llvm-6502/lib/Target/ARM/ARMISelLowering.cpp
Reid Spencer 5cbf985dcb For PR1136: Rename GlobalVariable::isExternal as isDeclaration to avoid
confusion with external linkage types.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@33663 91177308-0d34-0410-b5e6-96231b3b80d8
2007-01-30 20:08:39 +00:00

1417 lines
55 KiB
C++

//===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Evan Cheng and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that ARM uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//
#include "ARM.h"
#include "ARMAddressingModes.h"
#include "ARMConstantPoolValue.h"
#include "ARMISelLowering.h"
#include "ARMMachineFunctionInfo.h"
#include "ARMRegisterInfo.h"
#include "ARMSubtarget.h"
#include "ARMTargetMachine.h"
#include "llvm/CallingConv.h"
#include "llvm/Constants.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/ADT/VectorExtras.h"
using namespace llvm;
ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
: TargetLowering(TM), ARMPCLabelIndex(0) {
Subtarget = &TM.getSubtarget<ARMSubtarget>();
// Uses VFP for Thumb libfuncs if available.
if (Subtarget->isThumb() && Subtarget->hasVFP2()) {
// Single-precision floating-point arithmetic.
setLibcallName(RTLIB::ADD_F32, "__addsf3vfp");
setLibcallName(RTLIB::SUB_F32, "__subsf3vfp");
setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp");
setLibcallName(RTLIB::DIV_F32, "__divsf3vfp");
// Double-precision floating-point arithmetic.
setLibcallName(RTLIB::ADD_F64, "__adddf3vfp");
setLibcallName(RTLIB::SUB_F64, "__subdf3vfp");
setLibcallName(RTLIB::MUL_F64, "__muldf3vfp");
setLibcallName(RTLIB::DIV_F64, "__divdf3vfp");
// Single-precision comparisons.
setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp");
setLibcallName(RTLIB::UNE_F32, "__nesf2vfp");
setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp");
setLibcallName(RTLIB::OLE_F32, "__lesf2vfp");
setLibcallName(RTLIB::OGE_F32, "__gesf2vfp");
setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp");
setLibcallName(RTLIB::UO_F32, "__unordsf2vfp");
// Double-precision comparisons.
setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp");
setLibcallName(RTLIB::UNE_F64, "__nedf2vfp");
setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp");
setLibcallName(RTLIB::OLE_F64, "__ledf2vfp");
setLibcallName(RTLIB::OGE_F64, "__gedf2vfp");
setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp");
setLibcallName(RTLIB::UO_F64, "__unorddf2vfp");
// Floating-point to integer conversions.
// i64 conversions are done via library routines even when generating VFP
// instructions, so use the same ones.
setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp");
setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp");
setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp");
setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp");
// Conversions between floating types.
setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp");
setLibcallName(RTLIB::FPEXT_F32_F64, "__extendsfdf2vfp");
// Integer to floating-point conversions.
// i64 conversions are done via library routines even when generating VFP
// instructions, so use the same ones.
// FIXME: There appears to be some naming inconsistency in ARM libgcc: e.g.
// __floatunsidf vs. __floatunssidfvfp.
setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp");
setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp");
setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp");
setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp");
}
addRegisterClass(MVT::i32, ARM::GPRRegisterClass);
if (Subtarget->hasVFP2() && !Subtarget->isThumb()) {
addRegisterClass(MVT::f32, ARM::SPRRegisterClass);
addRegisterClass(MVT::f64, ARM::DPRRegisterClass);
}
// ARM does not have f32 extending load.
setLoadXAction(ISD::EXTLOAD, MVT::f32, Expand);
// ARM supports all 4 flavors of integer indexed load / store.
for (unsigned im = (unsigned)ISD::PRE_INC;
im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
setIndexedLoadAction(im, MVT::i1, Legal);
setIndexedLoadAction(im, MVT::i8, Legal);
setIndexedLoadAction(im, MVT::i16, Legal);
setIndexedLoadAction(im, MVT::i32, Legal);
setIndexedStoreAction(im, MVT::i1, Legal);
setIndexedStoreAction(im, MVT::i8, Legal);
setIndexedStoreAction(im, MVT::i16, Legal);
setIndexedStoreAction(im, MVT::i32, Legal);
}
// i64 operation support.
if (Subtarget->isThumb()) {
setOperationAction(ISD::MUL, MVT::i64, Expand);
setOperationAction(ISD::MULHU, MVT::i32, Expand);
setOperationAction(ISD::MULHS, MVT::i32, Expand);
} else {
setOperationAction(ISD::MUL, MVT::i64, Custom);
setOperationAction(ISD::MULHU, MVT::i32, Custom);
if (!Subtarget->hasV6Ops())
setOperationAction(ISD::MULHS, MVT::i32, Custom);
}
setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
setOperationAction(ISD::SRL, MVT::i64, Custom);
setOperationAction(ISD::SRA, MVT::i64, Custom);
// ARM does not have ROTL.
setOperationAction(ISD::ROTL, MVT::i32, Expand);
setOperationAction(ISD::CTTZ , MVT::i32, Expand);
setOperationAction(ISD::CTPOP, MVT::i32, Expand);
if (!Subtarget->hasV5TOps())
setOperationAction(ISD::CTLZ, MVT::i32, Expand);
// These are expanded into libcalls.
setOperationAction(ISD::SDIV, MVT::i32, Expand);
setOperationAction(ISD::UDIV, MVT::i32, Expand);
setOperationAction(ISD::SREM, MVT::i32, Expand);
setOperationAction(ISD::UREM, MVT::i32, Expand);
// Support label based line numbers.
setOperationAction(ISD::LOCATION, MVT::Other, Expand);
setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
// FIXME - use subtarget debug flags
if (Subtarget->isTargetDarwin())
setOperationAction(ISD::LABEL, MVT::Other, Expand);
setOperationAction(ISD::RET, MVT::Other, Custom);
setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
// Expand mem operations genericly.
setOperationAction(ISD::MEMSET , MVT::Other, Expand);
setOperationAction(ISD::MEMCPY , MVT::Other, Expand);
setOperationAction(ISD::MEMMOVE , MVT::Other, Expand);
// Use the default implementation.
setOperationAction(ISD::VASTART , MVT::Other, Expand);
setOperationAction(ISD::VAARG , MVT::Other, Expand);
setOperationAction(ISD::VACOPY , MVT::Other, Expand);
setOperationAction(ISD::VAEND , MVT::Other, Expand);
setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Expand);
if (!Subtarget->hasV6Ops()) {
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
}
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
if (Subtarget->hasVFP2() && !Subtarget->isThumb())
// Turn f64->i64 into FMRRD iff target supports vfp2.
