;
}
MVT::ValueType AVT;
SDOperand Count;
unsigned BytesLeft = 0;
bool TwoRepMovs = false;
switch (Align & 3) {
case 2: // WORD aligned
AVT = MVT::i16;
break;
case 0: // DWORD aligned
AVT = MVT::i32;
if (Subtarget->is64Bit() && ((Align & 0xF) == 0)) // QWORD aligned
AVT = MVT::i64;
break;
default: // Byte aligned
AVT = MVT::i8;
Count = Op.getOperand(3);
break;
}
if (AVT > MVT::i8) {
if (I) {
unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
Count = DAG.getConstant(I->getValue() / UBytes, getPointerTy());
BytesLeft = I->getValue() % UBytes;
} else {
assert(AVT >= MVT::i32 &&
"Do not use rep;movs if not at least DWORD aligned");
Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(),
Op.getOperand(3), DAG.getConstant(2, MVT::i8));
TwoRepMovs = true;
}
}
SDOperand InFlag(0, 0);
Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
Count, InFlag);
InFlag = Chain.getValue(1);
Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
Op.getOperand(1), InFlag);
InFlag = Chain.getValue(1);
Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RSI : X86::ESI,
Op.getOperand(2), InFlag);
InFlag = Chain.getValue(1);
std::vector<MVT::ValueType> Tys;
Tys.push_back(MVT::Other);
Tys.push_back(MVT::Flag);
std::vector<SDOperand> Ops;
Ops.push_back(Chain);
Ops.push_back(DAG.getValueType(AVT));
Ops.push_back(InFlag);
Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
if (TwoRepMovs) {
InFlag = Chain.getValue(1);
Count = Op.getOperand(3);
MVT::ValueType CVT = Count.getValueType();
SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
Chain = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
Left, InFlag);
InFlag = Chain.getValue(1);
Tys.clear();
Tys.push_back(MVT::Other);
Tys.push_back(MVT::Flag);
Ops.clear();
Ops.push_back(Chain);
Ops.push_back(DAG.getValueType(MVT::i8));
Ops.push_back(InFlag);
Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
} else if (BytesLeft) {
// Issue loads and stores for the last 1 - 7 bytes.
unsigned Offset = I->getValue() - BytesLeft;
SDOperand DstAddr = Op.getOperand(1);
MVT::ValueType DstVT = DstAddr.getValueType();
SDOperand SrcAddr = Op.getOperand(2);
MVT::ValueType SrcVT = SrcAddr.getValueType();
SDOperand Value;
if (BytesLeft >= 4) {
Value = DAG.getLoad(MVT::i32, Chain,
DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
DAG.getConstant(Offset, SrcVT)),
NULL, 0);
Chain = Value.getValue(1);
Chain = DAG.getStore(Chain, Value,
DAG.getNode(ISD::ADD, DstVT, DstAddr,
DAG.getConstant(Offset, DstVT)),
NULL, 0);
BytesLeft -= 4;
Offset += 4;
}
if (BytesLeft >= 2) {
Value = DAG.getLoad(MVT::i16, Chain,
DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
DAG.getConstant(Offset, SrcVT)),
NULL, 0);
Chain = Value.getValue(1);
Chain = DAG.getStore(Chain, Value,
DAG.getNode(ISD::ADD, DstVT, DstAddr,
DAG.getConstant(Offset, DstVT)),
NULL, 0);
BytesLeft -= 2;
Offset += 2;
}
if (BytesLeft == 1) {
Value = DAG.getLoad(MVT::i8, Chain,
DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
DAG.getConstant(Offset, SrcVT)),
NULL, 0);
Chain = Value.getValue(1);
Chain = DAG.getStore(Chain, Value,
DAG.getNode(ISD::ADD, DstVT, DstAddr,
DAG.getConstant(Offset, DstVT)),
NULL, 0);
}
}
return Chain;
}
SDOperand
X86TargetLowering::LowerREADCYCLCECOUNTER(SDOperand Op, SelectionDAG &DAG) {
std::vector<MVT::ValueType> Tys;
Tys.push_back(MVT::Other);
Tys.push_back(MVT::Flag);
std::vector<SDOperand> Ops;
Ops.push_back(Op.getOperand(0));
SDOperand rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, &Ops[0], Ops.size());
Ops.clear();
if (Subtarget->is64Bit()) {
SDOperand Copy1 = DAG.getCopyFromReg(rd, X86::RAX, MVT::i64, rd.getValue(1));
SDOperand Copy2 = DAG.getCopyFromReg(Copy1.getValue(1), X86::RDX,
MVT::i64, Copy1.getValue(2));
SDOperand Tmp = DAG.getNode(ISD::SHL, MVT::i64, Copy2,
DAG.getConstant(32, MVT::i8));
Ops.push_back(DAG.getNode(ISD::OR, MVT::i64, Copy1, Tmp));
Ops.push_back(Copy2.getValue(1));
Tys[0] = MVT::i64;
Tys[1] = MVT::Other;
} else {
SDOperand Copy1 = DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1));
SDOperand Copy2 = DAG.getCopyFromReg(Copy1.getValue(1), X86::EDX,
MVT::i32, Copy1.getValue(2));
Ops.push_back(Copy1);
Ops.push_back(Copy2);
Ops.push_back(Copy2.getValue(1));
Tys[0] = Tys[1] = MVT::i32;
Tys.push_back(MVT::Other);
}
return DAG.getNode(ISD::MERGE_VALUES, Tys, &Ops[0], Ops.size());
}
SDOperand X86TargetLowering::LowerVASTART(SDOperand Op, SelectionDAG &DAG) {
SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
if (!Subtarget->is64Bit()) {
// vastart just stores the address of the VarArgsFrameIndex slot into the
// memory location argument.
SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
return DAG.getStore(Op.getOperand(0), FR,Op.getOperand(1), SV->getValue(),
SV->getOffset());
}
// __va_list_tag:
// gp_offset (0 - 6 * 8)
// fp_offset (48 - 48 + 8 * 16)
// overflow_arg_area (point to parameters coming in memory).
// reg_save_area
std::vector<SDOperand> MemOps;
SDOperand FIN = Op.getOperand(1);
// Store gp_offset
SDOperand Store = DAG.getStore(Op.getOperand(0),
DAG.getConstant(VarArgsGPOffset, MVT::i32),
FIN, SV->getValue(), SV->getOffset());
MemOps.push_back(Store);
// Store fp_offset
FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
DAG.getConstant(4, getPointerTy()));
Store = DAG.getStore(Op.getOperand(0),
DAG.getConstant(VarArgsFPOffset, MVT::i32),
FIN, SV->getValue(), SV->getOffset());
MemOps.push_back(Store);
// Store ptr to overflow_arg_area
FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
DAG.getConstant(4, getPointerTy()));
SDOperand OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
Store = DAG.getStore(Op.getOperand(0), OVFIN, FIN, SV->getValue(),
SV->getOffset());
MemOps.push_back(Store);
// Store ptr to reg_save_area.
FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
DAG.getConstant(8, getPointerTy()));
SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
Store = DAG.getStore(Op.getOperand(0), RSFIN, FIN, SV->getValue(),
SV->getOffset());
MemOps.push_back(Store);
return DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOps[0], MemOps.size());
}
SDOperand
X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getValue();
switch (IntNo) {
default: return SDOperand(); // Don't custom lower most intrinsics.
// Comparison intrinsics.
case Intrinsic::x86_sse_comieq_ss:
case Intrinsic::x86_sse_comilt_ss:
case Intrinsic::x86_sse_comile_ss:
case Intrinsic::x86_sse_comigt_ss:
case Intrinsic::x86_sse_comige_ss:
case Intrinsic::x86_sse_comineq_ss:
case Intrinsic::x86_sse_ucomieq_ss:
case Intrinsic::x86_sse_ucomilt_ss:
case Intrinsic::x86_sse_ucomile_ss:
case Intrinsic::x86_sse_ucomigt_ss:
case Intrinsic::x86_sse_ucomige_ss:
case Intrinsic::x86_sse_ucomineq_ss:
case Intrinsic::x86_sse2_comieq_sd:
case Intrinsic::x86_sse2_comilt_sd:
case Intrinsic::x86_sse2_comile_sd:
case Intrinsic::x86_sse2_comigt_sd:
case Intrinsic::x86_sse2_comige_sd:
case Intrinsic::x86_sse2_comineq_sd:
case Intrinsic::x86_sse2_ucomieq_sd:
case Intrinsic::x86_sse2_ucomilt_sd:
case Intrinsic::x86_sse2_ucomile_sd:
case Intrinsic::x86_sse2_ucomigt_sd:
case Intrinsic::x86_sse2_ucomige_sd:
case Intrinsic::x86_sse2_ucomineq_sd: {
unsigned Opc = 0;
ISD::CondCode CC = ISD::SETCC_INVALID;
switch (IntNo) {
default: break;
case Intrinsic::x86_sse_comieq_ss:
case Intrinsic::x86_sse2_comieq_sd:
Opc = X86ISD::COMI;
CC = ISD::SETEQ;
break;
case Intrinsic::x86_sse_comilt_ss:
case Intrinsic::x86_sse2_comilt_sd:
Opc = X86ISD::COMI;
CC = ISD::SETLT;
break;
case Intrinsic::x86_sse_comile_ss:
case Intrinsic::x86_sse2_comile_sd:
Opc = X86ISD::COMI;
CC = ISD::SETLE;
break;
case Intrinsic::x86_sse_comigt_ss:
case Intrinsic::x86_sse2_comigt_sd:
Opc = X86ISD::COMI;
CC = ISD::SETGT;
break;
case Intrinsic::x86_sse_comige_ss:
case Intrinsic::x86_sse2_comige_sd:
Opc = X86ISD::COMI;
CC = ISD::SETGE;
break;
case Intrinsic::x86_sse_comineq_ss:
case Intrinsic::x86_sse2_comineq_sd:
Opc = X86ISD::COMI;
CC = ISD::SETNE;
break;
case Intrinsic::x86_sse_ucomieq_ss:
