llvm-6502/lib/ProfileData/CoverageMappingReader.cpp
Justin Bogner 0a64b6de98 InstrProf: Fix reading of consecutive 32 bit coverage maps
When we generate coverage data, we explicitly set each coverage map's
alignment to 8 (See InstrProfiling::lowerCoverageData), but when we
read the coverage data, we assume consecutive maps are exactly
adjacent. When we're dealing with 32 bit, maps can end on a 4 byte
boundary, causing us to think the padding is part of the next record.

Fix this by adjusting the buffer to an appropriately aligned address
between records.

This is pretty awkward to test, as it requires a binary with multiple
coverage maps to hit, so we'd need to check in multiple source files
and a binary blob as inputs.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239129 91177308-0d34-0410-b5e6-96231b3b80d8
2015-06-05 01:23:42 +00:00

560 lines
20 KiB
C++

//=-- CoverageMappingReader.cpp - Code coverage mapping reader ----*- C++ -*-=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains support for reading coverage mapping data for
// instrumentation based coverage.
//
//===----------------------------------------------------------------------===//
#include "llvm/ProfileData/CoverageMappingReader.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/Object/MachOUniversal.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/LEB128.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
using namespace coverage;
using namespace object;
#define DEBUG_TYPE "coverage-mapping"
void CoverageMappingIterator::increment() {
// Check if all the records were read or if an error occurred while reading
// the next record.
if (Reader->readNextRecord(Record))
*this = CoverageMappingIterator();
}
std::error_code RawCoverageReader::readULEB128(uint64_t &Result) {
if (Data.size() < 1)
return coveragemap_error::truncated;
unsigned N = 0;
Result = decodeULEB128(reinterpret_cast<const uint8_t *>(Data.data()), &N);
if (N > Data.size())
return coveragemap_error::malformed;
Data = Data.substr(N);
return std::error_code();
}
std::error_code RawCoverageReader::readIntMax(uint64_t &Result,
uint64_t MaxPlus1) {
if (auto Err = readULEB128(Result))
return Err;
if (Result >= MaxPlus1)
return coveragemap_error::malformed;
return std::error_code();
}
std::error_code RawCoverageReader::readSize(uint64_t &Result) {
if (auto Err = readULEB128(Result))
return Err;
// Sanity check the number.
if (Result > Data.size())
return coveragemap_error::malformed;
return std::error_code();
}
std::error_code RawCoverageReader::readString(StringRef &Result) {
uint64_t Length;
if (auto Err = readSize(Length))
return Err;
Result = Data.substr(0, Length);
Data = Data.substr(Length);
return std::error_code();
}
std::error_code RawCoverageFilenamesReader::read() {
uint64_t NumFilenames;
if (auto Err = readSize(NumFilenames))
return Err;
for (size_t I = 0; I < NumFilenames; ++I) {
StringRef Filename;
if (auto Err = readString(Filename))
return Err;
Filenames.push_back(Filename);
}
return std::error_code();
}
std::error_code RawCoverageMappingReader::decodeCounter(unsigned Value,
Counter &C) {
auto Tag = Value & Counter::EncodingTagMask;
switch (Tag) {
case Counter::Zero:
C = Counter::getZero();
return std::error_code();
case Counter::CounterValueReference:
C = Counter::getCounter(Value >> Counter::EncodingTagBits);
return std::error_code();
default:
break;
}
Tag -= Counter::Expression;
switch (Tag) {
case CounterExpression::Subtract:
case CounterExpression::Add: {
auto ID = Value >> Counter::EncodingTagBits;
if (ID >= Expressions.size())
return coveragemap_error::malformed;
Expressions[ID].Kind = CounterExpression::ExprKind(Tag);
C = Counter::getExpression(ID);
break;
}
default:
return coveragemap_error::malformed;
}
return std::error_code();
}
std::error_code RawCoverageMappingReader::readCounter(Counter &C) {
uint64_t EncodedCounter;
if (auto Err =
readIntMax(EncodedCounter, std::numeric_limits<unsigned>::max()))
return Err;
if (auto Err = decodeCounter(EncodedCounter, C))
return Err;
return std::error_code();
}
static const unsigned EncodingExpansionRegionBit = 1
<< Counter::EncodingTagBits;
/// \brief Read the sub-array of regions for the given inferred file id.