setOperationAction(ISD::BIT_CONVERT, MVT::i64, Custom);
setOperationAction(ISD::SETCC , MVT::i32, Expand);
setOperationAction(ISD::SETCC , MVT::f32, Expand);
setOperationAction(ISD::SETCC , MVT::f64, Expand);
setOperationAction(ISD::SELECT , MVT::i32, Expand);
setOperationAction(ISD::SELECT , MVT::f32, Expand);
setOperationAction(ISD::SELECT , MVT::f64, Expand);
setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
setOperationAction(ISD::BRCOND , MVT::Other, Expand);
setOperationAction(ISD::BR_CC , MVT::i32, Custom);
setOperationAction(ISD::BR_CC , MVT::f32, Custom);
setOperationAction(ISD::BR_CC , MVT::f64, Custom);
setOperationAction(ISD::BR_JT , MVT::Other, Custom);
setOperationAction(ISD::VASTART, MVT::Other, Custom);
setOperationAction(ISD::VACOPY, MVT::Other, Expand);
setOperationAction(ISD::VAEND, MVT::Other, Expand);
setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
// FP Constants can't be immediates.
setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
// We don't support sin/cos/fmod/copysign
setOperationAction(ISD::FSIN , MVT::f64, Expand);
setOperationAction(ISD::FSIN , MVT::f32, Expand);
setOperationAction(ISD::FCOS , MVT::f32, Expand);
setOperationAction(ISD::FCOS , MVT::f64, Expand);
setOperationAction(ISD::FREM , MVT::f64, Expand);
setOperationAction(ISD::FREM , MVT::f32, Expand);
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
// int <-> fp are custom expanded into bit_convert + ARMISD ops.
setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
setStackPointerRegisterToSaveRestore(ARM::SP);
setSchedulingPreference(SchedulingForRegPressure);
computeRegisterProperties();
}
const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
switch (Opcode) {
default: return 0;
case ARMISD::Wrapper: return "ARMISD::Wrapper";
case ARMISD::WrapperCall: return "ARMISD::WrapperCall";
case ARMISD::WrapperJT: return "ARMISD::WrapperJT";
case ARMISD::CALL: return "ARMISD::CALL";
case ARMISD::CALL_NOLINK: return "ARMISD::CALL_NOLINK";
case ARMISD::tCALL: return "ARMISD::tCALL";
case ARMISD::BRCOND: return "ARMISD::BRCOND";
case ARMISD::BR_JT: return "ARMISD::BR_JT";
case ARMISD::RET_FLAG: return "ARMISD::RET_FLAG";
case ARMISD::PIC_ADD: return "ARMISD::PIC_ADD";
case ARMISD::CMP: return "ARMISD::CMP";
case ARMISD::CMPFP: return "ARMISD::CMPFP";
case ARMISD::CMPFPw0: return "ARMISD::CMPFPw0";
case ARMISD::FMSTAT: return "ARMISD::FMSTAT";
case ARMISD::CMOV: return "ARMISD::CMOV";
case ARMISD::CNEG: return "ARMISD::CNEG";
case ARMISD::FTOSI: return "ARMISD::FTOSI";
case ARMISD::FTOUI: return "ARMISD::FTOUI";
case ARMISD::SITOF: return "ARMISD::SITOF";
case ARMISD::UITOF: return "ARMISD::UITOF";
case ARMISD::MULHILOU: return "ARMISD::MULHILOU";
case ARMISD::MULHILOS: return "ARMISD::MULHILOS";
case ARMISD::SRL_FLAG: return "ARMISD::SRL_FLAG";
case ARMISD::SRA_FLAG: return "ARMISD::SRA_FLAG";
case ARMISD::RRX: return "ARMISD::RRX";
case ARMISD::FMRRD: return "ARMISD::FMRRD";
case ARMISD::FMDRR: return "ARMISD::FMDRR";
}
}
//===----------------------------------------------------------------------===//
// Lowering Code
//===----------------------------------------------------------------------===//
/// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
switch (CC) {
default: assert(0 && "Unknown condition code!");
case ISD::SETNE: return ARMCC::NE;
case ISD::SETEQ: return ARMCC::EQ;
case ISD::SETGT: return ARMCC::GT;
case ISD::SETGE: return ARMCC::GE;
case ISD::SETLT: return ARMCC::LT;
case ISD::SETLE: return ARMCC::LE;
case ISD::SETUGT: return ARMCC::HI;
case ISD::SETUGE: return ARMCC::HS;
case ISD::SETULT: return ARMCC::LO;
case ISD::SETULE: return ARMCC::LS;
}
}
/// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC. It
/// returns true if the operands should be inverted to form the proper
/// comparison.
static bool FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
ARMCC::CondCodes &CondCode2) {
bool Invert = false;
CondCode2 = ARMCC::AL;
switch (CC) {
default: assert(0 && "Unknown FP condition!");
case ISD::SETEQ:
case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
case ISD::SETGT:
case ISD::SETOGT: CondCode = ARMCC::GT; break;
case ISD::SETGE:
case ISD::SETOGE: CondCode = ARMCC::GE; break;
case ISD::SETOLT: CondCode = ARMCC::MI; break;
case ISD::SETOLE: CondCode = ARMCC::GT; Invert = true; break;
case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
case ISD::SETO: CondCode = ARMCC::VC; break;
case ISD::SETUO: CondCode = ARMCC::VS; break;
case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
case ISD::SETUGT: CondCode = ARMCC::HI; break;
case ISD::SETUGE: CondCode = ARMCC::PL; break;
case ISD::SETLT:
case ISD::SETULT: CondCode = ARMCC::LT; break;
case ISD::SETLE:
case ISD::SETULE: CondCode = ARMCC::LE; break;
case ISD::SETNE:
case ISD::SETUNE: CondCode = ARMCC::NE; break;
}
return Invert;
}
static void
HowToPassArgument(MVT::ValueType ObjectVT,
unsigned NumGPRs, unsigned &ObjSize, unsigned &ObjGPRs) {
ObjSize = 0;
ObjGPRs = 0;
switch (ObjectVT) {
default: assert(0 && "Unhandled argument type!");
case MVT::i32:
case MVT::f32:
if (NumGPRs < 4)
ObjGPRs = 1;
else
ObjSize = 4;
break;
case MVT::i64:
case MVT::f64:
if (NumGPRs < 3)
ObjGPRs = 2;
else if (NumGPRs == 3) {
ObjGPRs = 1;
ObjSize = 4;
} else
ObjSize = 8;
}
}
// This transforms a ISD::CALL node into a
// callseq_star <- ARMISD:CALL <- callseq_end
// chain
SDOperand ARMTargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG) {
MVT::ValueType RetVT= Op.Val->getValueType(0);
SDOperand Chain = Op.getOperand(0);
unsigned CallConv = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
assert((CallConv == CallingConv::C ||
CallConv == CallingConv::Fast) && "unknown calling convention");
SDOperand Callee = Op.getOperand(4);
unsigned NumOps = (Op.getNumOperands() - 5) / 2;
unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot
unsigned NumGPRs = 0; // GPRs used for parameter passing.
