llvm-6502/include/llvm/Object/ELF.h
Tim Northover 72062f5744 Add AArch64 as an experimental target.
This patch adds support for AArch64 (ARM's 64-bit architecture) to
LLVM in the "experimental" category. Currently, it won't be built
unless requested explicitly.

This initial commit should have support for:
    + Assembly of all scalar (i.e. non-NEON, non-Crypto) instructions
      (except the late addition CRC instructions).
    + CodeGen features required for C++03 and C99.
    + Compilation for the "small" memory model: code+static data <
      4GB.
    + Absolute and position-independent code.
    + GNU-style (i.e. "__thread") TLS.
    + Debugging information.

The principal omission, currently, is performance tuning.

This patch excludes the NEON support also reviewed due to an outbreak of
batshit insanity in our legal department. That will be committed soon bringing
the changes to precisely what has been approved.

Further reviews would be gratefully received.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174054 91177308-0d34-0410-b5e6-96231b3b80d8
2013-01-31 12:12:40 +00:00

2764 lines
104 KiB
C++

//===- ELF.h - ELF object file implementation -------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares the ELFObjectFile template class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_OBJECT_ELF_H
#define LLVM_OBJECT_ELF_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ELF.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <limits>
#include <utility>
namespace llvm {
namespace object {
using support::endianness;
template<endianness target_endianness, std::size_t max_alignment, bool is64Bits>
struct ELFType {
static const endianness TargetEndianness = target_endianness;
static const std::size_t MaxAlignment = max_alignment;
static const bool Is64Bits = is64Bits;
};
template<typename T, int max_align>
struct MaximumAlignment {
enum {value = AlignOf<T>::Alignment > max_align ? max_align
: AlignOf<T>::Alignment};
};
// Subclasses of ELFObjectFile may need this for template instantiation
inline std::pair<unsigned char, unsigned char>
getElfArchType(MemoryBuffer *Object) {
if (Object->getBufferSize() < ELF::EI_NIDENT)
return std::make_pair((uint8_t)ELF::ELFCLASSNONE,(uint8_t)ELF::ELFDATANONE);
return std::make_pair( (uint8_t)Object->getBufferStart()[ELF::EI_CLASS]
, (uint8_t)Object->getBufferStart()[ELF::EI_DATA]);
}
// Templates to choose Elf_Addr and Elf_Off depending on is64Bits.
template<endianness target_endianness, std::size_t max_alignment>
struct ELFDataTypeTypedefHelperCommon {
typedef support::detail::packed_endian_specific_integral
<uint16_t, target_endianness,
MaximumAlignment<uint16_t, max_alignment>::value> Elf_Half;
typedef support::detail::packed_endian_specific_integral
<uint32_t, target_endianness,
MaximumAlignment<uint32_t, max_alignment>::value> Elf_Word;
typedef support::detail::packed_endian_specific_integral
<int32_t, target_endianness,
MaximumAlignment<int32_t, max_alignment>::value> Elf_Sword;
typedef support::detail::packed_endian_specific_integral
<uint64_t, target_endianness,
MaximumAlignment<uint64_t, max_alignment>::value> Elf_Xword;
typedef support::detail::packed_endian_specific_integral
<int64_t, target_endianness,
MaximumAlignment<int64_t, max_alignment>::value> Elf_Sxword;
};
template<class ELFT>
struct ELFDataTypeTypedefHelper;
/// ELF 32bit types.
template<template<endianness, std::size_t, bool> class ELFT,
endianness TargetEndianness, std::size_t MaxAlign>
struct ELFDataTypeTypedefHelper<ELFT<TargetEndianness, MaxAlign, false> >
: ELFDataTypeTypedefHelperCommon<TargetEndianness, MaxAlign> {
typedef uint32_t value_type;
typedef support::detail::packed_endian_specific_integral
<value_type, TargetEndianness,
MaximumAlignment<value_type, MaxAlign>::value> Elf_Addr;
typedef support::detail::packed_endian_specific_integral
<value_type, TargetEndianness,
MaximumAlignment<value_type, MaxAlign>::value> Elf_Off;
};
/// ELF 64bit types.
template<template<endianness, std::size_t, bool> class ELFT,
endianness TargetEndianness, std::size_t MaxAlign>
struct ELFDataTypeTypedefHelper<ELFT<TargetEndianness, MaxAlign, true> >
: ELFDataTypeTypedefHelperCommon<TargetEndianness, MaxAlign> {
typedef uint64_t value_type;
typedef support::detail::packed_endian_specific_integral
<value_type, TargetEndianness,
MaximumAlignment<value_type, MaxAlign>::value> Elf_Addr;
typedef support::detail::packed_endian_specific_integral
<value_type, TargetEndianness,
MaximumAlignment<value_type, MaxAlign>::value> Elf_Off;
};
// I really don't like doing this, but the alternative is copypasta.
#define LLVM_ELF_IMPORT_TYPES(ELFT) \
typedef typename ELFDataTypeTypedefHelper <ELFT>::Elf_Addr Elf_Addr; \
typedef typename ELFDataTypeTypedefHelper <ELFT>::Elf_Off Elf_Off; \
typedef typename ELFDataTypeTypedefHelper <ELFT>::Elf_Half Elf_Half; \
typedef typename ELFDataTypeTypedefHelper <ELFT>::Elf_Word Elf_Word; \
typedef typename ELFDataTypeTypedefHelper <ELFT>::Elf_Sword Elf_Sword; \
typedef typename ELFDataTypeTypedefHelper <ELFT>::Elf_Xword Elf_Xword; \
typedef typename ELFDataTypeTypedefHelper <ELFT>::Elf_Sxword Elf_Sxword;
// This is required to get template types into a macro :(
#define LLVM_ELF_COMMA ,
// Section header.
template<class ELFT>
struct Elf_Shdr_Base;
template<template<endianness, std::size_t, bool> class ELFT,
endianness TargetEndianness, std::size_t MaxAlign>
struct Elf_Shdr_Base<ELFT<TargetEndianness, MaxAlign, false> > {
LLVM_ELF_IMPORT_TYPES(ELFT<TargetEndianness LLVM_ELF_COMMA
MaxAlign LLVM_ELF_COMMA false>)
Elf_Word sh_name; // Section name (index into string table)
Elf_Word sh_type; // Section type (SHT_*)
Elf_Word sh_flags; // Section flags (SHF_*)
Elf_Addr sh_addr; // Address where section is to be loaded
Elf_Off sh_offset; // File offset of section data, in bytes
Elf_Word sh_size; // Size of section, in bytes
Elf_Word sh_link; // Section type-specific header table index link
Elf_Word sh_info; // Section type-specific extra information
Elf_Word sh_addralign;// Section address alignment
Elf_Word sh_entsize; // Size of records contained within the section
};
template<template<endianness, std::size_t, bool> class ELFT,
endianness TargetEndianness, std::size_t MaxAlign>
struct Elf_Shdr_Base<ELFT<TargetEndianness, MaxAlign, true> > {
LLVM_ELF_IMPORT_TYPES(ELFT<TargetEndianness LLVM_ELF_COMMA
MaxAlign LLVM_ELF_COMMA true>)
Elf_Word sh_name; // Section name (index into string table)
Elf_Word sh_type; // Section type (SHT_*)
Elf_Xword sh_flags; // Section flags (SHF_*)
Elf_Addr sh_addr; // Address where section is to be loaded
Elf_Off sh_offset; // File offset of section data, in bytes
Elf_Xword sh_size; // Size of section, in bytes
Elf_Word sh_link; // Section type-specific header table index link
Elf_Word sh_info; // Section type-specific extra information
Elf_Xword sh_addralign;// Section address alignment
Elf_Xword sh_entsize; // Size of records contained within the section
};
template<class ELFT>
struct Elf_Shdr_Impl : Elf_Shdr_Base<ELFT> {
using Elf_Shdr_Base<ELFT>::sh_entsize;
using Elf_Shdr_Base<ELFT>::sh_size;
/// @brief Get the number of entities this section contains if it has any.