case Intrinsic::x86_sse2_ucomieq_sd:
Opc = X86ISD::UCOMI;
CC = ISD::SETEQ;
break;
case Intrinsic::x86_sse_ucomilt_ss:
case Intrinsic::x86_sse2_ucomilt_sd:
Opc = X86ISD::UCOMI;
CC = ISD::SETLT;
break;
case Intrinsic::x86_sse_ucomile_ss:
case Intrinsic::x86_sse2_ucomile_sd:
Opc = X86ISD::UCOMI;
CC = ISD::SETLE;
break;
case Intrinsic::x86_sse_ucomigt_ss:
case Intrinsic::x86_sse2_ucomigt_sd:
Opc = X86ISD::UCOMI;
CC = ISD::SETGT;
break;
case Intrinsic::x86_sse_ucomige_ss:
case Intrinsic::x86_sse2_ucomige_sd:
Opc = X86ISD::UCOMI;
CC = ISD::SETGE;
break;
case Intrinsic::x86_sse_ucomineq_ss:
case Intrinsic::x86_sse2_ucomineq_sd:
Opc = X86ISD::UCOMI;
CC = ISD::SETNE;
break;
}
unsigned X86CC;
SDOperand LHS = Op.getOperand(1);
SDOperand RHS = Op.getOperand(2);
translateX86CC(CC, true, X86CC, LHS, RHS, DAG);
const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
SDOperand Ops1[] = { DAG.getEntryNode(), LHS, RHS };
SDOperand Cond = DAG.getNode(Opc, VTs, 2, Ops1, 3);
VTs = DAG.getNodeValueTypes(MVT::i8, MVT::Flag);
SDOperand Ops2[] = { DAG.getConstant(X86CC, MVT::i8), Cond };
SDOperand SetCC = DAG.getNode(X86ISD::SETCC, VTs, 2, Ops2, 2);
return DAG.getNode(ISD::ANY_EXTEND, MVT::i32, SetCC);
}
}
}
/// LowerOperation - Provide custom lowering hooks for some operations.
///
SDOperand X86TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
switch (Op.getOpcode()) {
default: assert(0 && "Should not custom lower this!");
case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG);
case ISD::SHL_PARTS:
case ISD::SRA_PARTS:
case ISD::SRL_PARTS: return LowerShift(Op, DAG);
case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
case ISD::FABS: return LowerFABS(Op, DAG);
case ISD::FNEG: return LowerFNEG(Op, DAG);
case ISD::SETCC: return LowerSETCC(Op, DAG, DAG.getEntryNode());
case ISD::SELECT: return LowerSELECT(Op, DAG);
case ISD::BRCOND: return LowerBRCOND(Op, DAG);
case ISD::JumpTable: return LowerJumpTable(Op, DAG);
case ISD::CALL: return LowerCALL(Op, DAG);
case ISD::RET: return LowerRET(Op, DAG);
case ISD::FORMAL_ARGUMENTS: return LowerFORMAL_ARGUMENTS(Op, DAG);
case ISD::MEMSET: return LowerMEMSET(Op, DAG);
case ISD::MEMCPY: return LowerMEMCPY(Op, DAG);
case ISD::READCYCLECOUNTER: return LowerREADCYCLCECOUNTER(Op, DAG);
case ISD::VASTART: return LowerVASTART(Op, DAG);
case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
}
}
const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
switch (Opcode) {
default: return NULL;
case X86ISD::SHLD: return "X86ISD::SHLD";
case X86ISD::SHRD: return "X86ISD::SHRD";
case X86ISD::FAND: return "X86ISD::FAND";
case X86ISD::FXOR: return "X86ISD::FXOR";
case X86ISD::FILD: return "X86ISD::FILD";
case X86ISD::FILD_FLAG: return "X86ISD::FILD_FLAG";
case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
case X86ISD::FLD: return "X86ISD::FLD";
case X86ISD::FST: return "X86ISD::FST";
case X86ISD::FP_GET_RESULT: return "X86ISD::FP_GET_RESULT";
case X86ISD::FP_SET_RESULT: return "X86ISD::FP_SET_RESULT";
case X86ISD::CALL: return "X86ISD::CALL";
case X86ISD::TAILCALL: return "X86ISD::TAILCALL";
case X86ISD::RDTSC_DAG: return "X86ISD::RDTSC_DAG";
case X86ISD::CMP: return "X86ISD::CMP";
case X86ISD::COMI: return "X86ISD::COMI";
case X86ISD::UCOMI: return "X86ISD::UCOMI";
case X86ISD::SETCC: return "X86ISD::SETCC";
case X86ISD::CMOV: return "X86ISD::CMOV";