/// \param NumFileIDs the number of file ids that are defined for this
/// function.
std::error_code RawCoverageMappingReader::readMappingRegionsSubArray(
std::vector<CounterMappingRegion> &MappingRegions, unsigned InferredFileID,
size_t NumFileIDs) {
uint64_t NumRegions;
if (auto Err = readSize(NumRegions))
return Err;
unsigned LineStart = 0;
for (size_t I = 0; I < NumRegions; ++I) {
Counter C;
CounterMappingRegion::RegionKind Kind = CounterMappingRegion::CodeRegion;
// Read the combined counter + region kind.
uint64_t EncodedCounterAndRegion;
if (auto Err = readIntMax(EncodedCounterAndRegion,
std::numeric_limits<unsigned>::max()))
return Err;
unsigned Tag = EncodedCounterAndRegion & Counter::EncodingTagMask;
uint64_t ExpandedFileID = 0;
if (Tag != Counter::Zero) {
if (auto Err = decodeCounter(EncodedCounterAndRegion, C))
return Err;
} else {
// Is it an expansion region?
if (EncodedCounterAndRegion & EncodingExpansionRegionBit) {
Kind = CounterMappingRegion::ExpansionRegion;
ExpandedFileID = EncodedCounterAndRegion >>
Counter::EncodingCounterTagAndExpansionRegionTagBits;
if (ExpandedFileID >= NumFileIDs)
return coveragemap_error::malformed;
} else {
switch (EncodedCounterAndRegion >>
Counter::EncodingCounterTagAndExpansionRegionTagBits) {
case CounterMappingRegion::CodeRegion:
// Don't do anything when we have a code region with a zero counter.
break;
case CounterMappingRegion::SkippedRegion:
Kind = CounterMappingRegion::SkippedRegion;
break;
default:
return coveragemap_error::malformed;
}
}
}
// Read the source range.
uint64_t LineStartDelta, ColumnStart, NumLines, ColumnEnd;
if (auto Err =
readIntMax(LineStartDelta, std::numeric_limits<unsigned>::max()))
return Err;
if (auto Err = readULEB128(ColumnStart))
return Err;
if (ColumnStart > std::numeric_limits<unsigned>::max())
return coveragemap_error::malformed;
if (auto Err = readIntMax(NumLines, std::numeric_limits<unsigned>::max()))
return Err;
if (auto Err = readIntMax(ColumnEnd, std::numeric_limits<unsigned>::max()))
return Err;
LineStart += LineStartDelta;
// Adjust the column locations for the empty regions that are supposed to
// cover whole lines. Those regions should be encoded with the
// column range (1 -> std::numeric_limits<unsigned>::max()), but because
// the encoded std::numeric_limits<unsigned>::max() is several bytes long,
// we set the column range to (0 -> 0) to ensure that the column start and
// column end take up one byte each.
// The std::numeric_limits<unsigned>::max() is used to represent a column
// position at the end of the line without knowing the length of that line.
if (ColumnStart == 0 && ColumnEnd == 0) {
ColumnStart = 1;
ColumnEnd = std::numeric_limits<unsigned>::max();
}
DEBUG({
dbgs() << "Counter in file " << InferredFileID << " " << LineStart << ":"
<< ColumnStart << " -> " << (LineStart + NumLines) << ":"
<< ColumnEnd << ", ";
if (Kind == CounterMappingRegion::ExpansionRegion)
dbgs() << "Expands to file " << ExpandedFileID;
else
CounterMappingContext(Expressions).dump(C, dbgs());
dbgs() << "\n";
});
MappingRegions.push_back(CounterMappingRegion(
C, InferredFileID, ExpandedFileID, LineStart, ColumnStart,
LineStart + NumLines, ColumnEnd, Kind));
}
return std::error_code();
}
std::error_code RawCoverageMappingReader::read() {
// Read the virtual file mapping.
