llvm-6502/include/llvm/DerivedTypes.h
Reid Spencer 2c261789d3 Change the syntax for parameter attributes:
1. The @ sign is no longer necessary.
2. We now support "function attributes" as parameter attribute 0.
3. Instead of locating the return type attributes after the type of a
   function result, they are now located after the function header's
   closing paranthesis and before any alignment or section options.
4. The way has been prepared for a new "noreturn" function attribute but
   there is no support for recognizing it in the lexer nor doing anything
   with it if it does get set.
5. The FunctionType::getParamAttrsText method now has support for
   returning multiple attributes. This required a change in its interface.

I'm unhappy that this change leads to 6 new shift/reduce conflicts, but
in each case bison's decision to choose the shift is correct so there
shouldn't be any damage from these conflicts.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@32904 91177308-0d34-0410-b5e6-96231b3b80d8
2007-01-05 17:06:19 +00:00

386 lines
14 KiB
C++

//===-- llvm/DerivedTypes.h - Classes for handling data types ---*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the declarations of classes that represent "derived
// types". These are things like "arrays of x" or "structure of x, y, z" or
// "method returning x taking (y,z) as parameters", etc...
//
// The implementations of these classes live in the Type.cpp file.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_DERIVED_TYPES_H
#define LLVM_DERIVED_TYPES_H
#include "llvm/Type.h"
namespace llvm {
class Value;
template<class ValType, class TypeClass> class TypeMap;
class FunctionValType;
class ArrayValType;
class StructValType;
class PointerValType;
class PackedValType;
class DerivedType : public Type {
friend class Type;
protected:
DerivedType(TypeID id) : Type(id) {}
/// notifyUsesThatTypeBecameConcrete - Notify AbstractTypeUsers of this type
/// that the current type has transitioned from being abstract to being
/// concrete.
///
void notifyUsesThatTypeBecameConcrete();
/// dropAllTypeUses - When this (abstract) type is resolved to be equal to
/// another (more concrete) type, we must eliminate all references to other
/// types, to avoid some circular reference problems.
///
void dropAllTypeUses();
public:
//===--------------------------------------------------------------------===//
// Abstract Type handling methods - These types have special lifetimes, which
// are managed by (add|remove)AbstractTypeUser. See comments in
// AbstractTypeUser.h for more information.
/// refineAbstractTypeTo - This function is used to when it is discovered that
/// the 'this' abstract type is actually equivalent to the NewType specified.
/// This causes all users of 'this' to switch to reference the more concrete
/// type NewType and for 'this' to be deleted.
///
void refineAbstractTypeTo(const Type *NewType);
void dump() const { Type::dump(); }
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const DerivedType *T) { return true; }
static inline bool classof(const Type *T) {
return T->isDerivedType();
}
};
/// FunctionType - Class to represent function types
///
class FunctionType : public DerivedType {
public:
/// Function parameters can have attributes to indicate how they should be
/// treated by optimizations and code generation. This enumeration lists the
/// set of possible attributes.
/// @brief Function parameter attributes enumeration.
enum ParameterAttributes {
NoAttributeSet = 0, ///< No attribute value has been set
ZExtAttribute = 1, ///< zero extended before/after call
SExtAttribute = 1 << 1, ///< sign extended before/after call
NoReturnAttribute = 1 << 2 ///< mark the function as not returning
};
typedef std::vector<ParameterAttributes> ParamAttrsList;
private:
friend class TypeMap<FunctionValType, FunctionType>;
bool isVarArgs;
ParamAttrsList *ParamAttrs;
FunctionType(const FunctionType &); // Do not implement
const FunctionType &operator=(const FunctionType &); // Do not implement
FunctionType(const Type *Result, const std::vector<const Type*> &Params,
bool IsVarArgs, const ParamAttrsList &Attrs);
public:
/// FunctionType::get - This static method is the primary way of constructing
/// a FunctionType.
///
static FunctionType *get(
const Type *Result, ///< The result type
const std::vector<const Type*> &Params, ///< The types of the parameters
bool isVarArg, ///< Whether this is a variable argument length function
const ParamAttrsList & Attrs = ParamAttrsList()
///< Indicates the parameter attributes to use, if any. The 0th entry
///< in the list refers to the return type. Parameters are numbered
///< starting at 1.