unsigned getEntityCount() const {
if (sh_entsize == 0)
return 0;
return sh_size / sh_entsize;
}
};
template<class ELFT>
struct Elf_Sym_Base;
template<template<endianness, std::size_t, bool> class ELFT,
endianness TargetEndianness, std::size_t MaxAlign>
struct Elf_Sym_Base<ELFT<TargetEndianness, MaxAlign, false> > {
LLVM_ELF_IMPORT_TYPES(ELFT<TargetEndianness LLVM_ELF_COMMA
MaxAlign LLVM_ELF_COMMA false>)
Elf_Word st_name; // Symbol name (index into string table)
Elf_Addr st_value; // Value or address associated with the symbol
Elf_Word st_size; // Size of the symbol
unsigned char st_info; // Symbol's type and binding attributes
unsigned char st_other; // Must be zero; reserved
Elf_Half st_shndx; // Which section (header table index) it's defined in
};
template<template<endianness, std::size_t, bool> class ELFT,
endianness TargetEndianness, std::size_t MaxAlign>
struct Elf_Sym_Base<ELFT<TargetEndianness, MaxAlign, true> > {
LLVM_ELF_IMPORT_TYPES(ELFT<TargetEndianness LLVM_ELF_COMMA
MaxAlign LLVM_ELF_COMMA true>)
Elf_Word st_name; // Symbol name (index into string table)
unsigned char st_info; // Symbol's type and binding attributes
unsigned char st_other; // Must be zero; reserved
Elf_Half st_shndx; // Which section (header table index) it's defined in
Elf_Addr st_value; // Value or address associated with the symbol
Elf_Xword st_size; // Size of the symbol
};
template<class ELFT>
struct Elf_Sym_Impl : Elf_Sym_Base<ELFT> {
using Elf_Sym_Base<ELFT>::st_info;
// These accessors and mutators correspond to the ELF32_ST_BIND,
// ELF32_ST_TYPE, and ELF32_ST_INFO macros defined in the ELF specification:
unsigned char getBinding() const { return st_info >> 4; }
unsigned char getType() const { return st_info & 0x0f; }
void setBinding(unsigned char b) { setBindingAndType(b, getType()); }
void setType(unsigned char t) { setBindingAndType(getBinding(), t); }
void setBindingAndType(unsigned char b, unsigned char t) {
st_info = (b << 4) + (t & 0x0f);
}
};
/// Elf_Versym: This is the structure of entries in the SHT_GNU_versym section
/// (.gnu.version). This structure is identical for ELF32 and ELF64.
template<class ELFT>
struct Elf_Versym_Impl {
LLVM_ELF_IMPORT_TYPES(ELFT)
Elf_Half vs_index; // Version index with flags (e.g. VERSYM_HIDDEN)
};
template<class ELFT>
struct Elf_Verdaux_Impl;
/// Elf_Verdef: This is the structure of entries in the SHT_GNU_verdef section
/// (.gnu.version_d). This structure is identical for ELF32 and ELF64.
template<class ELFT>
struct Elf_Verdef_Impl {
LLVM_ELF_IMPORT_TYPES(ELFT)
typedef Elf_Verdaux_Impl<ELFT> Elf_Verdaux;
Elf_Half vd_version; // Version of this structure (e.g. VER_DEF_CURRENT)
Elf_Half vd_flags; // Bitwise flags (VER_DEF_*)
Elf_Half vd_ndx; // Version index, used in .gnu.version entries
Elf_Half vd_cnt; // Number of Verdaux entries
Elf_Word vd_hash; // Hash of name
Elf_Word vd_aux; // Offset to the first Verdaux entry (in bytes)
Elf_Word vd_next; // Offset to the next Verdef entry (in bytes)
/// Get the first Verdaux entry for this Verdef.
const Elf_Verdaux *getAux() const {
return reinterpret_cast<const Elf_Verdaux*>((const char*)this + vd_aux);
}
};
/// Elf_Verdaux: This is the structure of auxiliary data in the SHT_GNU_verdef
/// section (.gnu.version_d). This structure is identical for ELF32 and ELF64.
template<class ELFT>
struct Elf_Verdaux_Impl {
LLVM_ELF_IMPORT_TYPES(ELFT)
Elf_Word vda_name; // Version name (offset in string table)
Elf_Word vda_next; // Offset to next Verdaux entry (in bytes)
};
/// Elf_Verneed: This is the structure of entries in the SHT_GNU_verneed
/// section (.gnu.version_r). This structure is identical for ELF32 and ELF64.
template<class ELFT>
struct Elf_Verneed_Impl {
LLVM_ELF_IMPORT_TYPES(ELFT)
Elf_Half vn_version; // Version of this structure (e.g. VER_NEED_CURRENT)
Elf_Half vn_cnt; // Number of associated Vernaux entries
Elf_Word vn_file; // Library name (string table offset)
Elf_Word vn_aux; // Offset to first Vernaux entry (in bytes)
Elf_Word vn_next; // Offset to next Verneed entry (in bytes)
};
/// Elf_Vernaux: This is the structure of auxiliary data in SHT_GNU_verneed
/// section (.gnu.version_r). This structure is identical for ELF32 and ELF64.
template<class ELFT>
struct Elf_Vernaux_Impl {
LLVM_ELF_IMPORT_TYPES(ELFT)
Elf_Word vna_hash; // Hash of dependency name
Elf_Half vna_flags; // Bitwise Flags (VER_FLAG_*)
Elf_Half vna_other; // Version index, used in .gnu.version entries
Elf_Word vna_name; // Dependency name
Elf_Word vna_next; // Offset to next Vernaux entry (in bytes)
};
/// Elf_Dyn_Base: This structure matches the form of entries in the dynamic
/// table section (.dynamic) look like.