llvm::SmallVector<unsigned, 8> VirtualFileMapping;
uint64_t NumFileMappings;
if (auto Err = readSize(NumFileMappings))
return Err;
for (size_t I = 0; I < NumFileMappings; ++I) {
uint64_t FilenameIndex;
if (auto Err = readIntMax(FilenameIndex, TranslationUnitFilenames.size()))
return Err;
VirtualFileMapping.push_back(FilenameIndex);
}
// Construct the files using unique filenames and virtual file mapping.
for (auto I : VirtualFileMapping) {
Filenames.push_back(TranslationUnitFilenames[I]);
}
// Read the expressions.
uint64_t NumExpressions;
if (auto Err = readSize(NumExpressions))
return Err;
// Create an array of dummy expressions that get the proper counters
// when the expressions are read, and the proper kinds when the counters
// are decoded.
Expressions.resize(
NumExpressions,
CounterExpression(CounterExpression::Subtract, Counter(), Counter()));
for (size_t I = 0; I < NumExpressions; ++I) {
if (auto Err = readCounter(Expressions[I].LHS))
return Err;
if (auto Err = readCounter(Expressions[I].RHS))
return Err;
}
// Read the mapping regions sub-arrays.
for (unsigned InferredFileID = 0, S = VirtualFileMapping.size();
InferredFileID < S; ++InferredFileID) {
if (auto Err = readMappingRegionsSubArray(MappingRegions, InferredFileID,
VirtualFileMapping.size()))
return Err;
}
// Set the counters for the expansion regions.
// i.e. Counter of expansion region = counter of the first region
// from the expanded file.
// Perform multiple passes to correctly propagate the counters through
// all the nested expansion regions.
SmallVector<CounterMappingRegion *, 8> FileIDExpansionRegionMapping;
FileIDExpansionRegionMapping.resize(VirtualFileMapping.size(), nullptr);
for (unsigned Pass = 1, S = VirtualFileMapping.size(); Pass < S; ++Pass) {
for (auto &R : MappingRegions) {
if (R.Kind != CounterMappingRegion::ExpansionRegion)
continue;
assert(!FileIDExpansionRegionMapping[R.ExpandedFileID]);
FileIDExpansionRegionMapping[R.ExpandedFileID] = &R;
}
for (auto &R : MappingRegions) {
if (FileIDExpansionRegionMapping[R.FileID]) {
FileIDExpansionRegionMapping[R.FileID]->Count = R.Count;
FileIDExpansionRegionMapping[R.FileID] = nullptr;
}
}
}
return std::error_code();
}
namespace {
/// \brief A helper structure to access the data from a section
/// in an object file.
struct SectionData {
StringRef Data;
uint64_t Address;
std::error_code load(SectionRef &Section) {
if (auto Err = Section.getContents(Data))
return Err;
Address = Section.getAddress();
return std::error_code();
}
std::error_code get(uint64_t Pointer, size_t Size, StringRef &Result) {
if (Pointer < Address)
return coveragemap_error::malformed;
auto Offset = Pointer - Address;
if (Offset + Size > Data.size())
return coveragemap_error::malformed;
Result = Data.substr(Pointer - Address, Size);
return std::error_code();
}
};
}
template <typename T, support::endianness Endian>
std::error_code readCoverageMappingData(
SectionData &ProfileNames, StringRef Data,
std::vector<BinaryCoverageReader::ProfileMappingRecord> &Records,
std::vector<StringRef> &Filenames) {
using namespace support;
llvm::DenseSet<T> UniqueFunctionMappingData;
// Read the records in the coverage data section.
for (const char *Buf = Data.data(), *End = Buf + Data.size(); Buf < End;) {
if (Buf + 4 * sizeof(uint32_t) > End)
return coveragemap_error::malformed;
uint32_t NRecords = endian::readNext<uint32_t, Endian, unaligned>(Buf);
uint32_t FilenamesSize = endian::readNext<uint32_t, Endian, unaligned>(Buf);
uint32_t CoverageSize = endian::readNext<uint32_t, Endian, unaligned>(Buf);
uint32_t Version = endian::readNext<uint32_t, Endian, unaligned>(Buf);
switch (Version) {
case CoverageMappingVersion1:
break;
default:
return coveragemap_error::unsupported_version;
}
// Skip past the function records, saving the start and end for later.