);
inline bool isVarArg() const { return isVarArgs; }
inline const Type *getReturnType() const { return ContainedTys[0]; }
typedef std::vector<PATypeHandle>::const_iterator param_iterator;
param_iterator param_begin() const { return ContainedTys.begin()+1; }
param_iterator param_end() const { return ContainedTys.end(); }
// Parameter type accessors...
const Type *getParamType(unsigned i) const { return ContainedTys[i+1]; }
/// getNumParams - Return the number of fixed parameters this function type
/// requires. This does not consider varargs.
///
unsigned getNumParams() const { return unsigned(ContainedTys.size()-1); }
/// The parameter attributes for the \p ith parameter are returned. The 0th
/// parameter refers to the return type of the function.
/// @returns The ParameterAttributes for the \p ith parameter.
/// @brief Get the attributes for a parameter
ParameterAttributes getParamAttrs(unsigned i) const;
/// @brief Determine if a parameter attribute is set
bool paramHasAttr(unsigned i, ParameterAttributes attr) const {
return getParamAttrs(i) & attr;
}
/// @brief Return the number of parameter attributes this type has.
unsigned getNumAttrs() const {
return (ParamAttrs ? unsigned(ParamAttrs->size()) : 0);
}
/// @brief Convert a ParameterAttribute into its assembly text
static std::string getParamAttrsText(ParameterAttributes Attr);
// Implement the AbstractTypeUser interface.
virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy);
virtual void typeBecameConcrete(const DerivedType *AbsTy);
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const FunctionType *T) { return true; }
static inline bool classof(const Type *T) {
return T->getTypeID() == FunctionTyID;
}
};
/// CompositeType - Common super class of ArrayType, StructType, PointerType
/// and PackedType
class CompositeType : public DerivedType {
protected:
inline CompositeType(TypeID id) : DerivedType(id) { }
public:
/// getTypeAtIndex - Given an index value into the type, return the type of
/// the element.
///
virtual const Type *getTypeAtIndex(const Value *V) const = 0;
virtual bool indexValid(const Value *V) const = 0;
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const CompositeType *T) { return true; }
static inline bool classof(const Type *T) {
return T->getTypeID() == ArrayTyID ||
T->getTypeID() == StructTyID ||
T->getTypeID() == PointerTyID ||
T->getTypeID() == PackedTyID;
}
};
/// StructType - Class to represent struct types
///
class StructType : public CompositeType {
friend class TypeMap<StructValType, StructType>;
StructType(const StructType &); // Do not implement
const StructType &operator=(const StructType &); // Do not implement
StructType(const std::vector<const Type*> &Types, bool isPacked);
public:
/// StructType::get - This static method is the primary way to create a
/// StructType.
///
static StructType *get(const std::vector<const Type*> &Params,
bool isPacked=false);
// Iterator access to the elements
typedef std::vector<PATypeHandle>::const_iterator element_iterator;
element_iterator element_begin() const { return ContainedTys.begin(); }
element_iterator element_end() const { return ContainedTys.end(); }
// Random access to the elements
unsigned getNumElements() const { return unsigned(ContainedTys.size()); }
const Type *getElementType(unsigned N) const {
assert(N < ContainedTys.size() && "Element number out of range!");
return ContainedTys[N];
}
/// getTypeAtIndex - Given an index value into the type, return the type of
/// the element. For a structure type, this must be a constant value...
///
virtual const Type *getTypeAtIndex(const Value *V) const ;
virtual bool indexValid(const Value *V) const;
// Implement the AbstractTypeUser interface.
virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy);
virtual void typeBecameConcrete(const DerivedType *AbsTy);
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const StructType *T) { return true; }
static inline bool classof(const Type *T) {
return T->getTypeID() == StructTyID;
}
bool isPacked() const { return getSubclassData(); }
};
/// SequentialType - This is the superclass of the array, pointer and packed
/// type classes. All of these represent "arrays" in memory. The array type
/// represents a specifically sized array, pointer types are unsized/unknown
/// size arrays, packed types represent specifically sized arrays that
/// allow for use of SIMD instructions. SequentialType holds the common
/// features of all, which stem from the fact that all three lay their
/// components out in memory identically.