template<class ELFT>
struct Elf_Dyn_Base;
template<template<endianness, std::size_t, bool> class ELFT,
endianness TargetEndianness, std::size_t MaxAlign>
struct Elf_Dyn_Base<ELFT<TargetEndianness, MaxAlign, false> > {
LLVM_ELF_IMPORT_TYPES(ELFT<TargetEndianness LLVM_ELF_COMMA
MaxAlign LLVM_ELF_COMMA false>)
Elf_Sword d_tag;
union {
Elf_Word d_val;
Elf_Addr d_ptr;
} d_un;
};
template<template<endianness, std::size_t, bool> class ELFT,
endianness TargetEndianness, std::size_t MaxAlign>
struct Elf_Dyn_Base<ELFT<TargetEndianness, MaxAlign, true> > {
LLVM_ELF_IMPORT_TYPES(ELFT<TargetEndianness LLVM_ELF_COMMA
MaxAlign LLVM_ELF_COMMA true>)
Elf_Sxword d_tag;
union {
Elf_Xword d_val;
Elf_Addr d_ptr;
} d_un;
};
/// Elf_Dyn_Impl: This inherits from Elf_Dyn_Base, adding getters and setters.
template<class ELFT>
struct Elf_Dyn_Impl : Elf_Dyn_Base<ELFT> {
using Elf_Dyn_Base<ELFT>::d_tag;
using Elf_Dyn_Base<ELFT>::d_un;
int64_t getTag() const { return d_tag; }
uint64_t getVal() const { return d_un.d_val; }
uint64_t getPtr() const { return d_un.ptr; }
};
template<class ELFT>
class ELFObjectFile;
// DynRefImpl: Reference to an entry in the dynamic table
// This is an ELF-specific interface.
template<class ELFT>
class DynRefImpl {
typedef Elf_Dyn_Impl<ELFT> Elf_Dyn;
typedef ELFObjectFile<ELFT> OwningType;
DataRefImpl DynPimpl;
const OwningType *OwningObject;
public:
DynRefImpl() : OwningObject(NULL) { }
DynRefImpl(DataRefImpl DynP, const OwningType *Owner);
bool operator==(const DynRefImpl &Other) const;
bool operator <(const DynRefImpl &Other) const;
error_code getNext(DynRefImpl &Result) const;
int64_t getTag() const;
uint64_t getVal() const;
uint64_t getPtr() const;
DataRefImpl getRawDataRefImpl() const;
};
// Elf_Rel: Elf Relocation
template<class ELFT, bool isRela>
struct Elf_Rel_Base;
template<template<endianness, std::size_t, bool> class ELFT,
endianness TargetEndianness, std::size_t MaxAlign>
struct Elf_Rel_Base<ELFT<TargetEndianness, MaxAlign, false>, false> {
LLVM_ELF_IMPORT_TYPES(ELFT<TargetEndianness LLVM_ELF_COMMA
MaxAlign LLVM_ELF_COMMA false>)
Elf_Addr r_offset; // Location (file byte offset, or program virtual addr)
Elf_Word r_info; // Symbol table index and type of relocation to apply
};
template<template<endianness, std::size_t, bool> class ELFT,
endianness TargetEndianness, std::size_t MaxAlign>
struct Elf_Rel_Base<ELFT<TargetEndianness, MaxAlign, true>, false> {
LLVM_ELF_IMPORT_TYPES(ELFT<TargetEndianness LLVM_ELF_COMMA
MaxAlign LLVM_ELF_COMMA true>)
Elf_Addr r_offset; // Location (file byte offset, or program virtual addr)
Elf_Xword r_info; // Symbol table index and type of relocation to apply
};
template<template<endianness, std::size_t, bool> class ELFT,
endianness TargetEndianness, std::size_t MaxAlign>
struct Elf_Rel_Base<ELFT<TargetEndianness, MaxAlign, false>, true> {
LLVM_ELF_IMPORT_TYPES(ELFT<TargetEndianness LLVM_ELF_COMMA
MaxAlign LLVM_ELF_COMMA false>)
Elf_Addr r_offset; // Location (file byte offset, or program virtual addr)
Elf_Word r_info; // Symbol table index and type of relocation to apply
Elf_Sword r_addend; // Compute value for relocatable field by adding this
};
template<template<endianness, std::size_t, bool> class ELFT,
endianness TargetEndianness, std::size_t MaxAlign>
struct Elf_Rel_Base<ELFT<TargetEndianness, MaxAlign, true>, true> {
LLVM_ELF_IMPORT_TYPES(ELFT<TargetEndianness LLVM_ELF_COMMA
MaxAlign LLVM_ELF_COMMA true>)
Elf_Addr r_offset; // Location (file byte offset, or program virtual addr)
Elf_Xword r_info; // Symbol table index and type of relocation to apply
Elf_Sxword r_addend; // Compute value for relocatable field by adding this.
};
template<class ELFT, bool isRela>
struct Elf_Rel_Impl;
template<template<endianness, std::size_t, bool> class ELFT,
endianness TargetEndianness, std::size_t MaxAlign, bool isRela>
struct Elf_Rel_Impl<ELFT<TargetEndianness, MaxAlign, true>, isRela>
: Elf_Rel_Base<ELFT<TargetEndianness, MaxAlign, true>, isRela> {
using Elf_Rel_Base<ELFT<TargetEndianness, MaxAlign, true>, isRela>::r_info;
LLVM_ELF_IMPORT_TYPES(ELFT<TargetEndianness LLVM_ELF_COMMA
MaxAlign LLVM_ELF_COMMA true>)
// These accessors and mutators correspond to the ELF64_R_SYM, ELF64_R_TYPE,
// and ELF64_R_INFO macros defined in the ELF specification:
uint32_t getSymbol() const { return (uint32_t) (r_info >> 32); }
uint32_t getType() const {
return (uint32_t) (r_info & 0xffffffffL);
}
void setSymbol(uint32_t s) { setSymbolAndType(s, getType()); }
void setType(uint32_t t) { setSymbolAndType(getSymbol(), t); }
void setSymbolAndType(uint32_t s, uint32_t t) {
r_info = ((uint64_t)s << 32) + (t&0xffffffffL);
}
};
template<template<endianness, std::size_t, bool> class ELFT,
endianness TargetEndianness, std::size_t MaxAlign, bool isRela>
struct Elf_Rel_Impl<ELFT<TargetEndianness, MaxAlign, false>, isRela>
: Elf_Rel_Base<ELFT<TargetEndianness, MaxAlign, false>, isRela> {
using Elf_Rel_Base<ELFT<TargetEndianness, MaxAlign, false>, isRela>::r_info;
LLVM_ELF_IMPORT_TYPES(ELFT<TargetEndianness LLVM_ELF_COMMA
MaxAlign LLVM_ELF_COMMA false>)
// These accessors and mutators correspond to the ELF32_R_SYM, ELF32_R_TYPE,
// and ELF32_R_INFO macros defined in the ELF specification:
uint32_t getSymbol() const { return (r_info >> 8); }
unsigned char getType() const { return (unsigned char) (r_info & 0x0ff); }
void setSymbol(uint32_t s) { setSymbolAndType(s, getType()); }
void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); }
void setSymbolAndType(uint32_t s, unsigned char t) {
r_info = (s << 8) + t;
}
};
template<class ELFT>
struct Elf_Ehdr_Impl {
LLVM_ELF_IMPORT_TYPES(ELFT)
unsigned char e_ident[ELF::EI_NIDENT]; // ELF Identification bytes
Elf_Half e_type; // Type of file (see ET_*)