case X86ISD::BRCOND: return "X86ISD::BRCOND";
case X86ISD::RET_FLAG: return "X86ISD::RET_FLAG";
case X86ISD::REP_STOS: return "X86ISD::REP_STOS";
case X86ISD::REP_MOVS: return "X86ISD::REP_MOVS";
case X86ISD::LOAD_PACK: return "X86ISD::LOAD_PACK";
case X86ISD::LOAD_UA: return "X86ISD::LOAD_UA";
case X86ISD::GlobalBaseReg: return "X86ISD::GlobalBaseReg";
case X86ISD::Wrapper: return "X86ISD::Wrapper";
case X86ISD::WrapperRIP: return "X86ISD::WrapperRIP";
case X86ISD::S2VEC: return "X86ISD::S2VEC";
case X86ISD::PEXTRW: return "X86ISD::PEXTRW";
case X86ISD::PINSRW: return "X86ISD::PINSRW";
case X86ISD::FMAX: return "X86ISD::FMAX";
case X86ISD::FMIN: return "X86ISD::FMIN";
}
}
/// isLegalAddressImmediate - Return true if the integer value or
/// GlobalValue can be used as the offset of the target addressing mode.
bool X86TargetLowering::isLegalAddressImmediate(int64_t V) const {
// X86 allows a sign-extended 32-bit immediate field.
return (V > -(1LL << 32) && V < (1LL << 32)-1);
}
bool X86TargetLowering::isLegalAddressImmediate(GlobalValue *GV) const {
// In 64-bit mode, GV is 64-bit so it won't fit in the 32-bit displacement
// field unless we are in small code model.
if (Subtarget->is64Bit() &&
getTargetMachine().getCodeModel() != CodeModel::Small)
return false;
Reloc::Model RModel = getTargetMachine().getRelocationModel();
return (RModel == Reloc::Static) ||
!Subtarget->GVRequiresExtraLoad(GV, false);
}
/// isShuffleMaskLegal - Targets can use this to indicate that they only
/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
/// are assumed to be legal.
bool
X86TargetLowering::isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const {
// Only do shuffles on 128-bit vector types for now.
if (MVT::getSizeInBits(VT) == 64) return false;
return (Mask.Val->getNumOperands() <= 4 ||
isSplatMask(Mask.Val) ||
isPSHUFHW_PSHUFLWMask(Mask.Val) ||
X86::isUNPCKLMask(Mask.Val) ||
X86::isUNPCKL_v_undef_Mask(Mask.Val) ||
X86::isUNPCKHMask(Mask.Val));
}
bool X86TargetLowering::isVectorClearMaskLegal(std::vector<SDOperand> &BVOps,
MVT::ValueType EVT,
SelectionDAG &DAG) const {
unsigned NumElts = BVOps.size();
// Only do shuffles on 128-bit vector types for now.
if (MVT::getSizeInBits(EVT) * NumElts == 64) return false;
if (NumElts == 2) return true;
if (NumElts == 4) {
return (isMOVLMask(BVOps) || isCommutedMOVL(BVOps, true) ||
isSHUFPMask(BVOps) || isCommutedSHUFP(BVOps));
}
return false;
}
//===----------------------------------------------------------------------===//
// X86 Scheduler Hooks
//===----------------------------------------------------------------------===//
MachineBasicBlock *
X86TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
MachineBasicBlock *BB) {
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
switch (MI->getOpcode()) {
default: assert(false && "Unexpected instr type to insert");
case X86::CMOV_FR32:
case X86::CMOV_FR64:
case X86::CMOV_V4F32:
case X86::CMOV_V2F64:
case X86::CMOV_V2I64: {
// To "insert" a SELECT_CC instruction, we actually have to insert the
// diamond control-flow pattern. The incoming instruction knows the
// destination vreg to set, the condition code register to branch on, the
// true/false values to select between, and a branch opcode to use.
const BasicBlock *LLVM_BB = BB->getBasicBlock();
ilist<MachineBasicBlock>::iterator It = BB;
++It;
// thisMBB:
// ...
// TrueVal = ...