const char *FunBuf = Buf;
Buf += NRecords * (sizeof(T) + 2 * sizeof(uint32_t) + sizeof(uint64_t));
const char *FunEnd = Buf;
// Get the filenames.
if (Buf + FilenamesSize > End)
return coveragemap_error::malformed;
size_t FilenamesBegin = Filenames.size();
RawCoverageFilenamesReader Reader(StringRef(Buf, FilenamesSize), Filenames);
if (auto Err = Reader.read())
return Err;
Buf += FilenamesSize;
// We'll read the coverage mapping records in the loop below.
const char *CovBuf = Buf;
Buf += CoverageSize;
const char *CovEnd = Buf;
if (Buf > End)
return coveragemap_error::malformed;
// Each coverage map has an alignment of 8, so we need to adjust alignment
// before reading the next map.
Buf += alignmentAdjustment(Buf, 8);
while (FunBuf < FunEnd) {
// Read the function information
T NamePtr = endian::readNext<T, Endian, unaligned>(FunBuf);
uint32_t NameSize = endian::readNext<uint32_t, Endian, unaligned>(FunBuf);
uint32_t DataSize = endian::readNext<uint32_t, Endian, unaligned>(FunBuf);
uint64_t FuncHash = endian::readNext<uint64_t, Endian, unaligned>(FunBuf);
// Now use that to read the coverage data.
if (CovBuf + DataSize > CovEnd)
return coveragemap_error::malformed;
auto Mapping = StringRef(CovBuf, DataSize);
CovBuf += DataSize;
// Ignore this record if we already have a record that points to the same
// function name. This is useful to ignore the redundant records for the
// functions with ODR linkage.
if (!UniqueFunctionMappingData.insert(NamePtr).second)
continue;
// Finally, grab the name and create a record.
StringRef FuncName;
if (std::error_code EC = ProfileNames.get(NamePtr, NameSize, FuncName))
return EC;
Records.push_back(BinaryCoverageReader::ProfileMappingRecord(
CoverageMappingVersion(Version), FuncName, FuncHash, Mapping,
FilenamesBegin, Filenames.size() - FilenamesBegin));
}
}
return std::error_code();
}
static const char *TestingFormatMagic = "llvmcovmtestdata";
static std::error_code loadTestingFormat(StringRef Data,
SectionData &ProfileNames,
StringRef &CoverageMapping,
uint8_t &BytesInAddress,
support::endianness &Endian) {
BytesInAddress = 8;
Endian = support::endianness::little;
Data = Data.substr(StringRef(TestingFormatMagic).size());
if (Data.size() < 1)
return coveragemap_error::truncated;
unsigned N = 0;
auto ProfileNamesSize =
decodeULEB128(reinterpret_cast<const uint8_t *>(Data.data()), &N);
if (N > Data.size())
return coveragemap_error::malformed;
Data = Data.substr(N);
if (Data.size() < 1)
return coveragemap_error::truncated;
N = 0;
ProfileNames.Address =
decodeULEB128(reinterpret_cast<const uint8_t *>(Data.data()), &N);
if (N > Data.size())
return coveragemap_error::malformed;
Data = Data.substr(N);
if (Data.size() < ProfileNamesSize)
return coveragemap_error::malformed;
ProfileNames.Data = Data.substr(0, ProfileNamesSize);
CoverageMapping = Data.substr(ProfileNamesSize);
return std::error_code();
}
static ErrorOr<SectionRef> lookupSection(ObjectFile &OF, StringRef Name) {
StringRef FoundName;
for (const auto &Section : OF.sections()) {
if (auto EC = Section.getName(FoundName))
return EC;
if (FoundName == Name)
return Section;
}
return coveragemap_error::no_data_found;
}
static std::error_code loadBinaryFormat(MemoryBufferRef ObjectBuffer,
SectionData &ProfileNames,
StringRef &CoverageMapping,
uint8_t &BytesInAddress,
support::endianness &Endian,
Triple::ArchType Arch) {
auto BinOrErr = object::createBinary(ObjectBuffer);
if (std::error_code EC = BinOrErr.getError())
return EC;
auto Bin = std::move(BinOrErr.get());
std::unique_ptr<ObjectFile> OF;
if (auto *Universal = dyn_cast<object::MachOUniversalBinary>(Bin.get())) {
// If we have a universal binary, try to look up the object for the
// appropriate architecture.
auto ObjectFileOrErr = Universal->getObjectForArch(Arch);
if (std::error_code EC = ObjectFileOrErr.getError())
return EC;
OF = std::move(ObjectFileOrErr.get());
} else if (isa<object::ObjectFile>(Bin.get())) {
// For any other object file, upcast and take ownership.
