llvm-6502/lib/MC/MCELFStreamer.cpp
Jason W Kim afd1cc2578 Tiny patch for proof-of-concept cleanup of ARMAsmPrinter::EmitStartOfAsmFile()
Small test for sanity check of resulting ARM .s file.
Tested against -r115129.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@115133 91177308-0d34-0410-b5e6-96231b3b80d8
2010-09-30 02:45:56 +00:00

564 lines
20 KiB
C++

//===- lib/MC/MCELFStreamer.cpp - ELF Object Output ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file assembles .s files and emits ELF .o object files.
//
//===----------------------------------------------------------------------===//
#include "llvm/MC/MCStreamer.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/MC/MCAssembler.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCCodeEmitter.h"
#include "llvm/MC/MCELFSymbolFlags.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCObjectStreamer.h"
#include "llvm/MC/MCSection.h"
#include "llvm/MC/MCSectionELF.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ELF.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetAsmBackend.h"
using namespace llvm;
namespace {
class MCELFStreamer : public MCObjectStreamer {
void EmitInstToFragment(const MCInst &Inst);
void EmitInstToData(const MCInst &Inst);
public:
MCELFStreamer(MCContext &Context, TargetAsmBackend &TAB,
raw_ostream &OS, MCCodeEmitter *Emitter)
: MCObjectStreamer(Context, TAB, OS, Emitter, false) {}
~MCELFStreamer() {}
/// @name MCStreamer Interface
/// @{
virtual void InitSections();
virtual void EmitLabel(MCSymbol *Symbol);
virtual void EmitAssemblerFlag(MCAssemblerFlag Flag);
virtual void EmitAssignment(MCSymbol *Symbol, const MCExpr *Value);
virtual void EmitSymbolAttribute(MCSymbol *Symbol, MCSymbolAttr Attribute);
virtual void EmitSymbolDesc(MCSymbol *Symbol, unsigned DescValue) {
assert(0 && "ELF doesn't support this directive");
}
virtual void EmitCommonSymbol(MCSymbol *Symbol, uint64_t Size,
unsigned ByteAlignment);
virtual void BeginCOFFSymbolDef(const MCSymbol *Symbol) {
assert(0 && "ELF doesn't support this directive");
}
virtual void EmitCOFFSymbolStorageClass(int StorageClass) {
assert(0 && "ELF doesn't support this directive");
}
virtual void EmitCOFFSymbolType(int Type) {
assert(0 && "ELF doesn't support this directive");
}
virtual void EndCOFFSymbolDef() {
assert(0 && "ELF doesn't support this directive");
}
virtual void EmitELFSize(MCSymbol *Symbol, const MCExpr *Value) {
MCSymbolData &SD = getAssembler().getOrCreateSymbolData(*Symbol);
SD.setSize(Value);
}
virtual void EmitLocalCommonSymbol(MCSymbol *Symbol, uint64_t Size) {
assert(0 && "ELF doesn't support this directive");
}
virtual void EmitZerofill(const MCSection *Section, MCSymbol *Symbol = 0,
unsigned Size = 0, unsigned ByteAlignment = 0) {
assert(0 && "ELF doesn't support this directive");
}
virtual void EmitTBSSSymbol(const MCSection *Section, MCSymbol *Symbol,
uint64_t Size, unsigned ByteAlignment = 0) {
assert(0 && "ELF doesn't support this directive");
}
virtual void EmitBytes(StringRef Data, unsigned AddrSpace);
virtual void EmitValue(const MCExpr *Value, unsigned Size,unsigned AddrSpace);
virtual void EmitGPRel32Value(const MCExpr *Value) {
assert(0 && "ELF doesn't support this directive");
}
virtual void EmitValueToAlignment(unsigned ByteAlignment, int64_t Value = 0,
unsigned ValueSize = 1,
unsigned MaxBytesToEmit = 0);
virtual void EmitCodeAlignment(unsigned ByteAlignment,
unsigned MaxBytesToEmit = 0);
virtual void EmitValueToOffset(const MCExpr *Offset,
unsigned char Value = 0);
virtual void EmitFileDirective(StringRef Filename);
virtual void EmitDwarfFileDirective(unsigned FileNo, StringRef Filename) {
DEBUG(dbgs() << "FIXME: MCELFStreamer:EmitDwarfFileDirective not implemented\n");
}
virtual void EmitInstruction(const MCInst &Inst);
virtual void Finish();
private:
struct LocalCommon {
MCSymbolData *SD;
uint64_t Size;
unsigned ByteAlignment;
};
std::vector<LocalCommon> LocalCommons;
SmallPtrSet<MCSymbol *, 16> BindingExplicitlySet;
/// @}
void SetSection(StringRef Section, unsigned Type, unsigned Flags,
SectionKind Kind) {
SwitchSection(getContext().getELFSection(Section, Type, Flags, Kind));
}
void SetSectionData() {
SetSection(".data", MCSectionELF::SHT_PROGBITS,
MCSectionELF::SHF_WRITE |MCSectionELF::SHF_ALLOC,
SectionKind::getDataRel());
EmitCodeAlignment(4, 0);
}
void SetSectionText() {
SetSection(".text", MCSectionELF::SHT_PROGBITS,
MCSectionELF::SHF_EXECINSTR |
MCSectionELF::SHF_ALLOC, SectionKind::getText());
EmitCodeAlignment(4, 0);
}
void SetSectionBss() {
SetSection(".bss", MCSectionELF::SHT_NOBITS,
MCSectionELF::SHF_WRITE |
MCSectionELF::SHF_ALLOC, SectionKind::getBSS());
EmitCodeAlignment(4, 0);
}
};
} // end anonymous namespace.