// cmpTY ccX, r1, r2
// bCC copy1MBB
// fallthrough --> copy0MBB
MachineBasicBlock *thisMBB = BB;
MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
unsigned Opc =
X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
BuildMI(BB, TII->get(Opc)).addMBB(sinkMBB);
MachineFunction *F = BB->getParent();
F->getBasicBlockList().insert(It, copy0MBB);
F->getBasicBlockList().insert(It, sinkMBB);
// Update machine-CFG edges by first adding all successors of the current
// block to the new block which will contain the Phi node for the select.
for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
e = BB->succ_end(); i != e; ++i)
sinkMBB->addSuccessor(*i);
// Next, remove all successors of the current block, and add the true
// and fallthrough blocks as its successors.
while(!BB->succ_empty())
BB->removeSuccessor(BB->succ_begin());
BB->addSuccessor(copy0MBB);
BB->addSuccessor(sinkMBB);
// copy0MBB:
// %FalseValue = ...
// # fallthrough to sinkMBB
BB = copy0MBB;
// Update machine-CFG edges
BB->addSuccessor(sinkMBB);
// sinkMBB:
// %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
// ...
BB = sinkMBB;
BuildMI(BB, TII->get(X86::PHI), MI->getOperand(0).getReg())
.addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
.addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
delete MI; // The pseudo instruction is gone now.
return BB;
}
case X86::FP_TO_INT16_IN_MEM:
case X86::FP_TO_INT32_IN_MEM:
case X86::FP_TO_INT64_IN_MEM: {
// Change the floating point control register to use "round towards zero"
// mode when truncating to an integer value.
MachineFunction *F = BB->getParent();
int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
addFrameReference(BuildMI(BB, TII->get(X86::FNSTCW16m)), CWFrameIdx);
// Load the old value of the high byte of the control word...
unsigned OldCW =
F->getSSARegMap()->createVirtualRegister(X86::GR16RegisterClass);
addFrameReference(BuildMI(BB, TII->get(X86::MOV16rm), OldCW), CWFrameIdx);
// Set the high part to be round to zero...
addFrameReference(BuildMI(BB, TII->get(X86::MOV16mi)), CWFrameIdx)
.addImm(0xC7F);
// Reload the modified control word now...
addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
// Restore the memory image of control word to original value
addFrameReference(BuildMI(BB, TII->get(X86::MOV16mr)), CWFrameIdx)
.addReg(OldCW);
// Get the X86 opcode to use.
unsigned Opc;
switch (MI->getOpcode()) {
default: assert(0 && "illegal opcode!");
case X86::FP_TO_INT16_IN_MEM: Opc = X86::FpIST16m; break;
case X86::FP_TO_INT32_IN_MEM: Opc = X86::FpIST32m; break;
case X86::FP_TO_INT64_IN_MEM: Opc = X86::FpIST64m; break;
}
X86AddressMode AM;
MachineOperand &Op = MI->getOperand(0);
if (Op.isRegister()) {
AM.BaseType = X86AddressMode::RegBase;
AM.Base.Reg = Op.getReg();
} else {
AM.BaseType = X86AddressMode::FrameIndexBase;
AM.Base.FrameIndex = Op.getFrameIndex();
}
Op = MI->getOperand(1);
if (Op.isImmediate())
AM.Scale = Op.getImm();
Op = MI->getOperand(2);
if (Op.isImmediate())
AM.IndexReg = Op.getImm();
Op = MI->getOperand(3);
if (Op.isGlobalAddress()) {
AM.GV = Op.getGlobal();
} else {
AM.Disp = Op.getImm();
}
addFullAddress(BuildMI(BB, TII->get(Opc)), AM)
.addReg(MI->getOperand(4).getReg());
// Reload the original control word now.
addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
delete MI; // The pseudo instruction is gone now.
return BB;
}
}
}
//===----------------------------------------------------------------------===//
// X86 Optimization Hooks
//===----------------------------------------------------------------------===//
void X86TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
uint64_t Mask,
uint64_t &KnownZero,
uint64_t &KnownOne,
unsigned Depth) const {
unsigned Opc = Op.getOpcode();
assert((Opc >= ISD::BUILTIN_OP_END ||
Opc == ISD::INTRINSIC_WO_CHAIN ||
Opc == ISD::INTRINSIC_W_CHAIN ||
Opc == ISD::INTRINSIC_VOID) &&
"Should use MaskedValueIsZero if you don't know whether Op"
" is a target node!");
KnownZero = KnownOne = 0; // Don't know anything.
switch (Opc) {
default: break;
case X86ISD::SETCC:
KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
break;
}
}
/// getShuffleScalarElt - Returns the scalar element that will make up the ith
/// element of the result of the vector shuffle.
