llvm-6502/lib/Target/ARM/ARMTargetMachine.cpp
Eric Christopher 5dc2251b4e Recommit r231324 with a fix to the ARM execution domain code
to disable lane switching if we don't actually have the instruction
set we want to switch to. Models the earlier check above the
conditional for the pass.

The testcase is one that triggered with the assert that's added
as part of the fix, use it to avoid adding a new testcase as it
highlights the same problem.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231539 91177308-0d34-0410-b5e6-96231b3b80d8
2015-03-07 00:12:22 +00:00

388 lines
14 KiB
C++

//===-- ARMTargetMachine.cpp - Define TargetMachine for ARM ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//
//===----------------------------------------------------------------------===//
#include "ARM.h"
#include "ARMFrameLowering.h"
#include "ARMTargetMachine.h"
#include "ARMTargetObjectFile.h"
#include "ARMTargetTransformInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Transforms/Scalar.h"
using namespace llvm;
static cl::opt<bool>
DisableA15SDOptimization("disable-a15-sd-optimization", cl::Hidden,
cl::desc("Inhibit optimization of S->D register accesses on A15"),
cl::init(false));
static cl::opt<bool>
EnableAtomicTidy("arm-atomic-cfg-tidy", cl::Hidden,
cl::desc("Run SimplifyCFG after expanding atomic operations"
" to make use of cmpxchg flow-based information"),
cl::init(true));
extern "C" void LLVMInitializeARMTarget() {
// Register the target.
RegisterTargetMachine<ARMLETargetMachine> X(TheARMLETarget);
RegisterTargetMachine<ARMBETargetMachine> Y(TheARMBETarget);
RegisterTargetMachine<ThumbLETargetMachine> A(TheThumbLETarget);
RegisterTargetMachine<ThumbBETargetMachine> B(TheThumbBETarget);
}
static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
if (TT.isOSBinFormatMachO())
return make_unique<TargetLoweringObjectFileMachO>();
if (TT.isOSWindows())
return make_unique<TargetLoweringObjectFileCOFF>();
return make_unique<ARMElfTargetObjectFile>();
}
static ARMBaseTargetMachine::ARMABI
computeTargetABI(const Triple &TT, StringRef CPU,
const TargetOptions &Options) {
if (Options.MCOptions.getABIName().startswith("aapcs"))
return ARMBaseTargetMachine::ARM_ABI_AAPCS;
else if (Options.MCOptions.getABIName().startswith("apcs"))
return ARMBaseTargetMachine::ARM_ABI_APCS;
assert(Options.MCOptions.getABIName().empty() &&
"Unknown target-abi option!");
ARMBaseTargetMachine::ARMABI TargetABI =
ARMBaseTargetMachine::ARM_ABI_UNKNOWN;
// FIXME: This is duplicated code from the front end and should be unified.
if (TT.isOSBinFormatMachO()) {
if (TT.getEnvironment() == llvm::Triple::EABI ||
(TT.getOS() == llvm::Triple::UnknownOS &&
TT.getObjectFormat() == llvm::Triple::MachO) ||
CPU.startswith("cortex-m")) {
TargetABI = ARMBaseTargetMachine::ARM_ABI_AAPCS;
} else {
TargetABI = ARMBaseTargetMachine::ARM_ABI_APCS;
}
} else if (TT.isOSWindows()) {
// FIXME: this is invalid for WindowsCE
TargetABI = ARMBaseTargetMachine::ARM_ABI_AAPCS;
} else {
// Select the default based on the platform.
switch (TT.getEnvironment()) {
case llvm::Triple::Android:
case llvm::Triple::GNUEABI:
case llvm::Triple::GNUEABIHF:
case llvm::Triple::EABIHF:
case llvm::Triple::EABI:
TargetABI = ARMBaseTargetMachine::ARM_ABI_AAPCS;
break;
case llvm::Triple::GNU:
TargetABI = ARMBaseTargetMachine::ARM_ABI_APCS;
break;
default:
if (TT.getOS() == llvm::Triple::NetBSD)
TargetABI = ARMBaseTargetMachine::ARM_ABI_APCS;
else
TargetABI = ARMBaseTargetMachine::ARM_ABI_AAPCS;
break;
}
}
return TargetABI;
}
static std::string computeDataLayout(const Triple &TT,
ARMBaseTargetMachine::ARMABI ABI,
bool isLittle) {
std::string Ret = "";
if (isLittle)
// Little endian.
Ret += "e";
else
// Big endian.
Ret += "E";
Ret += DataLayout::getManglingComponent(TT);
// Pointers are 32 bits and aligned to 32 bits.
