mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-17 21:35:07 +00:00
5ca96988b0
warnings, and don't shift by a bool. Patch by Rizky Herucakra! git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@105886 91177308-0d34-0410-b5e6-96231b3b80d8
189 lines
6.7 KiB
C++
189 lines
6.7 KiB
C++
//===-- llvm/Target/TargetInstrItineraries.h - Scheduling -------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file describes the structures used for instruction
|
|
// itineraries, stages, and operand reads/writes. This is used by
|
|
// schedulers to determine instruction stages and latencies.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_TARGET_TARGETINSTRITINERARIES_H
|
|
#define LLVM_TARGET_TARGETINSTRITINERARIES_H
|
|
|
|
#include <algorithm>
|
|
|
|
namespace llvm {
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// Instruction stage - These values represent a non-pipelined step in
|
|
/// the execution of an instruction. Cycles represents the number of
|
|
/// discrete time slots needed to complete the stage. Units represent
|
|
/// the choice of functional units that can be used to complete the
|
|
/// stage. Eg. IntUnit1, IntUnit2. NextCycles indicates how many
|
|
/// cycles should elapse from the start of this stage to the start of
|
|
/// the next stage in the itinerary. A value of -1 indicates that the
|
|
/// next stage should start immediately after the current one.
|
|
/// For example:
|
|
///
|
|
/// { 1, x, -1 }
|
|
/// indicates that the stage occupies FU x for 1 cycle and that
|
|
/// the next stage starts immediately after this one.
|
|
///
|
|
/// { 2, x|y, 1 }
|
|
/// indicates that the stage occupies either FU x or FU y for 2
|
|
/// consecuative cycles and that the next stage starts one cycle
|
|
/// after this stage starts. That is, the stage requirements
|
|
/// overlap in time.
|
|
///
|
|
/// { 1, x, 0 }
|
|
/// indicates that the stage occupies FU x for 1 cycle and that
|
|
/// the next stage starts in this same cycle. This can be used to
|
|
/// indicate that the instruction requires multiple stages at the
|
|
/// same time.
|
|
///
|
|
/// FU reservation can be of two different kinds:
|
|
/// - FUs which instruction actually requires
|
|
/// - FUs which instruction just reserves. Reserved unit is not available for
|
|
/// execution of other instruction. However, several instructions can reserve
|
|
/// the same unit several times.
|
|
/// Such two types of units reservation is used to model instruction domain
|
|
/// change stalls, FUs using the same resource (e.g. same register file), etc.
|
|
|
|
struct InstrStage {
|
|
enum ReservationKinds {
|
|
Required = 0,
|
|
Reserved = 1
|
|
};
|
|
|
|
unsigned Cycles_; ///< Length of stage in machine cycles
|
|
unsigned Units_; ///< Choice of functional units
|
|
int NextCycles_; ///< Number of machine cycles to next stage
|
|
ReservationKinds Kind_; ///< Kind of the FU reservation
|
|
|
|
/// getCycles - returns the number of cycles the stage is occupied
|
|
unsigned getCycles() const {
|
|
return Cycles_;
|
|
}
|
|
|
|
/// getUnits - returns the choice of FUs
|
|
unsigned getUnits() const {
|
|
return Units_;
|
|
}
|
|
|
|
ReservationKinds getReservationKind() const {
|
|
return Kind_;
|
|
}
|
|
|
|
/// getNextCycles - returns the number of cycles from the start of
|
|
/// this stage to the start of the next stage in the itinerary
|
|
unsigned getNextCycles() const {
|
|
return (NextCycles_ >= 0) ? (unsigned)NextCycles_ : Cycles_;
|
|
}
|
|
};
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// Instruction itinerary - An itinerary represents the scheduling
|
|
/// information for an instruction. This includes a set of stages
|
|
/// occupies by the instruction, and the pipeline cycle in which
|
|
/// operands are read and written.