Elf_Half e_machine; // Required architecture for this file (see EM_*)
Elf_Word e_version; // Must be equal to 1
Elf_Addr e_entry; // Address to jump to in order to start program
Elf_Off e_phoff; // Program header table's file offset, in bytes
Elf_Off e_shoff; // Section header table's file offset, in bytes
Elf_Word e_flags; // Processor-specific flags
Elf_Half e_ehsize; // Size of ELF header, in bytes
Elf_Half e_phentsize;// Size of an entry in the program header table
Elf_Half e_phnum; // Number of entries in the program header table
Elf_Half e_shentsize;// Size of an entry in the section header table
Elf_Half e_shnum; // Number of entries in the section header table
Elf_Half e_shstrndx; // Section header table index of section name
// string table
bool checkMagic() const {
return (memcmp(e_ident, ELF::ElfMagic, strlen(ELF::ElfMagic))) == 0;
}
unsigned char getFileClass() const { return e_ident[ELF::EI_CLASS]; }
unsigned char getDataEncoding() const { return e_ident[ELF::EI_DATA]; }
};
template<class ELFT>
struct Elf_Phdr_Impl;
template<template<endianness, std::size_t, bool> class ELFT,
endianness TargetEndianness, std::size_t MaxAlign>
struct Elf_Phdr_Impl<ELFT<TargetEndianness, MaxAlign, false> > {
LLVM_ELF_IMPORT_TYPES(ELFT<TargetEndianness LLVM_ELF_COMMA
MaxAlign LLVM_ELF_COMMA false>)
Elf_Word p_type; // Type of segment
Elf_Off p_offset; // FileOffset where segment is located, in bytes
Elf_Addr p_vaddr; // Virtual Address of beginning of segment
Elf_Addr p_paddr; // Physical address of beginning of segment (OS-specific)
Elf_Word p_filesz; // Num. of bytes in file image of segment (may be zero)
Elf_Word p_memsz; // Num. of bytes in mem image of segment (may be zero)
Elf_Word p_flags; // Segment flags
Elf_Word p_align; // Segment alignment constraint
};
template<template<endianness, std::size_t, bool> class ELFT,
endianness TargetEndianness, std::size_t MaxAlign>
struct Elf_Phdr_Impl<ELFT<TargetEndianness, MaxAlign, true> > {
LLVM_ELF_IMPORT_TYPES(ELFT<TargetEndianness LLVM_ELF_COMMA
MaxAlign LLVM_ELF_COMMA true>)
Elf_Word p_type; // Type of segment
Elf_Word p_flags; // Segment flags
Elf_Off p_offset; // FileOffset where segment is located, in bytes
Elf_Addr p_vaddr; // Virtual Address of beginning of segment
Elf_Addr p_paddr; // Physical address of beginning of segment (OS-specific)
Elf_Xword p_filesz; // Num. of bytes in file image of segment (may be zero)
Elf_Xword p_memsz; // Num. of bytes in mem image of segment (may be zero)
Elf_Xword p_align; // Segment alignment constraint
};
template<class ELFT>
class ELFObjectFile : public ObjectFile {
LLVM_ELF_IMPORT_TYPES(ELFT)
typedef Elf_Ehdr_Impl<ELFT> Elf_Ehdr;
typedef Elf_Shdr_Impl<ELFT> Elf_Shdr;
typedef Elf_Sym_Impl<ELFT> Elf_Sym;
typedef Elf_Dyn_Impl<ELFT> Elf_Dyn;
typedef Elf_Phdr_Impl<ELFT> Elf_Phdr;
typedef Elf_Rel_Impl<ELFT, false> Elf_Rel;
typedef Elf_Rel_Impl<ELFT, true> Elf_Rela;
typedef Elf_Verdef_Impl<ELFT> Elf_Verdef;
typedef Elf_Verdaux_Impl<ELFT> Elf_Verdaux;
typedef Elf_Verneed_Impl<ELFT> Elf_Verneed;
typedef Elf_Vernaux_Impl<ELFT> Elf_Vernaux;
typedef Elf_Versym_Impl<ELFT> Elf_Versym;
typedef DynRefImpl<ELFT> DynRef;
typedef content_iterator<DynRef> dyn_iterator;
protected:
// This flag is used for classof, to distinguish ELFObjectFile from
// its subclass. If more subclasses will be created, this flag will
// have to become an enum.
bool isDyldELFObject;
private:
typedef SmallVector<const Elf_Shdr*, 1> Sections_t;
typedef DenseMap<unsigned, unsigned> IndexMap_t;
typedef DenseMap<const Elf_Shdr*, SmallVector<uint32_t, 1> > RelocMap_t;
const Elf_Ehdr *Header;
const Elf_Shdr *SectionHeaderTable;
const Elf_Shdr *dot_shstrtab_sec; // Section header string table.
const Elf_Shdr *dot_strtab_sec; // Symbol header string table.
const Elf_Shdr *dot_dynstr_sec; // Dynamic symbol string table.
// SymbolTableSections[0] always points to the dynamic string table section
// header, or NULL if there is no dynamic string table.
Sections_t SymbolTableSections;
IndexMap_t SymbolTableSectionsIndexMap;
DenseMap<const Elf_Sym*, ELF::Elf64_Word> ExtendedSymbolTable;
const Elf_Shdr *dot_dynamic_sec; // .dynamic
const Elf_Shdr *dot_gnu_version_sec; // .gnu.version
const Elf_Shdr *dot_gnu_version_r_sec; // .gnu.version_r
const Elf_Shdr *dot_gnu_version_d_sec; // .gnu.version_d
// Pointer to SONAME entry in dynamic string table
// This is set the first time getLoadName is called.
mutable const char *dt_soname;
public:
/// \brief Iterate over constant sized entities.
template<class EntT>
class ELFEntityIterator {
public:
typedef void difference_type;
typedef EntT value_type;
typedef std::forward_iterator_tag iterator_category;
typedef value_type &reference;
typedef value_type *pointer;
/// \brief Default construct iterator.
ELFEntityIterator() : EntitySize(0), Current(0) {}
ELFEntityIterator(uint64_t EntSize, const char *Start)
: EntitySize(EntSize)
, Current(Start) {}
reference operator *() {
assert(Current && "Attempted to dereference an invalid iterator!");
return *reinterpret_cast<pointer>(Current);
}
pointer operator ->() {
assert(Current && "Attempted to dereference an invalid iterator!");
return reinterpret_cast<pointer>(Current);
}
bool operator ==(const ELFEntityIterator &Other) {
return Current == Other.Current;
}
bool operator !=(const ELFEntityIterator &Other) {
return !(*this == Other);
}
ELFEntityIterator &operator ++() {
assert(Current && "Attempted to increment an invalid iterator!");
Current += EntitySize;
return *this;
}
ELFEntityIterator operator ++(int) {
ELFEntityIterator Tmp = *this;
++*this;
return Tmp;
}
private:
const uint64_t EntitySize;
const char *Current;
};
private:
// Records for each version index the corresponding Verdef or Vernaux entry.