Ret += "-p:32:32";
// ABIs other than APCS have 64 bit integers with natural alignment.
if (ABI != ARMBaseTargetMachine::ARM_ABI_APCS)
Ret += "-i64:64";
// We have 64 bits floats. The APCS ABI requires them to be aligned to 32
// bits, others to 64 bits. We always try to align to 64 bits.
if (ABI == ARMBaseTargetMachine::ARM_ABI_APCS)
Ret += "-f64:32:64";
// We have 128 and 64 bit vectors. The APCS ABI aligns them to 32 bits, others
// to 64. We always ty to give them natural alignment.
if (ABI == ARMBaseTargetMachine::ARM_ABI_APCS)
Ret += "-v64:32:64-v128:32:128";
else
Ret += "-v128:64:128";
// Try to align aggregates to 32 bits (the default is 64 bits, which has no
// particular hardware support on 32-bit ARM).
Ret += "-a:0:32";
// Integer registers are 32 bits.
Ret += "-n32";
// The stack is 128 bit aligned on NaCl, 64 bit aligned on AAPCS and 32 bit
// aligned everywhere else.
if (TT.isOSNaCl())
Ret += "-S128";
else if (ABI == ARMBaseTargetMachine::ARM_ABI_AAPCS)
Ret += "-S64";
else
Ret += "-S32";
return Ret;
}
/// TargetMachine ctor - Create an ARM architecture model.
///
ARMBaseTargetMachine::ARMBaseTargetMachine(const Target &T, StringRef TT,
StringRef CPU, StringRef FS,
const TargetOptions &Options,
Reloc::Model RM, CodeModel::Model CM,
CodeGenOpt::Level OL, bool isLittle)
: LLVMTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL),
TargetABI(computeTargetABI(Triple(TT), CPU, Options)),
DL(computeDataLayout(Triple(TT), TargetABI, isLittle)),
TLOF(createTLOF(Triple(getTargetTriple()))),
Subtarget(TT, CPU, FS, *this, isLittle), isLittle(isLittle) {
// Default to triple-appropriate float ABI
if (Options.FloatABIType == FloatABI::Default)
this->Options.FloatABIType =
Subtarget.isTargetHardFloat() ? FloatABI::Hard : FloatABI::Soft;
}
ARMBaseTargetMachine::~ARMBaseTargetMachine() {}
const ARMSubtarget *
ARMBaseTargetMachine::getSubtargetImpl(const Function &F) const {
Attribute CPUAttr = F.getFnAttribute("target-cpu");
Attribute FSAttr = F.getFnAttribute("target-features");
std::string CPU = !CPUAttr.hasAttribute(Attribute::None)
? CPUAttr.getValueAsString().str()
: TargetCPU;
std::string FS = !FSAttr.hasAttribute(Attribute::None)
? FSAttr.getValueAsString().str()
: TargetFS;
// FIXME: This is related to the code below to reset the target options,
// we need to know whether or not the soft float flag is set on the
// function before we can generate a subtarget. We also need to use
// it as a key for the subtarget since that can be the only difference
// between two functions.
Attribute SFAttr = F.getFnAttribute("use-soft-float");
bool SoftFloat = !SFAttr.hasAttribute(Attribute::None)
? SFAttr.getValueAsString() == "true"
: Options.UseSoftFloat;
auto &I = SubtargetMap[CPU + FS + (SoftFloat ? "use-soft-float=true"
: "use-soft-float=false")];
if (!I) {
// This needs to be done before we create a new subtarget since any
// creation will depend on the TM and the code generation flags on the
// function that reside in TargetOptions.
resetTargetOptions(F);
I = llvm::make_unique<ARMSubtarget>(TargetTriple, CPU, FS, *this, isLittle);
}
return I.get();
}
TargetIRAnalysis ARMBaseTargetMachine::getTargetIRAnalysis() {
return TargetIRAnalysis(
[this](Function &F) { return TargetTransformInfo(ARMTTIImpl(this, F)); });
}
void ARMTargetMachine::anchor() { }
ARMTargetMachine::ARMTargetMachine(const Target &T, StringRef TT, StringRef CPU,
StringRef FS, const TargetOptions &Options,
Reloc::Model RM, CodeModel::Model CM,
CodeGenOpt::Level OL, bool isLittle)
: ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, isLittle) {
initAsmInfo();
if (!Subtarget.hasARMOps())
report_fatal_error("CPU: '" + Subtarget.getCPUString() + "' does not "
"support ARM mode execution!");
}
void ARMLETargetMachine::anchor() { }
ARMLETargetMachine::ARMLETargetMachine(const Target &T, StringRef TT,
StringRef CPU, StringRef FS,
const TargetOptions &Options,
Reloc::Model RM, CodeModel::Model CM,
CodeGenOpt::Level OL)
: ARMTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {}
void ARMBETargetMachine::anchor() { }
ARMBETargetMachine::ARMBETargetMachine(const Target &T, StringRef TT,
StringRef CPU, StringRef FS,
const TargetOptions &Options,
Reloc::Model RM, CodeModel::Model CM,
CodeGenOpt::Level OL)
: ARMTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {}
void ThumbTargetMachine::anchor() { }
ThumbTargetMachine::ThumbTargetMachine(const Target &T, StringRef TT,
StringRef CPU, StringRef FS,
const TargetOptions &Options,
Reloc::Model RM, CodeModel::Model CM,
CodeGenOpt::Level OL, bool isLittle)
: ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL,
isLittle) {
initAsmInfo();
}
void ThumbLETargetMachine::anchor() { }
ThumbLETargetMachine::ThumbLETargetMachine(const Target &T, StringRef TT,
StringRef CPU, StringRef FS,
const TargetOptions &Options,
Reloc::Model RM, CodeModel::Model CM,
CodeGenOpt::Level OL)
: ThumbTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {}
void ThumbBETargetMachine::anchor() { }
ThumbBETargetMachine::ThumbBETargetMachine(const Target &T, StringRef TT,
StringRef CPU, StringRef FS,
const TargetOptions &Options,
Reloc::Model RM, CodeModel::Model CM,
CodeGenOpt::Level OL)
: ThumbTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {}
namespace {
/// ARM Code Generator Pass Configuration Options.