|
|
///
|
|
struct InstrItinerary {
|
|
unsigned FirstStage; ///< Index of first stage in itinerary
|
|
unsigned LastStage; ///< Index of last + 1 stage in itinerary
|
|
unsigned FirstOperandCycle; ///< Index of first operand rd/wr
|
|
unsigned LastOperandCycle; ///< Index of last + 1 operand rd/wr
|
|
};
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// Instruction itinerary Data - Itinerary data supplied by a subtarget to be
|
|
/// used by a target.
|
|
///
|
|
class InstrItineraryData {
|
|
public:
|
|
const InstrStage *Stages; ///< Array of stages selected
|
|
const unsigned *OperandCycles; ///< Array of operand cycles selected
|
|
const InstrItinerary *Itineratries; ///< Array of itineraries selected
|
|
|
|
/// Ctors.
|
|
///
|
|
InstrItineraryData() : Stages(0), OperandCycles(0), Itineratries(0) {}
|
|
InstrItineraryData(const InstrStage *S, const unsigned *OS,
|
|
const InstrItinerary *I)
|
|
: Stages(S), OperandCycles(OS), Itineratries(I) {}
|
|
|
|
/// isEmpty - Returns true if there are no itineraries.
|
|
///
|
|
bool isEmpty() const { return Itineratries == 0; }
|
|
|
|
/// isEndMarker - Returns true if the index is for the end marker
|
|
/// itinerary.
|
|
///
|
|
bool isEndMarker(unsigned ItinClassIndx) const {
|
|
return ((Itineratries[ItinClassIndx].FirstStage == ~0U) &&
|
|
(Itineratries[ItinClassIndx].LastStage == ~0U));
|
|
}
|
|
|
|
/// beginStage - Return the first stage of the itinerary.
|
|
///
|
|
const InstrStage *beginStage(unsigned ItinClassIndx) const {
|
|
unsigned StageIdx = Itineratries[ItinClassIndx].FirstStage;
|
|
return Stages + StageIdx;
|
|
}
|
|
|
|
/// endStage - Return the last+1 stage of the itinerary.
|
|
///
|
|
const InstrStage *endStage(unsigned ItinClassIndx) const {
|
|
unsigned StageIdx = Itineratries[ItinClassIndx].LastStage;
|
|
return Stages + StageIdx;
|
|
}
|
|
|
|
/// getStageLatency - Return the total stage latency of the given
|
|
/// class. The latency is the maximum completion time for any stage
|
|
/// in the itinerary.
|
|
///
|
|
unsigned getStageLatency(unsigned ItinClassIndx) const {
|
|
// If the target doesn't provide itinerary information, use a
|
|
// simple non-zero default value for all instructions.
|
|
if (isEmpty())
|
|
return 1;
|
|
|
|
// Calculate the maximum completion time for any stage.
|
|
unsigned Latency = 0, StartCycle = 0;
|
|
for (const InstrStage *IS = beginStage(ItinClassIndx),
|
|
*E = endStage(ItinClassIndx); IS != E; ++IS) {
|
|
Latency = std::max(Latency, StartCycle + IS->getCycles());
|
|
StartCycle += IS->getNextCycles();
|
|
}
|
|
|
|
return Latency;
|
|
}
|
|
|
|
/// getOperandCycle - Return the cycle for the given class and
|
|
/// operand. Return -1 if no cycle is specified for the operand.
|
|
///
|
|
int getOperandCycle(unsigned ItinClassIndx, unsigned OperandIdx) const {
|
|
if (isEmpty())
|
|
return -1;
|
|
|
|
unsigned FirstIdx = Itineratries[ItinClassIndx].FirstOperandCycle;
|
|
unsigned LastIdx = Itineratries[ItinClassIndx].LastOperandCycle;
|
|
if ((FirstIdx + OperandIdx) >= LastIdx)
|
|
return -1;
|
|
|
|
return (int)OperandCycles[FirstIdx + OperandIdx];
|
|
}
|
|
};
|
|
|
|
|
|
} // End llvm namespace
|
|
|
|
#endif
|