static SDOperand getShuffleScalarElt(SDNode *N, unsigned i, SelectionDAG &DAG) {
MVT::ValueType VT = N->getValueType(0);
SDOperand PermMask = N->getOperand(2);
unsigned NumElems = PermMask.getNumOperands();
SDOperand V = (i < NumElems) ? N->getOperand(0) : N->getOperand(1);
i %= NumElems;
if (V.getOpcode() == ISD::SCALAR_TO_VECTOR) {
return (i == 0)
? V.getOperand(0) : DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(VT));
} else if (V.getOpcode() == ISD::VECTOR_SHUFFLE) {
SDOperand Idx = PermMask.getOperand(i);
if (Idx.getOpcode() == ISD::UNDEF)
return DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(VT));
return getShuffleScalarElt(V.Val,cast<ConstantSDNode>(Idx)->getValue(),DAG);
}
return SDOperand();
}
/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
/// node is a GlobalAddress + an offset.
static bool isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) {
unsigned Opc = N->getOpcode();
if (Opc == X86ISD::Wrapper || Opc == X86ISD::WrapperRIP) {
if (dyn_cast<GlobalAddressSDNode>(N->getOperand(0))) {
GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
return true;
}
} else if (Opc == ISD::ADD) {
SDOperand N1 = N->getOperand(0);
SDOperand N2 = N->getOperand(1);
if (isGAPlusOffset(N1.Val, GA, Offset)) {
ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
if (V) {
Offset += V->getSignExtended();
return true;
}
} else if (isGAPlusOffset(N2.Val, GA, Offset)) {
ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
if (V) {
Offset += V->getSignExtended();
return true;
}
}
}
return false;
}
/// isConsecutiveLoad - Returns true if N is loading from an address of Base
/// + Dist * Size.
static bool isConsecutiveLoad(SDNode *N, SDNode *Base, int Dist, int Size,
MachineFrameInfo *MFI) {
if (N->getOperand(0).Val != Base->getOperand(0).Val)
return false;
SDOperand Loc = N->getOperand(1);
SDOperand BaseLoc = Base->getOperand(1);
if (Loc.getOpcode() == ISD::FrameIndex) {
if (BaseLoc.getOpcode() != ISD::FrameIndex)
return false;
int FI = dyn_cast<FrameIndexSDNode>(Loc)->getIndex();
int BFI = dyn_cast<FrameIndexSDNode>(BaseLoc)->getIndex();
int FS = MFI->getObjectSize(FI);
int BFS = MFI->getObjectSize(BFI);
if (FS != BFS || FS != Size) return false;
return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Size);
} else {
GlobalValue *GV1 = NULL;
GlobalValue *GV2 = NULL;
int64_t Offset1 = 0;
int64_t Offset2 = 0;
bool isGA1 = isGAPlusOffset(Loc.Val, GV1, Offset1);
bool isGA2 = isGAPlusOffset(BaseLoc.Val, GV2, Offset2);
if (isGA1 && isGA2 && GV1 == GV2)
return Offset1 == (Offset2 + Dist*Size);
}
return false;
}
static bool isBaseAlignment16(SDNode *Base, MachineFrameInfo *MFI,
const X86Subtarget *Subtarget) {
GlobalValue *GV;
int64_t Offset;
if (isGAPlusOffset(Base, GV, Offset))
return (GV->getAlignment() >= 16 && (Offset % 16) == 0);
else {
assert(Base->getOpcode() == ISD::FrameIndex && "Unexpected base node!");
int BFI = dyn_cast<FrameIndexSDNode>(Base)->getIndex();
if (BFI < 0)
// Fixed objects do not specify alignment, however the offsets are known.
return ((Subtarget->getStackAlignment() % 16) == 0 &&
(MFI->getObjectOffset(BFI) % 16) == 0);
else
return MFI->getObjectAlignment(BFI) >= 16;
}
return false;
}
/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
/// if the load addresses are consecutive, non-overlapping, and in the right
/// order.
static SDOperand PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
const X86Subtarget *Subtarget) {
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo *MFI = MF.getFrameInfo();
MVT::ValueType VT = N->getValueType(0);
MVT::ValueType EVT = MVT::getVectorBaseType(VT);
SDOperand PermMask = N->getOperand(2);
int NumElems = (int)PermMask.getNumOperands();
SDNode *Base = NULL;
for (int i = 0; i < NumElems; ++i) {
SDOperand Idx = PermMask.getOperand(i);
if (Idx.getOpcode() == ISD::UNDEF) {
if (!Base) return SDOperand();
} else {
SDOperand Arg =
getShuffleScalarElt(N, cast<ConstantSDNode>(Idx)->getValue(), DAG);
if (!Arg.Val || !ISD::isNON_EXTLoad(Arg.Val))
return SDOperand();
if (!Base)
Base = Arg.Val;
else if (!isConsecutiveLoad(Arg.Val, Base,
i, MVT::getSizeInBits(EVT)/8,MFI))
return SDOperand();
}
}
bool isAlign16 = isBaseAlignment16(Base->getOperand(1).Val, MFI, Subtarget);
if (isAlign16) {
LoadSDNode *LD = cast<LoadSDNode>(Base);
return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
LD->getSrcValueOffset());
} else {
// Just use movups, it's shorter.