// Count how many bytes are to be pushed on the stack.
unsigned NumBytes = 0;
// Add up all the space actually used.
for (unsigned i = 0; i < NumOps; ++i) {
unsigned ObjSize = 0;
unsigned ObjGPRs = 0;
MVT::ValueType ObjectVT = Op.getOperand(5+2*i).getValueType();
HowToPassArgument(ObjectVT, NumGPRs, ObjSize, ObjGPRs);
NumBytes += ObjSize;
NumGPRs += ObjGPRs;
}
// Adjust the stack pointer for the new arguments...
// These operations are automatically eliminated by the prolog/epilog pass
Chain = DAG.getCALLSEQ_START(Chain,
DAG.getConstant(NumBytes, MVT::i32));
SDOperand StackPtr = DAG.getRegister(ARM::SP, MVT::i32);
static const unsigned GPRArgRegs[] = {
ARM::R0, ARM::R1, ARM::R2, ARM::R3
};
NumGPRs = 0;
std::vector<std::pair<unsigned, SDOperand> > RegsToPass;
std::vector<SDOperand> MemOpChains;
for (unsigned i = 0; i != NumOps; ++i) {
SDOperand Arg = Op.getOperand(5+2*i);
MVT::ValueType ArgVT = Arg.getValueType();
unsigned ObjSize = 0;
unsigned ObjGPRs = 0;
HowToPassArgument(ArgVT, NumGPRs, ObjSize, ObjGPRs);
if (ObjGPRs > 0) {
switch (ArgVT) {
default: assert(0 && "Unexpected ValueType for argument!");
case MVT::i32:
RegsToPass.push_back(std::make_pair(GPRArgRegs[NumGPRs], Arg));
break;
case MVT::f32:
RegsToPass.push_back(std::make_pair(GPRArgRegs[NumGPRs],
DAG.getNode(ISD::BIT_CONVERT, MVT::i32, Arg)));
break;
case MVT::i64: {
SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Arg,
DAG.getConstant(0, getPointerTy()));
SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Arg,
DAG.getConstant(1, getPointerTy()));
RegsToPass.push_back(std::make_pair(GPRArgRegs[NumGPRs], Lo));
if (ObjGPRs == 2)
RegsToPass.push_back(std::make_pair(GPRArgRegs[NumGPRs+1], Hi));
else {
SDOperand PtrOff= DAG.getConstant(ArgOffset, StackPtr.getValueType());
PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff);
MemOpChains.push_back(DAG.getStore(Chain, Hi, PtrOff, NULL, 0));
}
break;
}
case MVT::f64: {
SDOperand Cvt = DAG.getNode(ARMISD::FMRRD,
DAG.getVTList(MVT::i32, MVT::i32),
&Arg, 1);
RegsToPass.push_back(std::make_pair(GPRArgRegs[NumGPRs], Cvt));
if (ObjGPRs == 2)
RegsToPass.push_back(std::make_pair(GPRArgRegs[NumGPRs+1],
Cvt.getValue(1)));
else {
SDOperand PtrOff= DAG.getConstant(ArgOffset, StackPtr.getValueType());
PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff);
MemOpChains.push_back(DAG.getStore(Chain, Cvt.getValue(1), PtrOff,
NULL, 0));
}
break;
}
}
} else {
assert(ObjSize != 0);
SDOperand PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff);
MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
}
NumGPRs += ObjGPRs;
ArgOffset += ObjSize;
}
if (!MemOpChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
&MemOpChains[0], MemOpChains.size());
// Build a sequence of copy-to-reg nodes chained together with token chain
// and flag operands which copy the outgoing args into the appropriate regs.
SDOperand InFlag;
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
InFlag);
InFlag = Chain.getValue(1);
}
// If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
// direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
// node so that legalize doesn't hack it.
bool isDirect = false;
bool isARMFunc = false;
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
GlobalValue *GV = G->getGlobal();
Callee = DAG.getTargetGlobalAddress(GV, getPointerTy());
isDirect = true;
bool isExt = (GV->isDeclaration() || GV->hasWeakLinkage() ||
GV->hasLinkOnceLinkage());
bool isStub = (isExt && Subtarget->isTargetDarwin()) &&
getTargetMachine().getRelocationModel() != Reloc::Static;
isARMFunc = !Subtarget->isThumb() || isStub;
// Wrap it since tBX takes a register source operand.
if (isARMFunc && Subtarget->isThumb() && !Subtarget->hasV5TOps())
Callee = DAG.getNode(ARMISD::WrapperCall, MVT::i32, Callee);
} else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
isDirect = true;
bool isStub = Subtarget->isTargetDarwin() &&
getTargetMachine().getRelocationModel() != Reloc::Static;
isARMFunc = !Subtarget->isThumb() || isStub;
// Wrap it since tBX takes a register source operand.
if (isARMFunc && Subtarget->isThumb() && !Subtarget->hasV5TOps())
Callee = DAG.getNode(ARMISD::WrapperCall, MVT::i32, Callee);
}
std::vector<MVT::ValueType> NodeTys;
NodeTys.push_back(MVT::Other); // Returns a chain
NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use.
std::vector<SDOperand> Ops;
Ops.push_back(Chain);
Ops.push_back(Callee);
// Add argument registers to the end of the list so that they are known live
// into the call.
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
Ops.push_back(DAG.getRegister(RegsToPass[i].first,
RegsToPass[i].second.getValueType()));
// FIXME: handle tail calls differently.
unsigned CallOpc;
if (Subtarget->isThumb()) {
if (!Subtarget->hasV5TOps() && (!isDirect || isARMFunc))
CallOpc = ARMISD::CALL_NOLINK;
else
CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL;
} else {
CallOpc = (isDirect || Subtarget->hasV5TOps())
? ARMISD::CALL : ARMISD::CALL_NOLINK;
}
if (InFlag.Val)
Ops.push_back(InFlag);
Chain = DAG.getNode(CallOpc, NodeTys, &Ops[0], Ops.size());
InFlag = Chain.getValue(1);
SDOperand CSOps[] = { Chain, DAG.getConstant(NumBytes, MVT::i32), InFlag };
Chain = DAG.getNode(ISD::CALLSEQ_END,
DAG.getNodeValueTypes(MVT::Other, MVT::Flag),
((RetVT != MVT::Other) ? 2 : 1), CSOps, 3);
if (RetVT != MVT::Other)
InFlag = Chain.getValue(1);
std::vector<SDOperand> ResultVals;
NodeTys.clear();
// If the call has results, copy the values out of the ret val registers.
switch (RetVT) {
default: assert(0 && "Unexpected ret value!");
case MVT::Other:
break;
case MVT::i32:
Chain = DAG.getCopyFromReg(Chain, ARM::R0, MVT::i32, InFlag).getValue(1);
ResultVals.push_back(Chain.getValue(0));
if (Op.Val->getValueType(1) == MVT::i32) {
// Returns a i64 value.