class ARMPassConfig : public TargetPassConfig {
public:
ARMPassConfig(ARMBaseTargetMachine *TM, PassManagerBase &PM)
: TargetPassConfig(TM, PM) {}
ARMBaseTargetMachine &getARMTargetMachine() const {
return getTM<ARMBaseTargetMachine>();
}
const ARMSubtarget &getARMSubtarget() const {
return *getARMTargetMachine().getSubtargetImpl();
}
void addIRPasses() override;
bool addPreISel() override;
bool addInstSelector() override;
void addPreRegAlloc() override;
void addPreSched2() override;
void addPreEmitPass() override;
};
} // namespace
TargetPassConfig *ARMBaseTargetMachine::createPassConfig(PassManagerBase &PM) {
return new ARMPassConfig(this, PM);
}
void ARMPassConfig::addIRPasses() {
if (TM->Options.ThreadModel == ThreadModel::Single)
addPass(createLowerAtomicPass());
else
addPass(createAtomicExpandPass(TM));
// Cmpxchg instructions are often used with a subsequent comparison to
// determine whether it succeeded. We can exploit existing control-flow in
// ldrex/strex loops to simplify this, but it needs tidying up.
const ARMSubtarget *Subtarget = &getARMSubtarget();
if (Subtarget->hasAnyDataBarrier() && !Subtarget->isThumb1Only())
if (TM->getOptLevel() != CodeGenOpt::None && EnableAtomicTidy)
addPass(createCFGSimplificationPass());
TargetPassConfig::addIRPasses();
}
bool ARMPassConfig::addPreISel() {
if (TM->getOptLevel() != CodeGenOpt::None)
// FIXME: This is using the thumb1 only constant value for
// maximal global offset for merging globals. We may want
// to look into using the old value for non-thumb1 code of
// 4095 based on the TargetMachine, but this starts to become
// tricky when doing code gen per function.
addPass(createGlobalMergePass(TM, 127));
return false;
}
bool ARMPassConfig::addInstSelector() {
addPass(createARMISelDag(getARMTargetMachine(), getOptLevel()));
if (Triple(TM->getTargetTriple()).isOSBinFormatELF() &&
TM->Options.EnableFastISel)
addPass(createARMGlobalBaseRegPass());
return false;
}
void ARMPassConfig::addPreRegAlloc() {
if (getOptLevel() != CodeGenOpt::None)
addPass(createARMLoadStoreOptimizationPass(true));
if (getOptLevel() != CodeGenOpt::None)
addPass(createMLxExpansionPass());
if (getOptLevel() != CodeGenOpt::None && !DisableA15SDOptimization) {
addPass(createA15SDOptimizerPass());
}
}
void ARMPassConfig::addPreSched2() {
if (getOptLevel() != CodeGenOpt::None) {
addPass(createARMLoadStoreOptimizationPass());
addPass(createExecutionDependencyFixPass(&ARM::DPRRegClass));
}
// Expand some pseudo instructions into multiple instructions to allow
// proper scheduling.
addPass(createARMExpandPseudoPass());
if (getOptLevel() != CodeGenOpt::None) {
// in v8, IfConversion depends on Thumb instruction widths
if (getARMSubtarget().restrictIT())
addPass(createThumb2SizeReductionPass());
if (!getARMSubtarget().isThumb1Only())
addPass(&IfConverterID);
}
addPass(createThumb2ITBlockPass());
}
void ARMPassConfig::addPreEmitPass() {
addPass(createThumb2SizeReductionPass());
// Constant island pass work on unbundled instructions.
if (getARMSubtarget().isThumb2())
addPass(&UnpackMachineBundlesID);
addPass(createARMOptimizeBarriersPass());
addPass(createARMConstantIslandPass());
}