std::vector<MVT::ValueType> Tys;
Tys.push_back(MVT::v4f32);
Tys.push_back(MVT::Other);
SmallVector<SDOperand, 3> Ops;
Ops.push_back(Base->getOperand(0));
Ops.push_back(Base->getOperand(1));
Ops.push_back(Base->getOperand(2));
return DAG.getNode(ISD::BIT_CONVERT, VT,
DAG.getNode(X86ISD::LOAD_UA, Tys, &Ops[0], Ops.size()));
}
}
/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
static SDOperand PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
const X86Subtarget *Subtarget) {
SDOperand Cond = N->getOperand(0);
// If we have SSE[12] support, try to form min/max nodes.
if (Subtarget->hasSSE2() &&
(N->getValueType(0) == MVT::f32 || N->getValueType(0) == MVT::f64)) {
if (Cond.getOpcode() == ISD::SETCC) {
// Get the LHS/RHS of the select.
SDOperand LHS = N->getOperand(1);
SDOperand RHS = N->getOperand(2);
ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
unsigned Opcode = 0;
if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
switch (CC) {
default: break;
case ISD::SETOLE: // (X <= Y) ? X : Y -> min
case ISD::SETULE:
case ISD::SETLE:
if (!UnsafeFPMath) break;
// FALL THROUGH.
case ISD::SETOLT: // (X olt/lt Y) ? X : Y -> min
case ISD::SETLT:
Opcode = X86ISD::FMIN;
break;
case ISD::SETOGT: // (X > Y) ? X : Y -> max
case ISD::SETUGT:
case ISD::SETGT:
if (!UnsafeFPMath) break;
// FALL THROUGH.
case ISD::SETUGE: // (X uge/ge Y) ? X : Y -> max
case ISD::SETGE:
Opcode = X86ISD::FMAX;
break;
}
} else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
switch (CC) {
default: break;
case ISD::SETOGT: // (X > Y) ? Y : X -> min
case ISD::SETUGT:
case ISD::SETGT:
if (!UnsafeFPMath) break;
// FALL THROUGH.
case ISD::SETUGE: // (X uge/ge Y) ? Y : X -> min
case ISD::SETGE:
Opcode = X86ISD::FMIN;
break;
case ISD::SETOLE: // (X <= Y) ? Y : X -> max
case ISD::SETULE:
case ISD::SETLE:
if (!UnsafeFPMath) break;
// FALL THROUGH.
case ISD::SETOLT: // (X olt/lt Y) ? Y : X -> max
case ISD::SETLT:
Opcode = X86ISD::FMAX;
break;
}
}
if (Opcode)
return DAG.getNode(Opcode, N->getValueType(0), LHS, RHS);
}
}
return SDOperand();
}
SDOperand X86TargetLowering::PerformDAGCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
switch (N->getOpcode()) {
default: break;
case ISD::VECTOR_SHUFFLE:
return PerformShuffleCombine(N, DAG, Subtarget);
case ISD::SELECT:
return PerformSELECTCombine(N, DAG, Subtarget);
}
return SDOperand();
}
//===----------------------------------------------------------------------===//
// X86 Inline Assembly Support
//===----------------------------------------------------------------------===//
/// getConstraintType - Given a constraint letter, return the type of
/// constraint it is for this target.
X86TargetLowering::ConstraintType
X86TargetLowering::getConstraintType(char ConstraintLetter) const {
switch (ConstraintLetter) {
case 'A':
case 'r':
case 'R':
case 'l':
case 'q':
case 'Q':
case 'x':
case 'Y':
return C_RegisterClass;
default: return TargetLowering::getConstraintType(ConstraintLetter);
}
}
/// isOperandValidForConstraint - Return the specified operand (possibly
/// modified) if the specified SDOperand is valid for the specified target
/// constraint letter, otherwise return null.
SDOperand X86TargetLowering::
isOperandValidForConstraint(SDOperand Op, char Constraint, SelectionDAG &DAG) {
switch (Constraint) {
default: break;
case 'i':
// Literal immediates are always ok.
if (isa<ConstantSDNode>(Op)) return Op;
// If we are in non-pic codegen mode, we allow the address of a global to
// be used with 'i'.
if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
return SDOperand(0, 0);
if (GA->getOpcode() != ISD::TargetGlobalAddress)
Op = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
GA->getOffset());
return Op;
}
// Otherwise, not valid for this mode.
return SDOperand(0, 0);
}
return TargetLowering::isOperandValidForConstraint(Op, Constraint, DAG);
}
std::vector<unsigned> X86TargetLowering::
getRegClassForInlineAsmConstraint(const std::string &Constraint,
MVT::ValueType VT) const {
if (Constraint.size() == 1) {
// FIXME: not handling fp-stack yet!