///
class SequentialType : public CompositeType {
SequentialType(const SequentialType &); // Do not implement!
const SequentialType &operator=(const SequentialType &); // Do not implement!
protected:
SequentialType(TypeID TID, const Type *ElType) : CompositeType(TID) {
ContainedTys.reserve(1);
ContainedTys.push_back(PATypeHandle(ElType, this));
}
public:
inline const Type *getElementType() const { return ContainedTys[0]; }
virtual bool indexValid(const Value *V) const;
/// getTypeAtIndex - Given an index value into the type, return the type of
/// the element. For sequential types, there is only one subtype...
///
virtual const Type *getTypeAtIndex(const Value *V) const {
return ContainedTys[0];
}
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const SequentialType *T) { return true; }
static inline bool classof(const Type *T) {
return T->getTypeID() == ArrayTyID ||
T->getTypeID() == PointerTyID ||
T->getTypeID() == PackedTyID;
}
};
/// ArrayType - Class to represent array types
///
class ArrayType : public SequentialType {
friend class TypeMap<ArrayValType, ArrayType>;
uint64_t NumElements;
ArrayType(const ArrayType &); // Do not implement
const ArrayType &operator=(const ArrayType &); // Do not implement
ArrayType(const Type *ElType, uint64_t NumEl);
public:
/// ArrayType::get - This static method is the primary way to construct an
/// ArrayType
///
static ArrayType *get(const Type *ElementType, uint64_t NumElements);
inline uint64_t getNumElements() const { return NumElements; }
// Implement the AbstractTypeUser interface.
virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy);
virtual void typeBecameConcrete(const DerivedType *AbsTy);
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const ArrayType *T) { return true; }
static inline bool classof(const Type *T) {
return T->getTypeID() == ArrayTyID;
}
};
/// PackedType - Class to represent packed types
///
class PackedType : public SequentialType {
friend class TypeMap<PackedValType, PackedType>;
unsigned NumElements;
PackedType(const PackedType &); // Do not implement
const PackedType &operator=(const PackedType &); // Do not implement
PackedType(const Type *ElType, unsigned NumEl);
public:
/// PackedType::get - This static method is the primary way to construct an
/// PackedType
///
static PackedType *get(const Type *ElementType, unsigned NumElements);
/// @brief Return the number of elements in the Packed type.
inline unsigned getNumElements() const { return NumElements; }
/// @brief Return the number of bits in the Packed type.
inline unsigned getBitWidth() const {
return NumElements *getElementType()->getPrimitiveSizeInBits();
}
// Implement the AbstractTypeUser interface.
virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy);
virtual void typeBecameConcrete(const DerivedType *AbsTy);
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const PackedType *T) { return true; }
static inline bool classof(const Type *T) {
return T->getTypeID() == PackedTyID;
}
};
/// PointerType - Class to represent pointers
///
class PointerType : public SequentialType {
friend class TypeMap<PointerValType, PointerType>;
PointerType(const PointerType &); // Do not implement
const PointerType &operator=(const PointerType &); // Do not implement
PointerType(const Type *ElType);
public:
/// PointerType::get - This is the only way to construct a new pointer type.
static PointerType *get(const Type *ElementType);
// Implement the AbstractTypeUser interface.
virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy);
virtual void typeBecameConcrete(const DerivedType *AbsTy);
// Implement support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const PointerType *T) { return true; }
static inline bool classof(const Type *T) {
return T->getTypeID() == PointerTyID;
}
};
/// OpaqueType - Class to represent abstract types
///
class OpaqueType : public DerivedType {
OpaqueType(const OpaqueType &); // DO NOT IMPLEMENT
const OpaqueType &operator=(const OpaqueType &); // DO NOT IMPLEMENT
OpaqueType();
public:
/// OpaqueType::get - Static factory method for the OpaqueType class...
///
static OpaqueType *get() {
return new OpaqueType(); // All opaque types are distinct
}
// Implement the AbstractTypeUser interface.
virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) {
abort(); // FIXME: this is not really an AbstractTypeUser!
}
virtual void typeBecameConcrete(const DerivedType *AbsTy) {
abort(); // FIXME: this is not really an AbstractTypeUser!
}
// Implement support for type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const OpaqueType *T) { return true; }
static inline bool classof(const Type *T) {
return T->getTypeID() == OpaqueTyID;
}
};
} // End llvm namespace
#endif