// This is filled the first time LoadVersionMap() is called.
class VersionMapEntry : public PointerIntPair<const void*, 1> {
public:
// If the integer is 0, this is an Elf_Verdef*.
// If the integer is 1, this is an Elf_Vernaux*.
VersionMapEntry() : PointerIntPair<const void*, 1>(NULL, 0) { }
VersionMapEntry(const Elf_Verdef *verdef)
: PointerIntPair<const void*, 1>(verdef, 0) { }
VersionMapEntry(const Elf_Vernaux *vernaux)
: PointerIntPair<const void*, 1>(vernaux, 1) { }
bool isNull() const { return getPointer() == NULL; }
bool isVerdef() const { return !isNull() && getInt() == 0; }
bool isVernaux() const { return !isNull() && getInt() == 1; }
const Elf_Verdef *getVerdef() const {
return isVerdef() ? (const Elf_Verdef*)getPointer() : NULL;
}
const Elf_Vernaux *getVernaux() const {
return isVernaux() ? (const Elf_Vernaux*)getPointer() : NULL;
}
};
mutable SmallVector<VersionMapEntry, 16> VersionMap;
void LoadVersionDefs(const Elf_Shdr *sec) const;
void LoadVersionNeeds(const Elf_Shdr *ec) const;
void LoadVersionMap() const;
/// @brief Map sections to an array of relocation sections that reference
/// them sorted by section index.
RelocMap_t SectionRelocMap;
/// @brief Get the relocation section that contains \a Rel.
const Elf_Shdr *getRelSection(DataRefImpl Rel) const {
return getSection(Rel.w.b);
}
bool isRelocationHasAddend(DataRefImpl Rel) const;
template<typename T>
const T *getEntry(uint16_t Section, uint32_t Entry) const;
template<typename T>
const T *getEntry(const Elf_Shdr *Section, uint32_t Entry) const;
const Elf_Shdr *getSection(DataRefImpl index) const;
const Elf_Shdr *getSection(uint32_t index) const;
const Elf_Rel *getRel(DataRefImpl Rel) const;
const Elf_Rela *getRela(DataRefImpl Rela) const;
const char *getString(uint32_t section, uint32_t offset) const;
const char *getString(const Elf_Shdr *section, uint32_t offset) const;
error_code getSymbolVersion(const Elf_Shdr *section,
const Elf_Sym *Symb,
StringRef &Version,
bool &IsDefault) const;
void VerifyStrTab(const Elf_Shdr *sh) const;
protected:
const Elf_Sym *getSymbol(DataRefImpl Symb) const; // FIXME: Should be private?
void validateSymbol(DataRefImpl Symb) const;
public:
error_code getSymbolName(const Elf_Shdr *section,
const Elf_Sym *Symb,
StringRef &Res) const;
error_code getSectionName(const Elf_Shdr *section,
StringRef &Res) const;
const Elf_Dyn *getDyn(DataRefImpl DynData) const;
error_code getSymbolVersion(SymbolRef Symb, StringRef &Version,
bool &IsDefault) const;
uint64_t getSymbolIndex(const Elf_Sym *sym) const;
protected:
virtual error_code getSymbolNext(DataRefImpl Symb, SymbolRef &Res) const;
virtual error_code getSymbolName(DataRefImpl Symb, StringRef &Res) const;
virtual error_code getSymbolFileOffset(DataRefImpl Symb, uint64_t &Res) const;
virtual error_code getSymbolAddress(DataRefImpl Symb, uint64_t &Res) const;
virtual error_code getSymbolSize(DataRefImpl Symb, uint64_t &Res) const;
virtual error_code getSymbolNMTypeChar(DataRefImpl Symb, char &Res) const;
virtual error_code getSymbolFlags(DataRefImpl Symb, uint32_t &Res) const;
virtual error_code getSymbolType(DataRefImpl Symb, SymbolRef::Type &Res) const;
virtual error_code getSymbolSection(DataRefImpl Symb,
section_iterator &Res) const;
virtual error_code getSymbolValue(DataRefImpl Symb, uint64_t &Val) const;
friend class DynRefImpl<ELFT>;
virtual error_code getDynNext(DataRefImpl DynData, DynRef &Result) const;
virtual error_code getLibraryNext(DataRefImpl Data, LibraryRef &Result) const;
virtual error_code getLibraryPath(DataRefImpl Data, StringRef &Res) const;
virtual error_code getSectionNext(DataRefImpl Sec, SectionRef &Res) const;
virtual error_code getSectionName(DataRefImpl Sec, StringRef &Res) const;
virtual error_code getSectionAddress(DataRefImpl Sec, uint64_t &Res) const;
virtual error_code getSectionSize(DataRefImpl Sec, uint64_t &Res) const;
virtual error_code getSectionContents(DataRefImpl Sec, StringRef &Res) const;
virtual error_code getSectionAlignment(DataRefImpl Sec, uint64_t &Res) const;
virtual error_code isSectionText(DataRefImpl Sec, bool &Res) const;
virtual error_code isSectionData(DataRefImpl Sec, bool &Res) const;
virtual error_code isSectionBSS(DataRefImpl Sec, bool &Res) const;
virtual error_code isSectionRequiredForExecution(DataRefImpl Sec,
bool &Res) const;
virtual error_code isSectionVirtual(DataRefImpl Sec, bool &Res) const;
virtual error_code isSectionZeroInit(DataRefImpl Sec, bool &Res) const;
virtual error_code isSectionReadOnlyData(DataRefImpl Sec, bool &Res) const;
virtual error_code sectionContainsSymbol(DataRefImpl Sec, DataRefImpl Symb,
bool &Result) const;
virtual relocation_iterator getSectionRelBegin(DataRefImpl Sec) const;
virtual relocation_iterator getSectionRelEnd(DataRefImpl Sec) const;
virtual error_code getRelocationNext(DataRefImpl Rel,
RelocationRef &Res) const;
virtual error_code getRelocationAddress(DataRefImpl Rel,
uint64_t &Res) const;
virtual error_code getRelocationOffset(DataRefImpl Rel,
uint64_t &Res) const;
virtual error_code getRelocationSymbol(DataRefImpl Rel,
SymbolRef &Res) const;
virtual error_code getRelocationType(DataRefImpl Rel,
uint64_t &Res) const;
virtual error_code getRelocationTypeName(DataRefImpl Rel,
SmallVectorImpl<char> &Result) const;
virtual error_code getRelocationAdditionalInfo(DataRefImpl Rel,
int64_t &Res) const;
virtual error_code getRelocationValueString(DataRefImpl Rel,
SmallVectorImpl<char> &Result) const;
public:
ELFObjectFile(MemoryBuffer *Object, error_code &ec);
virtual symbol_iterator begin_symbols() const;
virtual symbol_iterator end_symbols() const;
virtual symbol_iterator begin_dynamic_symbols() const;
virtual symbol_iterator end_dynamic_symbols() const;
virtual section_iterator begin_sections() const;
virtual section_iterator end_sections() const;
virtual library_iterator begin_libraries_needed() const;
virtual library_iterator end_libraries_needed() const;
virtual dyn_iterator begin_dynamic_table() const;
virtual dyn_iterator end_dynamic_table() const;
typedef ELFEntityIterator<const Elf_Rela> Elf_Rela_Iter;
typedef ELFEntityIterator<const Elf_Rel> Elf_Rel_Iter;
Elf_Rela_Iter beginELFRela(const Elf_Shdr *sec) const {
return Elf_Rela_Iter(sec->sh_entsize,
(const char *)(base() + sec->sh_offset));
}
Elf_Rela_Iter endELFRela(const Elf_Shdr *sec) const {
return Elf_Rela_Iter(sec->sh_entsize, (const char *)
(base() + sec->sh_offset + sec->sh_size));
}
Elf_Rel_Iter beginELFRel(const Elf_Shdr *sec) const {
return Elf_Rel_Iter(sec->sh_entsize,
(const char *)(base() + sec->sh_offset));
}
Elf_Rel_Iter endELFRel(const Elf_Shdr *sec) const {
return Elf_Rel_Iter(sec->sh_entsize, (const char *)
(base() + sec->sh_offset + sec->sh_size));
}
/// \brief Iterate over program header table.