Chain = DAG.getCopyFromReg(Chain, ARM::R1, MVT::i32,
Chain.getValue(2)).getValue(1);
ResultVals.push_back(Chain.getValue(0));
NodeTys.push_back(MVT::i32);
}
NodeTys.push_back(MVT::i32);
break;
case MVT::f32:
Chain = DAG.getCopyFromReg(Chain, ARM::R0, MVT::i32, InFlag).getValue(1);
ResultVals.push_back(DAG.getNode(ISD::BIT_CONVERT, MVT::f32,
Chain.getValue(0)));
NodeTys.push_back(MVT::f32);
break;
case MVT::f64: {
SDOperand Lo = DAG.getCopyFromReg(Chain, ARM::R0, MVT::i32, InFlag);
SDOperand Hi = DAG.getCopyFromReg(Lo, ARM::R1, MVT::i32, Lo.getValue(2));
ResultVals.push_back(DAG.getNode(ARMISD::FMDRR, MVT::f64, Lo, Hi));
NodeTys.push_back(MVT::f64);
break;
}
}
NodeTys.push_back(MVT::Other);
if (ResultVals.empty())
return Chain;
ResultVals.push_back(Chain);
SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys, &ResultVals[0],
ResultVals.size());
return Res.getValue(Op.ResNo);
}
static SDOperand LowerRET(SDOperand Op, SelectionDAG &DAG) {
SDOperand Copy;
SDOperand Chain = Op.getOperand(0);
switch(Op.getNumOperands()) {
default:
assert(0 && "Do not know how to return this many arguments!");
abort();
case 1: {
SDOperand LR = DAG.getRegister(ARM::LR, MVT::i32);
return DAG.getNode(ARMISD::RET_FLAG, MVT::Other, Chain);
}
case 3:
Op = Op.getOperand(1);
if (Op.getValueType() == MVT::f32) {
Op = DAG.getNode(ISD::BIT_CONVERT, MVT::i32, Op);
} else if (Op.getValueType() == MVT::f64) {
// Recursively legalize f64 -> i64.
Op = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Op);
return DAG.getNode(ISD::RET, MVT::Other, Chain, Op,
DAG.getConstant(0, MVT::i32));
}
Copy = DAG.getCopyToReg(Chain, ARM::R0, Op, SDOperand());
if (DAG.getMachineFunction().liveout_empty())
DAG.getMachineFunction().addLiveOut(ARM::R0);
break;
case 5:
Copy = DAG.getCopyToReg(Chain, ARM::R1, Op.getOperand(3), SDOperand());
Copy = DAG.getCopyToReg(Copy, ARM::R0, Op.getOperand(1), Copy.getValue(1));
// If we haven't noted the R0+R1 are live out, do so now.
if (DAG.getMachineFunction().liveout_empty()) {
DAG.getMachineFunction().addLiveOut(ARM::R0);
DAG.getMachineFunction().addLiveOut(ARM::R1);
}
break;
}
//We must use RET_FLAG instead of BRIND because BRIND doesn't have a flag
return DAG.getNode(ARMISD::RET_FLAG, MVT::Other, Copy, Copy.getValue(1));
}
// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
// their target countpart wrapped in the ARMISD::Wrapper node. Suppose N is
// one of the above mentioned nodes. It has to be wrapped because otherwise
// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
// be used to form addressing mode. These wrapped nodes will be selected
// into MOVri.
static SDOperand LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
MVT::ValueType PtrVT = Op.getValueType();
ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
SDOperand Res;
if (CP->isMachineConstantPoolEntry())
Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
CP->getAlignment());
else
Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
CP->getAlignment());
return DAG.getNode(ARMISD::Wrapper, MVT::i32, Res);
}
/// GVIsIndirectSymbol - true if the GV will be accessed via an indirect symbol
/// even in dynamic-no-pic mode.
static bool GVIsIndirectSymbol(GlobalValue *GV) {
return (GV->hasWeakLinkage() || GV->hasLinkOnceLinkage() ||
(GV->isDeclaration() && !GV->hasNotBeenReadFromBytecode()));
}
SDOperand ARMTargetLowering::LowerGlobalAddress(SDOperand Op,
SelectionDAG &DAG) {
MVT::ValueType PtrVT = getPointerTy();
GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
Reloc::Model RelocM = getTargetMachine().getRelocationModel();
bool IsIndirect = Subtarget->isTargetDarwin() && GVIsIndirectSymbol(GV);
SDOperand CPAddr;
if (RelocM == Reloc::Static)
CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 2);
else {
unsigned PCAdj = (RelocM != Reloc::PIC_)
? 0 : (Subtarget->isThumb() ? 4 : 8);
ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, ARMPCLabelIndex,
IsIndirect, PCAdj);
CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 2);
}
CPAddr = DAG.getNode(ARMISD::Wrapper, MVT::i32, CPAddr);
SDOperand Result = DAG.getLoad(PtrVT, DAG.getEntryNode(), CPAddr, NULL, 0);
SDOperand Chain = Result.getValue(1);
if (RelocM == Reloc::PIC_) {
SDOperand PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32);
Result = DAG.getNode(ARMISD::PIC_ADD, PtrVT, Result, PICLabel);
}
if (IsIndirect)
Result = DAG.getLoad(PtrVT, Chain, Result, NULL, 0);
return Result;
}
static SDOperand LowerVASTART(SDOperand Op, SelectionDAG &DAG,
unsigned VarArgsFrameIndex) {
// vastart just stores the address of the VarArgsFrameIndex slot into the
// memory location argument.
MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
return DAG.getStore(Op.getOperand(0), FR, Op.getOperand(1), SV->getValue(),
SV->getOffset());
}
static SDOperand LowerFORMAL_ARGUMENT(SDOperand Op, SelectionDAG &DAG,
unsigned *vRegs, unsigned ArgNo,
unsigned &NumGPRs, unsigned &ArgOffset) {
MachineFunction &MF = DAG.getMachineFunction();
MVT::ValueType ObjectVT = Op.getValue(ArgNo).getValueType();
SDOperand Root = Op.getOperand(0);
std::vector<SDOperand> ArgValues;
SSARegMap *RegMap = MF.getSSARegMap();
static const unsigned GPRArgRegs[] = {
ARM::R0, ARM::R1, ARM::R2, ARM::R3
};
unsigned ObjSize = 0;
unsigned ObjGPRs = 0;
HowToPassArgument(ObjectVT, NumGPRs, ObjSize, ObjGPRs);
SDOperand ArgValue;
if (ObjGPRs == 1) {
unsigned VReg = RegMap->createVirtualRegister(&ARM::GPRRegClass);
MF.addLiveIn(GPRArgRegs[NumGPRs], VReg);
vRegs[NumGPRs] = VReg;
ArgValue = DAG.getCopyFromReg(Root, VReg, MVT::i32);
if (ObjectVT == MVT::f32)
ArgValue = DAG.getNode(ISD::BIT_CONVERT, MVT::f32, ArgValue);
} else if (ObjGPRs == 2) {
unsigned VReg = RegMap->createVirtualRegister(&ARM::GPRRegClass);
MF.addLiveIn(GPRArgRegs[NumGPRs], VReg);
vRegs[NumGPRs] = VReg;
ArgValue = DAG.getCopyFromReg(Root, VReg, MVT::i32);
VReg = RegMap->createVirtualRegister(&ARM::GPRRegClass);
MF.addLiveIn(GPRArgRegs[NumGPRs+1], VReg);
vRegs[NumGPRs+1] = VReg;
SDOperand ArgValue2 = DAG.getCopyFromReg(Root, VReg, MVT::i32);
if (ObjectVT == MVT::i64)
ArgValue = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, ArgValue, ArgValue2);
else
ArgValue = DAG.getNode(ARMISD::FMDRR, MVT::f64, ArgValue, ArgValue2);
}
NumGPRs += ObjGPRs;
if (ObjSize) {
// If the argument is actually used, emit a load from the right stack
// slot.
if (!Op.Val->hasNUsesOfValue(0, ArgNo)) {
MachineFrameInfo *MFI = MF.getFrameInfo();
int FI = MFI->CreateFixedObject(ObjSize, ArgOffset);
SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32);
if (ObjGPRs == 0)
ArgValue = DAG.getLoad(ObjectVT, Root, FIN, NULL, 0);
else {
SDOperand ArgValue2 =
DAG.getLoad(MVT::i32, Root, FIN, NULL, 0);
if (ObjectVT == MVT::i64)
ArgValue= DAG.getNode(ISD::BUILD_PAIR, MVT::i64, ArgValue, ArgValue2);
else
ArgValue= DAG.getNode(ARMISD::FMDRR, MVT::f64, ArgValue, ArgValue2);
}
} else {
// Don't emit a dead load.
ArgValue = DAG.getNode(ISD::UNDEF, ObjectVT);
}
ArgOffset += ObjSize; // Move on to the next argument.
}
return ArgValue;
}
SDOperand
ARMTargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG) {
std::vector<SDOperand> ArgValues;
SDOperand Root = Op.getOperand(0);
unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot
unsigned NumGPRs = 0; // GPRs used for parameter passing.
unsigned VRegs[4];
unsigned NumArgs = Op.Val->getNumValues()-1;
for (unsigned ArgNo = 0; ArgNo < NumArgs; ++ArgNo)
ArgValues.push_back(LowerFORMAL_ARGUMENT(Op, DAG, VRegs, ArgNo,
NumGPRs, ArgOffset));
bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
if (isVarArg) {
static const unsigned GPRArgRegs[] = {
ARM::R0, ARM::R1, ARM::R2, ARM::R3
};
MachineFunction &MF = DAG.getMachineFunction();
SSARegMap *RegMap = MF.getSSARegMap();
MachineFrameInfo *MFI = MF.getFrameInfo();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
unsigned VARegSaveSize = (4 - NumGPRs) * 4;
if (VARegSaveSize) {
// If this function is vararg, store any remaining integer argument regs
// to their spots on the stack so that they may be loaded by deferencing
// the result of va_next.
AFI->setVarArgsRegSaveSize(VARegSaveSize);
VarArgsFrameIndex = MFI->CreateFixedObject(VARegSaveSize, ArgOffset);
SDOperand FIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
SmallVector<SDOperand, 4> MemOps;
for (; NumGPRs < 4; ++NumGPRs) {
unsigned VReg = RegMap->createVirtualRegister(&ARM::GPRRegClass);
MF.addLiveIn(GPRArgRegs[NumGPRs], VReg);
SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::i32);
SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
MemOps.push_back(Store);
FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
DAG.getConstant(4, getPointerTy()));
}
if (!MemOps.empty())
Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
&MemOps[0], MemOps.size());
} else
// This will point to the next argument passed via stack.
VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset);
}
ArgValues.push_back(Root);
// Return the new list of results.
std::vector<MVT::ValueType> RetVT(Op.Val->value_begin(),
Op.Val->value_end());
return DAG.getNode(ISD::MERGE_VALUES, RetVT, &ArgValues[0], ArgValues.size());
}
/// isFloatingPointZero - Return true if this is +0.0.
static bool isFloatingPointZero(SDOperand Op) {
if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
return CFP->isExactlyValue(0.0);
else if (ISD::isEXTLoad(Op.Val) || ISD::isNON_EXTLoad(Op.Val)) {
// Maybe this has already been legalized into the constant pool?
if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
SDOperand WrapperOp = Op.getOperand(1).getOperand(0);
if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
return CFP->isExactlyValue(0.0);
}
}
return false;
}
static bool isLegalCmpImmediate(int C, bool isThumb) {
return ( isThumb && (C & ~255U) == 0) ||
(!isThumb && ARM_AM::getSOImmVal(C) != -1);
}
/// Returns appropriate ARM CMP (cmp) and corresponding condition code for
/// the given operands.
static SDOperand getARMCmp(SDOperand LHS, SDOperand RHS, ISD::CondCode CC,
SDOperand &ARMCC, SelectionDAG &DAG, bool isThumb) {
if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.Val)) {
int C = (int)RHSC->getValue();
if (!isLegalCmpImmediate(C, isThumb)) {
// Constant does not fit, try adjusting it by one?