void MCELFStreamer::InitSections() {
// This emulates the same behavior of GNU as. This makes it easier
// to compare the output as the major sections are in the same order.
SetSectionText();
SetSectionData();
SetSectionBss();
SetSectionText();
}
static bool isSymbolLinkerVisible(const MCAssembler &Asm,
const MCSymbolData &Data) {
const MCSymbol &Symbol = Data.getSymbol();
// Absolute temporary labels are never visible.
if (!Symbol.isInSection())
return false;
if (Asm.getBackend().doesSectionRequireSymbols(Symbol.getSection()))
return true;
if (!Data.isExternal())
return false;
return Asm.isSymbolLinkerVisible(Symbol);
}
void MCELFStreamer::EmitLabel(MCSymbol *Symbol) {
assert(Symbol->isUndefined() && "Cannot define a symbol twice!");
Symbol->setSection(*CurSection);
MCSymbolData &SD = getAssembler().getOrCreateSymbolData(*Symbol);
// We have to create a new fragment if this is an atom defining symbol,
// fragments cannot span atoms.
if (isSymbolLinkerVisible(getAssembler(), SD))
new MCDataFragment(getCurrentSectionData());
// FIXME: This is wasteful, we don't necessarily need to create a data
// fragment. Instead, we should mark the symbol as pointing into the data
// fragment if it exists, otherwise we should just queue the label and set its
// fragment pointer when we emit the next fragment.
MCDataFragment *F = getOrCreateDataFragment();
assert(!SD.getFragment() && "Unexpected fragment on symbol data!");
SD.setFragment(F);
SD.setOffset(F->getContents().size());
}
void MCELFStreamer::EmitAssemblerFlag(MCAssemblerFlag Flag) {
switch (Flag) {
case MCAF_SyntaxUnified: return; // no-op here?
case MCAF_SubsectionsViaSymbols:
getAssembler().setSubsectionsViaSymbols(true);
return;
}
assert(0 && "invalid assembler flag!");
}
void MCELFStreamer::EmitAssignment(MCSymbol *Symbol, const MCExpr *Value) {
// TODO: This is exactly the same as WinCOFFStreamer. Consider merging into
// MCObjectStreamer.
// FIXME: Lift context changes into super class.