typedef ELFEntityIterator<const Elf_Phdr> Elf_Phdr_Iter;
Elf_Phdr_Iter begin_program_headers() const {
return Elf_Phdr_Iter(Header->e_phentsize,
(const char*)base() + Header->e_phoff);
}
Elf_Phdr_Iter end_program_headers() const {
return Elf_Phdr_Iter(Header->e_phentsize,
(const char*)base() +
Header->e_phoff +
(Header->e_phnum * Header->e_phentsize));
}
virtual uint8_t getBytesInAddress() const;
virtual StringRef getFileFormatName() const;
virtual StringRef getObjectType() const { return "ELF"; }
virtual unsigned getArch() const;
virtual StringRef getLoadName() const;
virtual error_code getSectionContents(const Elf_Shdr *sec,
StringRef &Res) const;
uint64_t getNumSections() const;
uint64_t getStringTableIndex() const;
ELF::Elf64_Word getSymbolTableIndex(const Elf_Sym *symb) const;
const Elf_Shdr *getSection(const Elf_Sym *symb) const;
const Elf_Shdr *getElfSection(section_iterator &It) const;
const Elf_Sym *getElfSymbol(symbol_iterator &It) const;
const Elf_Sym *getElfSymbol(uint32_t index) const;
// Methods for type inquiry through isa, cast, and dyn_cast
bool isDyldType() const { return isDyldELFObject; }
static inline bool classof(const Binary *v) {
return v->getType() == getELFType(ELFT::TargetEndianness == support::little,
ELFT::Is64Bits);
}
};
// Iterate through the version definitions, and place each Elf_Verdef
// in the VersionMap according to its index.
template<class ELFT>
void ELFObjectFile<ELFT>::LoadVersionDefs(const Elf_Shdr *sec) const {
unsigned vd_size = sec->sh_size; // Size of section in bytes
unsigned vd_count = sec->sh_info; // Number of Verdef entries
const char *sec_start = (const char*)base() + sec->sh_offset;
const char *sec_end = sec_start + vd_size;
// The first Verdef entry is at the start of the section.
const char *p = sec_start;
for (unsigned i = 0; i < vd_count; i++) {
if (p + sizeof(Elf_Verdef) > sec_end)
report_fatal_error("Section ended unexpectedly while scanning "
"version definitions.");
const Elf_Verdef *vd = reinterpret_cast<const Elf_Verdef *>(p);
if (vd->vd_version != ELF::VER_DEF_CURRENT)
report_fatal_error("Unexpected verdef version");
size_t index = vd->vd_ndx & ELF::VERSYM_VERSION;
if (index >= VersionMap.size())
VersionMap.resize(index+1);
VersionMap[index] = VersionMapEntry(vd);
p += vd->vd_next;
}
}
// Iterate through the versions needed section, and place each Elf_Vernaux
// in the VersionMap according to its index.
template<class ELFT>
void ELFObjectFile<ELFT>::LoadVersionNeeds(const Elf_Shdr *sec) const {
unsigned vn_size = sec->sh_size; // Size of section in bytes
unsigned vn_count = sec->sh_info; // Number of Verneed entries
const char *sec_start = (const char*)base() + sec->sh_offset;
const char *sec_end = sec_start + vn_size;
// The first Verneed entry is at the start of the section.
const char *p = sec_start;
for (unsigned i = 0; i < vn_count; i++) {
if (p + sizeof(Elf_Verneed) > sec_end)
report_fatal_error("Section ended unexpectedly while scanning "
"version needed records.");
const Elf_Verneed *vn = reinterpret_cast<const Elf_Verneed *>(p);
if (vn->vn_version != ELF::VER_NEED_CURRENT)
report_fatal_error("Unexpected verneed version");
// Iterate through the Vernaux entries
const char *paux = p + vn->vn_aux;
for (unsigned j = 0; j < vn->vn_cnt; j++) {
if (paux + sizeof(Elf_Vernaux) > sec_end)
report_fatal_error("Section ended unexpected while scanning auxiliary "
"version needed records.");
const Elf_Vernaux *vna = reinterpret_cast<const Elf_Vernaux *>(paux);
size_t index = vna->vna_other & ELF::VERSYM_VERSION;
if (index >= VersionMap.size())
VersionMap.resize(index+1);
VersionMap[index] = VersionMapEntry(vna);
paux += vna->vna_next;
}
p += vn->vn_next;
}
}
template<class ELFT>
void ELFObjectFile<ELFT>::LoadVersionMap() const {
// If there is no dynamic symtab or version table, there is nothing to do.
if (SymbolTableSections[0] == NULL || dot_gnu_version_sec == NULL)
return;
// Has the VersionMap already been loaded?
if (VersionMap.size() > 0)
return;
// The first two version indexes are reserved.
// Index 0 is LOCAL, index 1 is GLOBAL.