switch (CC) {
default: break;
case ISD::SETLT:
case ISD::SETULT:
case ISD::SETGE:
case ISD::SETUGE:
if (isLegalCmpImmediate(C-1, isThumb)) {
switch (CC) {
default: break;
case ISD::SETLT: CC = ISD::SETLE; break;
case ISD::SETULT: CC = ISD::SETULE; break;
case ISD::SETGE: CC = ISD::SETGT; break;
case ISD::SETUGE: CC = ISD::SETUGT; break;
}
RHS = DAG.getConstant(C-1, MVT::i32);
}
break;
case ISD::SETLE:
case ISD::SETULE:
case ISD::SETGT:
case ISD::SETUGT:
if (isLegalCmpImmediate(C+1, isThumb)) {
switch (CC) {
default: break;
case ISD::SETLE: CC = ISD::SETLT; break;
case ISD::SETULE: CC = ISD::SETULT; break;
case ISD::SETGT: CC = ISD::SETGE; break;
case ISD::SETUGT: CC = ISD::SETUGE; break;
}
RHS = DAG.getConstant(C+1, MVT::i32);
}
break;
}
}
}
ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
ARMCC = DAG.getConstant(CondCode, MVT::i32);
return DAG.getNode(ARMISD::CMP, MVT::Flag, LHS, RHS);
}
/// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
static SDOperand getVFPCmp(SDOperand LHS, SDOperand RHS, SelectionDAG &DAG) {
SDOperand Cmp;
if (!isFloatingPointZero(RHS))
Cmp = DAG.getNode(ARMISD::CMPFP, MVT::Flag, LHS, RHS);
else
Cmp = DAG.getNode(ARMISD::CMPFPw0, MVT::Flag, LHS);
return DAG.getNode(ARMISD::FMSTAT, MVT::Flag, Cmp);
}
static SDOperand LowerSELECT_CC(SDOperand Op, SelectionDAG &DAG,
const ARMSubtarget *ST) {
MVT::ValueType VT = Op.getValueType();
SDOperand LHS = Op.getOperand(0);
SDOperand RHS = Op.getOperand(1);
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
SDOperand TrueVal = Op.getOperand(2);
SDOperand FalseVal = Op.getOperand(3);
if (LHS.getValueType() == MVT::i32) {
SDOperand ARMCC;
SDOperand Cmp = getARMCmp(LHS, RHS, CC, ARMCC, DAG, ST->isThumb());
return DAG.getNode(ARMISD::CMOV, VT, FalseVal, TrueVal, ARMCC, Cmp);
}
ARMCC::CondCodes CondCode, CondCode2;
if (FPCCToARMCC(CC, CondCode, CondCode2))
std::swap(TrueVal, FalseVal);
SDOperand ARMCC = DAG.getConstant(CondCode, MVT::i32);
SDOperand Cmp = getVFPCmp(LHS, RHS, DAG);
SDOperand Result = DAG.getNode(ARMISD::CMOV, VT, FalseVal, TrueVal,
ARMCC, Cmp);
if (CondCode2 != ARMCC::AL) {
SDOperand ARMCC2 = DAG.getConstant(CondCode2, MVT::i32);
// FIXME: Needs another CMP because flag can have but one use.
SDOperand Cmp2 = getVFPCmp(LHS, RHS, DAG);
Result = DAG.getNode(ARMISD::CMOV, VT, Result, TrueVal, ARMCC2, Cmp2);
}
return Result;
}
static SDOperand LowerBR_CC(SDOperand Op, SelectionDAG &DAG,
const ARMSubtarget *ST) {
SDOperand Chain = Op.getOperand(0);
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
SDOperand LHS = Op.getOperand(2);
SDOperand RHS = Op.getOperand(3);
SDOperand Dest = Op.getOperand(4);
if (LHS.getValueType() == MVT::i32) {
SDOperand ARMCC;
SDOperand Cmp = getARMCmp(LHS, RHS, CC, ARMCC, DAG, ST->isThumb());
return DAG.getNode(ARMISD::BRCOND, MVT::Other, Chain, Dest, ARMCC, Cmp);
}
assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
ARMCC::CondCodes CondCode, CondCode2;
if (FPCCToARMCC(CC, CondCode, CondCode2))
// Swap the LHS/RHS of the comparison if needed.
std::swap(LHS, RHS);
SDOperand Cmp = getVFPCmp(LHS, RHS, DAG);
SDOperand ARMCC = DAG.getConstant(CondCode, MVT::i32);
SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Flag);
SDOperand Ops[] = { Chain, Dest, ARMCC, Cmp };
SDOperand Res = DAG.getNode(ARMISD::BRCOND, VTList, Ops, 4);
if (CondCode2 != ARMCC::AL) {
ARMCC = DAG.getConstant(CondCode2, MVT::i32);
SDOperand Ops[] = { Res, Dest, ARMCC, Res.getValue(1) };
Res = DAG.getNode(ARMISD::BRCOND, VTList, Ops, 4);
}
return Res;
}
SDOperand ARMTargetLowering::LowerBR_JT(SDOperand Op, SelectionDAG &DAG) {
SDOperand Chain = Op.getOperand(0);
SDOperand Table = Op.getOperand(1);
SDOperand Index = Op.getOperand(2);
MVT::ValueType PTy = getPointerTy();
JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
SDOperand UId = DAG.getConstant(AFI->createJumpTableUId(), PTy);
SDOperand JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
Table = DAG.getNode(ARMISD::WrapperJT, MVT::i32, JTI, UId);
Index = DAG.getNode(ISD::MUL, PTy, Index, DAG.getConstant(4, PTy));
SDOperand Addr = DAG.getNode(ISD::ADD, PTy, Index, Table);
bool isPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
Addr = DAG.getLoad(isPIC ? MVT::i32 : PTy, Chain, Addr, NULL, 0);
Chain = Addr.getValue(1);
if (isPIC)
Addr = DAG.getNode(ISD::ADD, PTy, Addr, Table);
return DAG.getNode(ARMISD::BR_JT, MVT::Other, Chain, Addr, JTI, UId);
}
static SDOperand LowerFP_TO_INT(SDOperand Op, SelectionDAG &DAG) {
unsigned Opc =
Op.getOpcode() == ISD::FP_TO_SINT ? ARMISD::FTOSI : ARMISD::FTOUI;
Op = DAG.getNode(Opc, MVT::f32, Op.getOperand(0));
return DAG.getNode(ISD::BIT_CONVERT, MVT::i32, Op);
}
static SDOperand LowerINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
MVT::ValueType VT = Op.getValueType();
unsigned Opc =
Op.getOpcode() == ISD::SINT_TO_FP ? ARMISD::SITOF : ARMISD::UITOF;
Op = DAG.getNode(ISD::BIT_CONVERT, MVT::f32, Op.getOperand(0));
return DAG.getNode(Opc, VT, Op);
}
static SDOperand LowerFCOPYSIGN(SDOperand Op, SelectionDAG &DAG) {
// Implement fcopysign with a fabs and a conditional fneg.
SDOperand Tmp0 = Op.getOperand(0);
SDOperand Tmp1 = Op.getOperand(1);
MVT::ValueType VT = Op.getValueType();
MVT::ValueType SrcVT = Tmp1.getValueType();
SDOperand AbsVal = DAG.getNode(ISD::FABS, VT, Tmp0);
SDOperand Cmp = getVFPCmp(Tmp1, DAG.getConstantFP(0.0, SrcVT), DAG);
SDOperand ARMCC = DAG.getConstant(ARMCC::LT, MVT::i32);
return DAG.getNode(ARMISD::CNEG, VT, AbsVal, AbsVal, ARMCC, Cmp);
}
static SDOperand LowerBIT_CONVERT(SDOperand Op, SelectionDAG &DAG) {
// Turn f64->i64 into FMRRD.
assert(Op.getValueType() == MVT::i64 &&
Op.getOperand(0).getValueType() == MVT::f64);
Op = Op.getOperand(0);
SDOperand Cvt = DAG.getNode(ARMISD::FMRRD, DAG.getVTList(MVT::i32, MVT::i32),
&Op, 1);
// Merge the pieces into a single i64 value.
return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Cvt, Cvt.getValue(1));
}
static SDOperand LowerMUL(SDOperand Op, SelectionDAG &DAG) {
// FIXME: All this code is target-independent. Create a new target-indep
// MULHILO node and move this code to the legalizer.