OF.reset(cast<object::ObjectFile>(Bin.release()));
// If we've asked for a particular arch, make sure they match.
if (Arch != Triple::ArchType::UnknownArch && OF->getArch() != Arch)
return object_error::arch_not_found;
} else
// We can only handle object files.
return coveragemap_error::malformed;
// The coverage uses native pointer sizes for the object it's written in.
BytesInAddress = OF->getBytesInAddress();
Endian = OF->isLittleEndian() ? support::endianness::little
: support::endianness::big;
// Look for the sections that we are interested in.
auto NamesSection = lookupSection(*OF, "__llvm_prf_names");
if (auto EC = NamesSection.getError())
return EC;
auto CoverageSection = lookupSection(*OF, "__llvm_covmap");
if (auto EC = CoverageSection.getError())
return EC;
// Get the contents of the given sections.
if (std::error_code EC = CoverageSection->getContents(CoverageMapping))
return EC;
if (std::error_code EC = ProfileNames.load(*NamesSection))
return EC;
return std::error_code();
}
ErrorOr<std::unique_ptr<BinaryCoverageReader>>
BinaryCoverageReader::create(std::unique_ptr<MemoryBuffer> &ObjectBuffer,
Triple::ArchType Arch) {
std::unique_ptr<BinaryCoverageReader> Reader(new BinaryCoverageReader());
SectionData Profile;
StringRef Coverage;
uint8_t BytesInAddress;
support::endianness Endian;
std::error_code EC;
if (ObjectBuffer->getBuffer().startswith(TestingFormatMagic))
// This is a special format used for testing.
EC = loadTestingFormat(ObjectBuffer->getBuffer(), Profile, Coverage,
BytesInAddress, Endian);
else
EC = loadBinaryFormat(ObjectBuffer->getMemBufferRef(), Profile, Coverage,
BytesInAddress, Endian, Arch);
if (EC)
return EC;
if (BytesInAddress == 4 && Endian == support::endianness::little)
EC = readCoverageMappingData<uint32_t, support::endianness::little>(
Profile, Coverage, Reader->MappingRecords, Reader->Filenames);
else if (BytesInAddress == 4 && Endian == support::endianness::big)
EC = readCoverageMappingData<uint32_t, support::endianness::big>(
Profile, Coverage, Reader->MappingRecords, Reader->Filenames);
else if (BytesInAddress == 8 && Endian == support::endianness::little)
EC = readCoverageMappingData<uint64_t, support::endianness::little>(
Profile, Coverage, Reader->MappingRecords, Reader->Filenames);
else if (BytesInAddress == 8 && Endian == support::endianness::big)
EC = readCoverageMappingData<uint64_t, support::endianness::big>(
Profile, Coverage, Reader->MappingRecords, Reader->Filenames);
else
return coveragemap_error::malformed;
if (EC)
return EC;
return std::move(Reader);
}
std::error_code
BinaryCoverageReader::readNextRecord(CoverageMappingRecord &Record) {
if (CurrentRecord >= MappingRecords.size())
return coveragemap_error::eof;
FunctionsFilenames.clear();
Expressions.clear();
MappingRegions.clear();
auto &R = MappingRecords[CurrentRecord];
RawCoverageMappingReader Reader(
R.CoverageMapping,
makeArrayRef(Filenames).slice(R.FilenamesBegin, R.FilenamesSize),
FunctionsFilenames, Expressions, MappingRegions);
if (auto Err = Reader.read())
return Err;
Record.FunctionName = R.FunctionName;
Record.FunctionHash = R.FunctionHash;
Record.Filenames = FunctionsFilenames;
Record.Expressions = Expressions;
Record.MappingRegions = MappingRegions;
++CurrentRecord;
return std::error_code();
}