VersionMap.push_back(VersionMapEntry());
VersionMap.push_back(VersionMapEntry());
if (dot_gnu_version_d_sec)
LoadVersionDefs(dot_gnu_version_d_sec);
if (dot_gnu_version_r_sec)
LoadVersionNeeds(dot_gnu_version_r_sec);
}
template<class ELFT>
void ELFObjectFile<ELFT>::validateSymbol(DataRefImpl Symb) const {
const Elf_Sym *symb = getSymbol(Symb);
const Elf_Shdr *SymbolTableSection = SymbolTableSections[Symb.d.b];
// FIXME: We really need to do proper error handling in the case of an invalid
// input file. Because we don't use exceptions, I think we'll just pass
// an error object around.
if (!( symb
&& SymbolTableSection
&& symb >= (const Elf_Sym*)(base()
+ SymbolTableSection->sh_offset)
&& symb < (const Elf_Sym*)(base()
+ SymbolTableSection->sh_offset
+ SymbolTableSection->sh_size)))
// FIXME: Proper error handling.
report_fatal_error("Symb must point to a valid symbol!");
}
template<class ELFT>
error_code ELFObjectFile<ELFT>::getSymbolNext(DataRefImpl Symb,
SymbolRef &Result) const {
validateSymbol(Symb);
const Elf_Shdr *SymbolTableSection = SymbolTableSections[Symb.d.b];
++Symb.d.a;
// Check to see if we are at the end of this symbol table.
if (Symb.d.a >= SymbolTableSection->getEntityCount()) {
// We are at the end. If there are other symbol tables, jump to them.
// If the symbol table is .dynsym, we are iterating dynamic symbols,
// and there is only one table of these.
if (Symb.d.b != 0) {
++Symb.d.b;
Symb.d.a = 1; // The 0th symbol in ELF is fake.
}
// Otherwise return the terminator.
if (Symb.d.b == 0 || Symb.d.b >= SymbolTableSections.size()) {
Symb.d.a = std::numeric_limits<uint32_t>::max();
Symb.d.b = std::numeric_limits<uint32_t>::max();
}
}
Result = SymbolRef(Symb, this);
return object_error::success;
}
template<class ELFT>
error_code ELFObjectFile<ELFT>::getSymbolName(DataRefImpl Symb,
StringRef &Result) const {
validateSymbol(Symb);
const Elf_Sym *symb = getSymbol(Symb);
return getSymbolName(SymbolTableSections[Symb.d.b], symb, Result);
}
template<class ELFT>
error_code ELFObjectFile<ELFT>::getSymbolVersion(SymbolRef SymRef,
StringRef &Version,
bool &IsDefault) const {
DataRefImpl Symb = SymRef.getRawDataRefImpl();
validateSymbol(Symb);
const Elf_Sym *symb = getSymbol(Symb);
return getSymbolVersion(SymbolTableSections[Symb.d.b], symb,
Version, IsDefault);
}
template<class ELFT>
ELF::Elf64_Word ELFObjectFile<ELFT>
::getSymbolTableIndex(const Elf_Sym *symb) const {
if (symb->st_shndx == ELF::SHN_XINDEX)
return ExtendedSymbolTable.lookup(symb);
return symb->st_shndx;
}
template<class ELFT>
const typename ELFObjectFile<ELFT>::Elf_Shdr *
ELFObjectFile<ELFT>::getSection(const Elf_Sym *symb) const {
if (symb->st_shndx == ELF::SHN_XINDEX)
return getSection(ExtendedSymbolTable.lookup(symb));
if (symb->st_shndx >= ELF::SHN_LORESERVE)
return 0;
return getSection(symb->st_shndx);
}
template<class ELFT>
const typename ELFObjectFile<ELFT>::Elf_Shdr *
ELFObjectFile<ELFT>::getElfSection(section_iterator &It) const {
llvm::object::DataRefImpl ShdrRef = It->getRawDataRefImpl();
return reinterpret_cast<const Elf_Shdr *>(ShdrRef.p);
}
template<class ELFT>
const typename ELFObjectFile<ELFT>::Elf_Sym *
ELFObjectFile<ELFT>::getElfSymbol(symbol_iterator &It) const {
return getSymbol(It->getRawDataRefImpl());
}
template<class ELFT>
const typename ELFObjectFile<ELFT>::Elf_Sym *
ELFObjectFile<ELFT>::getElfSymbol(uint32_t index) const {
DataRefImpl SymbolData;
SymbolData.d.a = index;
SymbolData.d.b = 1;
return getSymbol(SymbolData);
}
template<class ELFT>
error_code ELFObjectFile<ELFT>::getSymbolFileOffset(DataRefImpl Symb,
uint64_t &Result) const {
validateSymbol(Symb);
const Elf_Sym *symb = getSymbol(Symb);
const Elf_Shdr *Section;
switch (getSymbolTableIndex(symb)) {
case ELF::SHN_COMMON:
// Unintialized symbols have no offset in the object file
case ELF::SHN_UNDEF:
Result = UnknownAddressOrSize;
return object_error::success;
case ELF::SHN_ABS:
Result = symb->st_value;
return object_error::success;
default: Section = getSection(symb);
}
switch (symb->getType()) {
case ELF::STT_SECTION:
Result = Section ? Section->sh_offset : UnknownAddressOrSize;
return object_error::success;
case ELF::STT_FUNC:
case ELF::STT_OBJECT:
case ELF::STT_NOTYPE:
Result = symb->st_value +
(Section ? Section->sh_offset : 0);
return object_error::success;
default:
Result = UnknownAddressOrSize;
return object_error::success;
}
}
template<class ELFT>
error_code ELFObjectFile<ELFT>::getSymbolAddress(DataRefImpl Symb,
uint64_t &Result) const {
validateSymbol(Symb);
const Elf_Sym *symb = getSymbol(Symb);
const Elf_Shdr *Section;
switch (getSymbolTableIndex(symb)) {
case ELF::SHN_COMMON:
case ELF::SHN_UNDEF:
Result = UnknownAddressOrSize;
return object_error::success;
case ELF::SHN_ABS:
Result = symb->st_value;
return object_error::success;
default: Section = getSection(symb);
}
switch (symb->getType()) {
case ELF::STT_SECTION:
Result = Section ? Section->sh_addr : UnknownAddressOrSize;
return object_error::success;
case ELF::STT_FUNC:
case ELF::STT_OBJECT:
case ELF::STT_NOTYPE:
bool IsRelocatable;
switch(Header->e_type) {
case ELF::ET_EXEC:
case ELF::ET_DYN:
IsRelocatable = false;
break;
default:
IsRelocatable = true;
}
Result = symb->st_value;
if (IsRelocatable && Section != 0)
Result += Section->sh_addr;
return object_error::success;
default:
Result = UnknownAddressOrSize;
return object_error::success;
}
}
template<class ELFT>
error_code ELFObjectFile<ELFT>::getSymbolSize(DataRefImpl Symb,
uint64_t &Result) const {
validateSymbol(Symb);
const Elf_Sym *symb = getSymbol(Symb);
if (symb->st_size == 0)
Result = UnknownAddressOrSize;
Result = symb->st_size;
return object_error::success;
}
template<class ELFT>
error_code ELFObjectFile<ELFT>::getSymbolNMTypeChar(DataRefImpl Symb,
char &Result) const {
validateSymbol(Symb);
const Elf_Sym *symb = getSymbol(Symb);
const Elf_Shdr *Section = getSection(symb);
char ret = '?';
if (Section) {
switch (Section->sh_type) {
case ELF::SHT_PROGBITS:
case ELF::SHT_DYNAMIC:
switch (Section->sh_flags) {
case (ELF::SHF_ALLOC | ELF::SHF_EXECINSTR):
ret = 't'; break;
case (ELF::SHF_ALLOC | ELF::SHF_WRITE):
ret = 'd'; break;
case ELF::SHF_ALLOC:
case (ELF::SHF_ALLOC | ELF::SHF_MERGE):
case (ELF::SHF_ALLOC | ELF::SHF_MERGE | ELF::SHF_STRINGS):
ret = 'r'; break;
}
break;
case ELF::SHT_NOBITS: ret = 'b';
}
}
switch (getSymbolTableIndex(symb)) {
case ELF::SHN_UNDEF:
if (ret == '?')