getAssembler().getOrCreateSymbolData(*Symbol);
Symbol->setVariableValue(AddValueSymbols(Value));
}
static void SetBinding(MCSymbolData &SD, unsigned Binding) {
assert(Binding == ELF::STB_LOCAL || Binding == ELF::STB_GLOBAL ||
Binding == ELF::STB_WEAK);
uint32_t OtherFlags = SD.getFlags() & ~(0xf << ELF_STB_Shift);
SD.setFlags(OtherFlags | (Binding << ELF_STB_Shift));
}
static unsigned GetBinding(const MCSymbolData &SD) {
uint32_t Binding = (SD.getFlags() & (0xf << ELF_STB_Shift)) >> ELF_STB_Shift;
assert(Binding == ELF::STB_LOCAL || Binding == ELF::STB_GLOBAL ||
Binding == ELF::STB_WEAK);
return Binding;
}
static void SetType(MCSymbolData &SD, unsigned Type) {
assert(Type == ELF::STT_NOTYPE || Type == ELF::STT_OBJECT ||
Type == ELF::STT_FUNC || Type == ELF::STT_SECTION ||
Type == ELF::STT_FILE || Type == ELF::STT_COMMON ||
Type == ELF::STT_TLS);
uint32_t OtherFlags = SD.getFlags() & ~(0xf << ELF_STT_Shift);
SD.setFlags(OtherFlags | (Type << ELF_STT_Shift));
}
static void SetVisibility(MCSymbolData &SD, unsigned Visibility) {
assert(Visibility == ELF::STV_DEFAULT || Visibility == ELF::STV_INTERNAL ||
Visibility == ELF::STV_HIDDEN || Visibility == ELF::STV_PROTECTED);
uint32_t OtherFlags = SD.getFlags() & ~(0xf << ELF_STV_Shift);
SD.setFlags(OtherFlags | (Visibility << ELF_STV_Shift));
}
void MCELFStreamer::EmitSymbolAttribute(MCSymbol *Symbol,
MCSymbolAttr Attribute) {
// Indirect symbols are handled differently, to match how 'as' handles
// them. This makes writing matching .o files easier.
if (Attribute == MCSA_IndirectSymbol) {
// Note that we intentionally cannot use the symbol data here; this is
// important for matching the string table that 'as' generates.
IndirectSymbolData ISD;
ISD.Symbol = Symbol;
ISD.SectionData = getCurrentSectionData();
getAssembler().getIndirectSymbols().push_back(ISD);
return;
}
// Adding a symbol attribute always introduces the symbol, note that an
// important side effect of calling getOrCreateSymbolData here is to register
// the symbol with the assembler.
MCSymbolData &SD = getAssembler().getOrCreateSymbolData(*Symbol);
// The implementation of symbol attributes is designed to match 'as', but it
// leaves much to desired. It doesn't really make sense to arbitrarily add and
// remove flags, but 'as' allows this (in particular, see .desc).
//
// In the future it might be worth trying to make these operations more well
// defined.
switch (Attribute) {
case MCSA_LazyReference:
case MCSA_Reference:
case MCSA_NoDeadStrip:
case MCSA_PrivateExtern:
case MCSA_WeakDefinition:
case MCSA_WeakDefAutoPrivate:
case MCSA_Invalid:
case MCSA_ELF_TypeIndFunction:
case MCSA_IndirectSymbol:
assert(0 && "Invalid symbol attribute for ELF!");
break;
case MCSA_Global:
SetBinding(SD, ELF::STB_GLOBAL);
SD.setExternal(true);
BindingExplicitlySet.insert(Symbol);
break;
case MCSA_WeakReference:
case MCSA_Weak:
SetBinding(SD, ELF::STB_WEAK);
BindingExplicitlySet.insert(Symbol);
break;
case MCSA_Local:
SetBinding(SD, ELF::STB_LOCAL);
SD.setExternal(false);
BindingExplicitlySet.insert(Symbol);
break;
case MCSA_ELF_TypeFunction:
SetType(SD, ELF::STT_FUNC);
break;
case MCSA_ELF_TypeObject:
SetType(SD, ELF::STT_OBJECT);
break;
case MCSA_ELF_TypeTLS:
SetType(SD, ELF::STT_TLS);
break;
case MCSA_ELF_TypeCommon:
SetType(SD, ELF::STT_COMMON);
break;
case MCSA_ELF_TypeNoType:
SetType(SD, ELF::STT_NOTYPE);
break;
case MCSA_Protected:
SetVisibility(SD, ELF::STV_PROTECTED);
break;
case MCSA_Hidden:
SetVisibility(SD, ELF::STV_HIDDEN);
break;
case MCSA_Internal:
SetVisibility(SD, ELF::STV_INTERNAL);
break;
}
}
void MCELFStreamer::EmitCommonSymbol(MCSymbol *Symbol, uint64_t Size,
unsigned ByteAlignment) {
MCSymbolData &SD = getAssembler().getOrCreateSymbolData(*Symbol);
if (!BindingExplicitlySet.count(Symbol)) {
SetBinding(SD, ELF::STB_GLOBAL);
SD.setExternal(true);
}
if (GetBinding(SD) == ELF_STB_Local) {
const MCSection *Section = getAssembler().getContext().getELFSection(".bss",
MCSectionELF::SHT_NOBITS,
MCSectionELF::SHF_WRITE |
MCSectionELF::SHF_ALLOC,
SectionKind::getBSS());
Symbol->setSection(*Section);
struct LocalCommon L = {&SD, Size, ByteAlignment};
LocalCommons.push_back(L);
} else {
SD.setCommon(Size, ByteAlignment);
}
SD.setSize(MCConstantExpr::Create(Size, getContext()));
}
void MCELFStreamer::EmitBytes(StringRef Data, unsigned AddrSpace) {
// TODO: This is exactly the same as WinCOFFStreamer. Consider merging into
// MCObjectStreamer.
