mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-14 16:33:28 +00:00
b8158acc23
additional bug fixes: 1. The bug that everyone hit was a problem in the asmprinter where it would remove $stub but keep the L prefix on a name when emitting the indirect symbol. This is easy to fix by keeping the name of the stub and the name of the symbol in a StringMap instead of just keeping a StringSet and trying to reconstruct it late. 2. There was a problem printing the personality function. The current logic to print out the personality function from the DWARF information is a bit of a cesspool right now that duplicates a bunch of other logic in the asm printer. The short version of it is that it depends on emitting both the L and _ prefix for symbols (at least on darwin) and until I can untangle it, it is best to switch the mangler back to emitting both prefixes. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@75646 91177308-0d34-0410-b5e6-96231b3b80d8
To-do ----- * Keep the address of the constant pool in a register instead of forming its address all of the time. * We can fold small constant offsets into the %hi/%lo references to constant pool addresses as well. * When in V9 mode, register allocate %icc[0-3]. * Add support for isel'ing UMUL_LOHI instead of marking it as Expand. * Emit the 'Branch on Integer Register with Prediction' instructions. It's not clear how to write a pattern for this though: float %t1(int %a, int* %p) { %C = seteq int %a, 0 br bool %C, label %T, label %F T: store int 123, int* %p br label %F F: ret float undef } codegens to this: t1: save -96, %o6, %o6 1) subcc %i0, 0, %l0 1) bne .LBBt1_2 ! F nop .LBBt1_1: ! T or %g0, 123, %l0 st %l0, [%i1] .LBBt1_2: ! F restore %g0, %g0, %g0 retl nop 1) should be replaced with a brz in V9 mode. * Same as above, but emit conditional move on register zero (p192) in V9 mode. Testcase: int %t1(int %a, int %b) { %C = seteq int %a, 0 %D = select bool %C, int %a, int %b ret int %D } * Emit MULX/[SU]DIVX instructions in V9 mode instead of fiddling with the Y register, if they are faster. * Codegen bswap(load)/store(bswap) -> load/store ASI * Implement frame pointer elimination, e.g. eliminate save/restore for leaf fns. * Fill delay slots