// FIXME: not handling MMX registers yet ('y' constraint).
switch (Constraint[0]) { // GCC X86 Constraint Letters
default: break; // Unknown constraint letter
case 'A': // EAX/EDX
if (VT == MVT::i32 || VT == MVT::i64)
return make_vector<unsigned>(X86::EAX, X86::EDX, 0);
break;
case 'r': // GENERAL_REGS
case 'R': // LEGACY_REGS
if (VT == MVT::i32)
return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX,
X86::ESI, X86::EDI, X86::EBP, X86::ESP, 0);
else if (VT == MVT::i16)
return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX,
X86::SI, X86::DI, X86::BP, X86::SP, 0);
else if (VT == MVT::i8)
return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::DL, 0);
break;
case 'l': // INDEX_REGS
if (VT == MVT::i32)
return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX,
X86::ESI, X86::EDI, X86::EBP, 0);
else if (VT == MVT::i16)
return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX,
X86::SI, X86::DI, X86::BP, 0);
else if (VT == MVT::i8)
return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::DL, 0);
break;
case 'q': // Q_REGS (GENERAL_REGS in 64-bit mode)
case 'Q': // Q_REGS
if (VT == MVT::i32)
return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
else if (VT == MVT::i16)
return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
else if (VT == MVT::i8)
return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::DL, 0);
break;
case 'x': // SSE_REGS if SSE1 allowed
if (Subtarget->hasSSE1())
return make_vector<unsigned>(X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7,
0);
return std::vector<unsigned>();
case 'Y': // SSE_REGS if SSE2 allowed
if (Subtarget->hasSSE2())
return make_vector<unsigned>(X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7,
0);
return std::vector<unsigned>();
}
}
return std::vector<unsigned>();
}
std::pair<unsigned, const TargetRegisterClass*>
X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
MVT::ValueType VT) const {
// Use the default implementation in TargetLowering to convert the register
// constraint into a member of a register class.
std::pair<unsigned, const TargetRegisterClass*> Res;
Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
// Not found as a standard register?
if (Res.second == 0) {
// GCC calls "st(0)" just plain "st".
if (StringsEqualNoCase("{st}", Constraint)) {
Res.first = X86::ST0;
Res.second = X86::RSTRegisterClass;
}
return Res;
}
// Otherwise, check to see if this is a register class of the wrong value
// type. For example, we want to map "{ax},i32" -> {eax}, we don't want it to
// turn into {ax},{dx}.
if (Res.second->hasType(VT))
return Res; // Correct type already, nothing to do.
// All of the single-register GCC register classes map their values onto
// 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp". If we
// really want an 8-bit or 32-bit register, map to the appropriate register
// class and return the appropriate register.
if (Res.second != X86::GR16RegisterClass)
return Res;
if (VT == MVT::i8) {
unsigned DestReg = 0;
switch (Res.first) {
default: break;
case X86::AX: DestReg = X86::AL; break;
case X86::DX: DestReg = X86::DL; break;
case X86::CX: DestReg = X86::CL; break;
case X86::BX: DestReg = X86::BL; break;
}
if (DestReg) {
Res.first = DestReg;
Res.second = Res.second = X86::GR8RegisterClass;
}
} else if (VT == MVT::i32) {
unsigned DestReg = 0;
switch (Res.first) {
default: break;
case X86::AX: DestReg = X86::EAX; break;
case X86::DX: DestReg = X86::EDX; break;
case X86::CX: DestReg = X86::ECX; break;
case X86::BX: DestReg = X86::EBX; break;
case X86::SI: DestReg = X86::ESI; break;
case X86::DI: DestReg = X86::EDI; break;
case X86::BP: DestReg = X86::EBP; break;
case X86::SP: DestReg = X86::ESP; break;
}
if (DestReg) {
Res.first = DestReg;
Res.second = Res.second = X86::GR32RegisterClass;
}
} else if (VT == MVT::i64) {
unsigned DestReg = 0;
switch (Res.first) {
default: break;
case X86::AX: DestReg = X86::RAX; break;
case X86::DX: DestReg = X86::RDX; break;
case X86::CX: DestReg = X86::RCX; break;
case X86::BX: DestReg = X86::RBX; break;
case X86::SI: DestReg = X86::RSI; break;
case X86::DI: DestReg = X86::RDI; break;
case X86::BP: DestReg = X86::RBP; break;
case X86::SP: DestReg = X86::RSP; break;
}
if (DestReg) {
Res.first = DestReg;
Res.second = Res.second = X86::GR64RegisterClass;
}
}
return Res;
}