getOrCreateDataFragment()->getContents().append(Data.begin(), Data.end());
}
void MCELFStreamer::EmitValue(const MCExpr *Value, unsigned Size,
unsigned AddrSpace) {
// TODO: This is exactly the same as WinCOFFStreamer. Consider merging into
// MCObjectStreamer.
MCDataFragment *DF = getOrCreateDataFragment();
// Avoid fixups when possible.
int64_t AbsValue;
if (AddValueSymbols(Value)->EvaluateAsAbsolute(AbsValue)) {
// FIXME: Endianness assumption.
for (unsigned i = 0; i != Size; ++i)
DF->getContents().push_back(uint8_t(AbsValue >> (i * 8)));
} else {
DF->addFixup(MCFixup::Create(DF->getContents().size(), AddValueSymbols(Value),
MCFixup::getKindForSize(Size)));
DF->getContents().resize(DF->getContents().size() + Size, 0);
}
}
void MCELFStreamer::EmitValueToAlignment(unsigned ByteAlignment,
int64_t Value, unsigned ValueSize,
unsigned MaxBytesToEmit) {
// TODO: This is exactly the same as WinCOFFStreamer. Consider merging into
// MCObjectStreamer.
if (MaxBytesToEmit == 0)
MaxBytesToEmit = ByteAlignment;
new MCAlignFragment(ByteAlignment, Value, ValueSize, MaxBytesToEmit,
getCurrentSectionData());
// Update the maximum alignment on the current section if necessary.
if (ByteAlignment > getCurrentSectionData()->getAlignment())
getCurrentSectionData()->setAlignment(ByteAlignment);
}
void MCELFStreamer::EmitCodeAlignment(unsigned ByteAlignment,
unsigned MaxBytesToEmit) {
// TODO: This is exactly the same as WinCOFFStreamer. Consider merging into
// MCObjectStreamer.
if (MaxBytesToEmit == 0)
MaxBytesToEmit = ByteAlignment;
MCAlignFragment *F = new MCAlignFragment(ByteAlignment, 0, 1, MaxBytesToEmit,
getCurrentSectionData());
F->setEmitNops(true);
// Update the maximum alignment on the current section if necessary.
if (ByteAlignment > getCurrentSectionData()->getAlignment())
getCurrentSectionData()->setAlignment(ByteAlignment);
}
void MCELFStreamer::EmitValueToOffset(const MCExpr *Offset,
unsigned char Value) {
// TODO: This is exactly the same as MCMachOStreamer. Consider merging into
// MCObjectStreamer.
new MCOrgFragment(*Offset, Value, getCurrentSectionData());
}
// Add a symbol for the file name of this module. This is the second
// entry in the module's symbol table (the first being the null symbol).
void MCELFStreamer::EmitFileDirective(StringRef Filename) {
MCSymbol *Symbol = getAssembler().getContext().GetOrCreateSymbol(Filename);
Symbol->setSection(*CurSection);
Symbol->setAbsolute();
MCSymbolData &SD = getAssembler().getOrCreateSymbolData(*Symbol);
SD.setFlags(ELF_STT_File | ELF_STB_Local | ELF_STV_Default);
}
void MCELFStreamer::EmitInstToFragment(const MCInst &Inst) {
MCInstFragment *IF = new MCInstFragment(Inst, getCurrentSectionData());
// Add the fixups and data.
//
// FIXME: Revisit this design decision when relaxation is done, we may be
// able to get away with not storing any extra data in the MCInst.