//
assert(Op.getValueType() == MVT::i64 && "Only handles i64 expand right now!");
SDOperand LL = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
DAG.getConstant(0, MVT::i32));
SDOperand RL = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(1),
DAG.getConstant(0, MVT::i32));
const TargetLowering &TL = DAG.getTargetLoweringInfo();
unsigned LHSSB = TL.ComputeNumSignBits(Op.getOperand(0));
unsigned RHSSB = TL.ComputeNumSignBits(Op.getOperand(1));
SDOperand Lo, Hi;
// Figure out how to lower this multiply.
if (LHSSB >= 33 && RHSSB >= 33) {
// If the input values are both sign extended, we can emit a mulhs+mul.
Lo = DAG.getNode(ISD::MUL, MVT::i32, LL, RL);
Hi = DAG.getNode(ISD::MULHS, MVT::i32, LL, RL);
} else if (LHSSB == 32 && RHSSB == 32 &&
TL.MaskedValueIsZero(Op.getOperand(0), 0xFFFFFFFF00000000ULL) &&
TL.MaskedValueIsZero(Op.getOperand(1), 0xFFFFFFFF00000000ULL)) {
// If the inputs are zero extended, use mulhu.
Lo = DAG.getNode(ISD::MUL, MVT::i32, LL, RL);
Hi = DAG.getNode(ISD::MULHU, MVT::i32, LL, RL);
} else {
SDOperand LH = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
DAG.getConstant(1, MVT::i32));
SDOperand RH = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(1),
DAG.getConstant(1, MVT::i32));
// Lo,Hi = umul LHS, RHS.
SDOperand Ops[] = { LL, RL };
SDOperand UMul64 = DAG.getNode(ARMISD::MULHILOU,
DAG.getVTList(MVT::i32, MVT::i32), Ops, 2);
Lo = UMul64;
Hi = UMul64.getValue(1);
RH = DAG.getNode(ISD::MUL, MVT::i32, LL, RH);
LH = DAG.getNode(ISD::MUL, MVT::i32, LH, RL);
Hi = DAG.getNode(ISD::ADD, MVT::i32, Hi, RH);
Hi = DAG.getNode(ISD::ADD, MVT::i32, Hi, LH);
}
// Merge the pieces into a single i64 value.
return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Lo, Hi);
}
static SDOperand LowerMULHU(SDOperand Op, SelectionDAG &DAG) {
SDOperand Ops[] = { Op.getOperand(0), Op.getOperand(1) };
return DAG.getNode(ARMISD::MULHILOU,
DAG.getVTList(MVT::i32, MVT::i32), Ops, 2).getValue(1);
}
static SDOperand LowerMULHS(SDOperand Op, SelectionDAG &DAG) {
SDOperand Ops[] = { Op.getOperand(0), Op.getOperand(1) };
return DAG.getNode(ARMISD::MULHILOS,
DAG.getVTList(MVT::i32, MVT::i32), Ops, 2).getValue(1);
}
static SDOperand LowerSRx(SDOperand Op, SelectionDAG &DAG,
const ARMSubtarget *ST) {
assert(Op.getValueType() == MVT::i64 &&
(Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) &&
"Unknown shift to lower!");
// We only lower SRA, SRL of 1 here, all others use generic lowering.
if (!isa<ConstantSDNode>(Op.getOperand(1)) ||
cast<ConstantSDNode>(Op.getOperand(1))->getValue() != 1)
return SDOperand();
// If we are in thumb mode, we don't have RRX.
if (ST->isThumb()) return SDOperand();
// Okay, we have a 64-bit SRA or SRL of 1. Lower this to an RRX expr.
SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
DAG.getConstant(0, MVT::i32));
SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
DAG.getConstant(1, MVT::i32));
// First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
// captures the result into a carry flag.
unsigned Opc = Op.getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
Hi = DAG.getNode(Opc, DAG.getVTList(MVT::i32, MVT::Flag), &Hi, 1);
// The low part is an ARMISD::RRX operand, which shifts the carry in.
Lo = DAG.getNode(ARMISD::RRX, MVT::i32, Lo, Hi.getValue(1));
// Merge the pieces into a single i64 value.
return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Lo, Hi);
}
SDOperand ARMTargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
switch (Op.getOpcode()) {
default: assert(0 && "Don't know how to custom lower this!"); abort();
case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
case ISD::CALL: return LowerCALL(Op, DAG);
case ISD::RET: return LowerRET(Op, DAG);
case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG, Subtarget);
case ISD::BR_CC: return LowerBR_CC(Op, DAG, Subtarget);
case ISD::BR_JT: return LowerBR_JT(Op, DAG);
case ISD::VASTART: return LowerVASTART(Op, DAG, VarArgsFrameIndex);
case ISD::SINT_TO_FP:
case ISD::UINT_TO_FP: return LowerINT_TO_FP(Op, DAG);
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT: return LowerFP_TO_INT(Op, DAG);
case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG);
case ISD::BIT_CONVERT: return LowerBIT_CONVERT(Op, DAG);
case ISD::MUL: return LowerMUL(Op, DAG);
case ISD::MULHU: return LowerMULHU(Op, DAG);
case ISD::MULHS: return LowerMULHS(Op, DAG);
case ISD::SRL:
case ISD::SRA: return LowerSRx(Op, DAG, Subtarget);
case ISD::FORMAL_ARGUMENTS:
return LowerFORMAL_ARGUMENTS(Op, DAG);
case ISD::RETURNADDR: break;
case ISD::FRAMEADDR: break;
}
return SDOperand();
}
//===----------------------------------------------------------------------===//
// ARM Scheduler Hooks
//===----------------------------------------------------------------------===//
MachineBasicBlock *
ARMTargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
MachineBasicBlock *BB) {
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
switch (MI->getOpcode()) {
default: assert(false && "Unexpected instr type to insert");
case ARM::tMOVCCr: {
// To "insert" a SELECT_CC instruction, we actually have to insert the
// diamond control-flow pattern. The incoming instruction knows the
// destination vreg to set, the condition code register to branch on, the
// true/false values to select between, and a branch opcode to use.
const BasicBlock *LLVM_BB = BB->getBasicBlock();
ilist<MachineBasicBlock>::iterator It = BB;
++It;
// thisMBB:
// ...
// TrueVal = ...
