llvm-6502/lib/CodeGen/RegAllocBase.h
Jakob Stoklund Olesen 2710638db2 Evict a lighter single interference before attempting to split a live range.
Registers are not allocated strictly in spill weight order when live range
splitting and spilling has created new shorter intervals with higher spill
weights.

When one of the new heavy intervals conflicts with a single lighter interval,
simply evict the old interval instead of trying to split the heavy one.

The lighter interval is a better candidate for splitting, it has a smaller use
density.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@125151 91177308-0d34-0410-b5e6-96231b3b80d8
2011-02-09 01:14:03 +00:00

182 lines
6.9 KiB
C++

//===-- RegAllocBase.h - basic regalloc interface and driver --*- C++ -*---===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the RegAllocBase class, which is the skeleton of a basic
// register allocation algorithm and interface for extending it. It provides the
// building blocks on which to construct other experimental allocators and test
// the validity of two principles:
//
// - If virtual and physical register liveness is modeled using intervals, then
// on-the-fly interference checking is cheap. Furthermore, interferences can be
// lazily cached and reused.
//
// - Register allocation complexity, and generated code performance is
// determined by the effectiveness of live range splitting rather than optimal
// coloring.
//
// Following the first principle, interfering checking revolves around the
// LiveIntervalUnion data structure.
//
// To fulfill the second principle, the basic allocator provides a driver for
// incremental splitting. It essentially punts on the problem of register
// coloring, instead driving the assignment of virtual to physical registers by
// the cost of splitting. The basic allocator allows for heuristic reassignment
// of registers, if a more sophisticated allocator chooses to do that.
//
// This framework provides a way to engineer the compile time vs. code
// quality trade-off without relying on a particular theoretical solver.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_REGALLOCBASE
#define LLVM_CODEGEN_REGALLOCBASE
#include "llvm/ADT/OwningPtr.h"
#include "LiveIntervalUnion.h"
#include <queue>
namespace llvm {
template<typename T> class SmallVectorImpl;
class TargetRegisterInfo;
class VirtRegMap;
class LiveIntervals;
class Spiller;
// Forward declare a priority queue of live virtual registers. If an
// implementation needs to prioritize by anything other than spill weight, then
// this will become an abstract base class with virtual calls to push/get.
class LiveVirtRegQueue;
/// RegAllocBase provides the register allocation driver and interface that can
/// be extended to add interesting heuristics.
///
/// Register allocators must override the selectOrSplit() method to implement
/// live range splitting. They may also override getPriority() which otherwise
/// defaults to the spill weight computed by CalculateSpillWeights.
class RegAllocBase {
LiveIntervalUnion::Allocator UnionAllocator;
protected:
// Array of LiveIntervalUnions indexed by physical register.
class LiveUnionArray {
unsigned NumRegs;
LiveIntervalUnion *Array;
public:
LiveUnionArray(): NumRegs(0), Array(0) {}
~LiveUnionArray() { clear(); }
unsigned numRegs() const { return NumRegs; }
void init(LiveIntervalUnion::Allocator &, unsigned NRegs);
void clear();
LiveIntervalUnion& operator[](unsigned PhysReg) {
assert(PhysReg < NumRegs && "physReg out of bounds");
return Array[PhysReg];
}
};
const TargetRegisterInfo *TRI;
MachineRegisterInfo *MRI;
VirtRegMap *VRM;
LiveIntervals *LIS;
LiveUnionArray PhysReg2LiveUnion;
// Current queries, one per physreg. They must be reinitialized each time we
// query on a new live virtual register.
OwningArrayPtr<LiveIntervalUnion::Query> Queries;
RegAllocBase(): TRI(0), MRI(0), VRM(0), LIS(0) {}
virtual ~RegAllocBase() {}
// A RegAlloc pass should call this before allocatePhysRegs.
void init(VirtRegMap &vrm, LiveIntervals &lis);
// Get an initialized query to check interferences between lvr and preg. Note
// that Query::init must be called at least once for each physical register
// before querying a new live virtual register. This ties Queries and
// PhysReg2LiveUnion together.
LiveIntervalUnion::Query &query(LiveInterval &VirtReg, unsigned PhysReg) {
Queries[PhysReg].init(&VirtReg, &PhysReg2LiveUnion[PhysReg]);
return Queries[PhysReg];
}
// The top-level driver. The output is a VirtRegMap that us updated with
// physical register assignments.
//
// If an implementation wants to override the LiveInterval comparator, we
// should modify this interface to allow passing in an instance derived from
// LiveVirtRegQueue.
void allocatePhysRegs();
// Get a temporary reference to a Spiller instance.
virtual Spiller &spiller() = 0;
// getPriority - Calculate the allocation priority for VirtReg.
// Virtual registers with higher priorities are allocated first.
virtual float getPriority(LiveInterval *LI) = 0;
// A RegAlloc pass should override this to provide the allocation heuristics.
// Each call must guarantee forward progess by returning an available PhysReg
// or new set of split live virtual registers. It is up to the splitter to
// converge quickly toward fully spilled live ranges.
virtual unsigned selectOrSplit(LiveInterval &VirtReg,
SmallVectorImpl<LiveInterval*> &splitLVRs) = 0;
// A RegAlloc pass should call this when PassManager releases its memory.
virtual void releaseMemory();
// Helper for checking interference between a live virtual register and a
// physical register, including all its register aliases. If an interference
// exists, return the interfering register, which may be preg or an alias.
unsigned checkPhysRegInterference(LiveInterval& VirtReg, unsigned PhysReg);
/// assign - Assign VirtReg to PhysReg.
/// This should not be called from selectOrSplit for the current register.
void assign(LiveInterval &VirtReg, unsigned PhysReg);
/// unassign - Undo a previous assignment of VirtReg to PhysReg.
/// This can be invoked from selectOrSplit, but be careful to guarantee that
/// allocation is making progress.
void unassign(LiveInterval &VirtReg, unsigned PhysReg);
// Helper for spilling all live virtual registers currently unified under preg
// that interfere with the most recently queried lvr. Return true if spilling
// was successful, and append any new spilled/split intervals to splitLVRs.
bool spillInterferences(LiveInterval &VirtReg, unsigned PhysReg,
SmallVectorImpl<LiveInterval*> &SplitVRegs);
/// addMBBLiveIns - Add physreg liveins to basic blocks.
void addMBBLiveIns(MachineFunction *);
#ifndef NDEBUG
// Verify each LiveIntervalUnion.
void verify();
#endif
// Use this group name for NamedRegionTimer.
static const char *TimerGroupName;
public:
/// VerifyEnabled - True when -verify-regalloc is given.
static bool VerifyEnabled;
private:
void seedLiveVirtRegs(std::priority_queue<std::pair<float, unsigned> >&);
void spillReg(LiveInterval &VirtReg, unsigned PhysReg,
SmallVectorImpl<LiveInterval*> &SplitVRegs);
};
} // end namespace llvm
#endif // !defined(LLVM_CODEGEN_REGALLOCBASE)