SmallVector<MCFixup, 4> Fixups;
SmallString<256> Code;
raw_svector_ostream VecOS(Code);
getAssembler().getEmitter().EncodeInstruction(Inst, VecOS, Fixups);
VecOS.flush();
IF->getCode() = Code;
IF->getFixups() = Fixups;
}
void MCELFStreamer::EmitInstToData(const MCInst &Inst) {
MCDataFragment *DF = getOrCreateDataFragment();
SmallVector<MCFixup, 4> Fixups;
SmallString<256> Code;
raw_svector_ostream VecOS(Code);
getAssembler().getEmitter().EncodeInstruction(Inst, VecOS, Fixups);
VecOS.flush();
// Add the fixups and data.
for (unsigned i = 0, e = Fixups.size(); i != e; ++i) {
Fixups[i].setOffset(Fixups[i].getOffset() + DF->getContents().size());
DF->addFixup(Fixups[i]);
}
DF->getContents().append(Code.begin(), Code.end());
}
void MCELFStreamer::EmitInstruction(const MCInst &Inst) {
// Scan for values.
for (unsigned i = 0; i != Inst.getNumOperands(); ++i)
if (Inst.getOperand(i).isExpr())
AddValueSymbols(Inst.getOperand(i).getExpr());
getCurrentSectionData()->setHasInstructions(true);
// If this instruction doesn't need relaxation, just emit it as data.
if (!getAssembler().getBackend().MayNeedRelaxation(Inst)) {
EmitInstToData(Inst);
return;
}
// Otherwise, if we are relaxing everything, relax the instruction as much as
// possible and emit it as data.
if (getAssembler().getRelaxAll()) {
MCInst Relaxed;
getAssembler().getBackend().RelaxInstruction(Inst, Relaxed);
while (getAssembler().getBackend().MayNeedRelaxation(Relaxed))
getAssembler().getBackend().RelaxInstruction(Relaxed, Relaxed);
EmitInstToData(Relaxed);
return;
}
// Otherwise emit to a separate fragment.
EmitInstToFragment(Inst);
}
void MCELFStreamer::Finish() {
for (std::vector<LocalCommon>::const_iterator i = LocalCommons.begin(),
e = LocalCommons.end();
i != e; ++i) {
MCSymbolData *SD = i->SD;
uint64_t Size = i->Size;
unsigned ByteAlignment = i->ByteAlignment;
const MCSymbol &Symbol = SD->getSymbol();
const MCSection &Section = Symbol.getSection();
MCSectionData &SectData = getAssembler().getOrCreateSectionData(Section);
new MCAlignFragment(ByteAlignment, 0, 1, ByteAlignment, &SectData);
MCFragment *F = new MCFillFragment(0, 0, Size, &SectData);
SD->setFragment(F);
// Update the maximum alignment of the section if necessary.
if (ByteAlignment > SectData.getAlignment())
SectData.setAlignment(ByteAlignment);
}
// FIXME: We create more atoms than it is necessary. Some relocations to
// merge sections can be implemented with section address + offset,
// figure out which ones and why.
// First, scan the symbol table to build a lookup table from fragments to
// defining symbols.
DenseMap<const MCFragment*, MCSymbolData*> DefiningSymbolMap;
for (MCAssembler::symbol_iterator it = getAssembler().symbol_begin(),
ie = getAssembler().symbol_end(); it != ie; ++it) {
if (isSymbolLinkerVisible(getAssembler(), *it) &&
it->getFragment()) {
// An atom defining symbol should never be internal to a fragment.
assert(it->getOffset() == 0 && "Invalid offset in atom defining symbol!");
DefiningSymbolMap[it->getFragment()] = it;
}
}
// Set the fragment atom associations by tracking the last seen atom defining
// symbol.
for (MCAssembler::iterator it = getAssembler().begin(),
ie = getAssembler().end(); it != ie; ++it) {
MCSymbolData *CurrentAtom = 0;
for (MCSectionData::iterator it2 = it->begin(),
ie2 = it->end(); it2 != ie2; ++it2) {
if (MCSymbolData *SD = DefiningSymbolMap.lookup(it2))
CurrentAtom = SD;
it2->setAtom(CurrentAtom);
}
}
this->MCObjectStreamer::Finish();
}
MCStreamer *llvm::createELFStreamer(MCContext &Context, TargetAsmBackend &TAB,
raw_ostream &OS, MCCodeEmitter *CE,
bool RelaxAll) {
MCELFStreamer *S = new MCELFStreamer(Context, TAB, OS, CE);
if (RelaxAll)
S->getAssembler().setRelaxAll(true);
return S;
}