// cmpTY ccX, r1, r2
// bCC copy1MBB
// fallthrough --> copy0MBB
MachineBasicBlock *thisMBB = BB;
MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
BuildMI(BB, TII->get(ARM::tBcc)).addMBB(sinkMBB)
.addImm(MI->getOperand(3).getImm());
MachineFunction *F = BB->getParent();
F->getBasicBlockList().insert(It, copy0MBB);
F->getBasicBlockList().insert(It, sinkMBB);
// Update machine-CFG edges by first adding all successors of the current
// block to the new block which will contain the Phi node for the select.
for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
e = BB->succ_end(); i != e; ++i)
sinkMBB->addSuccessor(*i);
// Next, remove all successors of the current block, and add the true
// and fallthrough blocks as its successors.
while(!BB->succ_empty())
BB->removeSuccessor(BB->succ_begin());
BB->addSuccessor(copy0MBB);
BB->addSuccessor(sinkMBB);
// copy0MBB:
// %FalseValue = ...
// # fallthrough to sinkMBB
BB = copy0MBB;
// Update machine-CFG edges
BB->addSuccessor(sinkMBB);
// sinkMBB:
// %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
// ...
BB = sinkMBB;
BuildMI(BB, TII->get(ARM::PHI), MI->getOperand(0).getReg())
.addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
.addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
delete MI; // The pseudo instruction is gone now.
return BB;
}
}
}
//===----------------------------------------------------------------------===//
// ARM Optimization Hooks
//===----------------------------------------------------------------------===//
/// isLegalAddressImmediate - Return true if the integer value or
/// GlobalValue can be used as the offset of the target addressing mode.
bool ARMTargetLowering::isLegalAddressImmediate(int64_t V) const {
// ARM allows a 12-bit immediate field.
return V == V & ((1LL << 12) - 1);
}
bool ARMTargetLowering::isLegalAddressImmediate(GlobalValue *GV) const {
return false;
}
static bool getIndexedAddressParts(SDNode *Ptr, MVT::ValueType VT,
bool isSEXTLoad, SDOperand &Base,
SDOperand &Offset, bool &isInc,
SelectionDAG &DAG) {
if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
return false;
if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
// AddressingMode 3
Base = Ptr->getOperand(0);
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
int RHSC = (int)RHS->getValue();
if (RHSC < 0 && RHSC > -256) {
isInc = false;
Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
return true;
}
}
isInc = (Ptr->getOpcode() == ISD::ADD);
Offset = Ptr->getOperand(1);
return true;
} else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
// AddressingMode 2
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
int RHSC = (int)RHS->getValue();
if (RHSC < 0 && RHSC > -0x1000) {
isInc = false;
Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
Base = Ptr->getOperand(0);
return true;
}
}
if (Ptr->getOpcode() == ISD::ADD) {
isInc = true;
ARM_AM::ShiftOpc ShOpcVal= ARM_AM::getShiftOpcForNode(Ptr->getOperand(0));
if (ShOpcVal != ARM_AM::no_shift) {
Base = Ptr->getOperand(1);
Offset = Ptr->getOperand(0);
} else {
Base = Ptr->getOperand(0);
Offset = Ptr->getOperand(1);
}
return true;
}
isInc = (Ptr->getOpcode() == ISD::ADD);
Base = Ptr->getOperand(0);
Offset = Ptr->getOperand(1);
return true;
}
// FIXME: Use FLDM / FSTM to emulate indexed FP load / store.
return false;
}
/// getPreIndexedAddressParts - returns true by value, base pointer and
/// offset pointer and addressing mode by reference if the node's address
/// can be legally represented as pre-indexed load / store address.
bool
ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDOperand &Base,
SDOperand &Offset,
ISD::MemIndexedMode &AM,
SelectionDAG &DAG) {
if (Subtarget->isThumb())
return false;
MVT::ValueType VT;
SDOperand Ptr;
bool isSEXTLoad = false;
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
Ptr = LD->getBasePtr();
VT = LD->getLoadedVT();
isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
} else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
Ptr = ST->getBasePtr();
VT = ST->getStoredVT();
} else
return false;
bool isInc;
bool isLegal = getIndexedAddressParts(Ptr.Val, VT, isSEXTLoad, Base, Offset,
isInc, DAG);
if (isLegal) {
AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
return true;
}
return false;
}
/// getPostIndexedAddressParts - returns true by value, base pointer and
/// offset pointer and addressing mode by reference if this node can be
/// combined with a load / store to form a post-indexed load / store.
bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
SDOperand &Base,
SDOperand &Offset,
ISD::MemIndexedMode &AM,
SelectionDAG &DAG) {
if (Subtarget->isThumb())
return false;
MVT::ValueType VT;
SDOperand Ptr;
bool isSEXTLoad = false;
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
VT = LD->getLoadedVT();
isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
} else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
VT = ST->getStoredVT();
} else
return false;
bool isInc;
bool isLegal = getIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
isInc, DAG);
if (isLegal) {
AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
return true;
}
return false;
}
void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
uint64_t Mask,
uint64_t &KnownZero,
uint64_t &KnownOne,
unsigned Depth) const {
KnownZero = 0;
KnownOne = 0;
switch (Op.getOpcode()) {
default: break;
case ARMISD::CMOV: {
// Bits are known zero/one if known on the LHS and RHS.
ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
if (KnownZero == 0 && KnownOne == 0) return;
uint64_t KnownZeroRHS, KnownOneRHS;
ComputeMaskedBits(Op.getOperand(1), Mask,
KnownZeroRHS, KnownOneRHS, Depth+1);
KnownZero &= KnownZeroRHS;
KnownOne &= KnownOneRHS;
return;
}
}
}
//===----------------------------------------------------------------------===//
// ARM Inline Assembly Support
//===----------------------------------------------------------------------===//
/// getConstraintType - Given a constraint letter, return the type of
/// constraint it is for this target.
ARMTargetLowering::ConstraintType
ARMTargetLowering::getConstraintType(char ConstraintLetter) const {
switch (ConstraintLetter) {
case 'l':
return C_RegisterClass;
default: return TargetLowering::getConstraintType(ConstraintLetter);
}
}
std::pair<unsigned, const TargetRegisterClass*>
ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
MVT::ValueType VT) const {
if (Constraint.size() == 1) {
// GCC RS6000 Constraint Letters
switch (Constraint[0]) {
case 'l':
// FIXME: in thumb mode, 'l' is only low-regs.
// FALL THROUGH.
case 'r':
return std::make_pair(0U, ARM::GPRRegisterClass);
break;
}
}
return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
}
std::vector<unsigned> ARMTargetLowering::
getRegClassForInlineAsmConstraint(const std::string &Constraint,
MVT::ValueType VT) const {
if (Constraint.size() != 1)
return std::vector<unsigned>();
switch (Constraint[0]) { // GCC ARM Constraint Letters
default: break;
case 'l':
case 'r':
return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3,
ARM::R4, ARM::R5, ARM::R6, ARM::R7,
ARM::R8, ARM::R9, ARM::R10, ARM::R11,
ARM::R12, ARM::LR, 0);
}
return std::vector<unsigned>();
}