ret = 'U';
break;
case ELF::SHN_ABS: ret = 'a'; break;
case ELF::SHN_COMMON: ret = 'c'; break;
}
switch (symb->getBinding()) {
case ELF::STB_GLOBAL: ret = ::toupper(ret); break;
case ELF::STB_WEAK:
if (getSymbolTableIndex(symb) == ELF::SHN_UNDEF)
ret = 'w';
else
if (symb->getType() == ELF::STT_OBJECT)
ret = 'V';
else
ret = 'W';
}
if (ret == '?' && symb->getType() == ELF::STT_SECTION) {
StringRef name;
if (error_code ec = getSymbolName(Symb, name))
return ec;
Result = StringSwitch<char>(name)
.StartsWith(".debug", 'N')
.StartsWith(".note", 'n')
.Default('?');
return object_error::success;
}
Result = ret;
return object_error::success;
}
template<class ELFT>
error_code ELFObjectFile<ELFT>::getSymbolType(DataRefImpl Symb,
SymbolRef::Type &Result) const {
validateSymbol(Symb);
const Elf_Sym *symb = getSymbol(Symb);
switch (symb->getType()) {
case ELF::STT_NOTYPE:
Result = SymbolRef::ST_Unknown;
break;
case ELF::STT_SECTION:
Result = SymbolRef::ST_Debug;
break;
case ELF::STT_FILE:
Result = SymbolRef::ST_File;
break;
case ELF::STT_FUNC:
Result = SymbolRef::ST_Function;
break;
case ELF::STT_OBJECT:
case ELF::STT_COMMON:
case ELF::STT_TLS:
Result = SymbolRef::ST_Data;
break;
default:
Result = SymbolRef::ST_Other;
break;
}
return object_error::success;
}
template<class ELFT>
error_code ELFObjectFile<ELFT>::getSymbolFlags(DataRefImpl Symb,
uint32_t &Result) const {
validateSymbol(Symb);
const Elf_Sym *symb = getSymbol(Symb);
Result = SymbolRef::SF_None;
if (symb->getBinding() != ELF::STB_LOCAL)
Result |= SymbolRef::SF_Global;
if (symb->getBinding() == ELF::STB_WEAK)
Result |= SymbolRef::SF_Weak;
if (symb->st_shndx == ELF::SHN_ABS)
Result |= SymbolRef::SF_Absolute;
if (symb->getType() == ELF::STT_FILE ||
symb->getType() == ELF::STT_SECTION)
Result |= SymbolRef::SF_FormatSpecific;
if (getSymbolTableIndex(symb) == ELF::SHN_UNDEF)
Result |= SymbolRef::SF_Undefined;
if (symb->getType() == ELF::STT_COMMON ||
getSymbolTableIndex(symb) == ELF::SHN_COMMON)
Result |= SymbolRef::SF_Common;
if (symb->getType() == ELF::STT_TLS)
Result |= SymbolRef::SF_ThreadLocal;
return object_error::success;
}
template<class ELFT>
error_code ELFObjectFile<ELFT>::getSymbolSection(DataRefImpl Symb,
section_iterator &Res) const {
validateSymbol(Symb);
const Elf_Sym *symb = getSymbol(Symb);
const Elf_Shdr *sec = getSection(symb);
if (!sec)
Res = end_sections();
else {
DataRefImpl Sec;
Sec.p = reinterpret_cast<intptr_t>(sec);
Res = section_iterator(SectionRef(Sec, this));
}
return object_error::success;
}
template<class ELFT>
error_code ELFObjectFile<ELFT>::getSymbolValue(DataRefImpl Symb,
uint64_t &Val) const {
validateSymbol(Symb);
const Elf_Sym *symb = getSymbol(Symb);
Val = symb->st_value;
return object_error::success;
}
template<class ELFT>
error_code ELFObjectFile<ELFT>::getSectionNext(DataRefImpl Sec,
SectionRef &Result) const {
const uint8_t *sec = reinterpret_cast<const uint8_t *>(Sec.p);
sec += Header->e_shentsize;
Sec.p = reinterpret_cast<intptr_t>(sec);
Result = SectionRef(Sec, this);
return object_error::success;
}
template<class ELFT>
error_code ELFObjectFile<ELFT>::getSectionName(DataRefImpl Sec,
StringRef &Result) const {
const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
Result = StringRef(getString(dot_shstrtab_sec, sec->sh_name));
return object_error::success;
}
template<class ELFT>
error_code ELFObjectFile<ELFT>::getSectionAddress(DataRefImpl Sec,
uint64_t &Result) const {
const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
Result = sec->sh_addr;
return object_error::success;
}
template<class ELFT>
error_code ELFObjectFile<ELFT>::getSectionSize(DataRefImpl Sec,
uint64_t &Result) const {
const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
Result = sec->sh_size;
return object_error::success;
}
template<class ELFT>
error_code ELFObjectFile<ELFT>::getSectionContents(DataRefImpl Sec,
StringRef &Result) const {
const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
const char *start = (const char*)base() + sec->sh_offset;
Result = StringRef(start, sec->sh_size);
return object_error::success;
}
template<class ELFT>
error_code ELFObjectFile<ELFT>::getSectionContents(const Elf_Shdr *Sec,
StringRef &Result) const {
const char *start = (const char*)base() + Sec->sh_offset;
Result = StringRef(start, Sec->sh_size);
return object_error::success;
}
template<class ELFT>
error_code ELFObjectFile<ELFT>::getSectionAlignment(DataRefImpl Sec,
uint64_t &Result) const {
const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
Result = sec->sh_addralign;
return object_error::success;
}
template<class ELFT>
error_code ELFObjectFile<ELFT>::isSectionText(DataRefImpl Sec,
bool &Result) const {
const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
if (sec->sh_flags & ELF::SHF_EXECINSTR)
Result = true;
else
Result = false;
return object_error::success;
}
template<class ELFT>
error_code ELFObjectFile<ELFT>::isSectionData(DataRefImpl Sec,
bool &Result) const {
const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
if (sec->sh_flags & (ELF::SHF_ALLOC | ELF::SHF_WRITE)
&& sec->sh_type == ELF::SHT_PROGBITS)
Result = true;
else
Result = false;
return object_error::success;
}
template<class ELFT>
error_code ELFObjectFile<ELFT>::isSectionBSS(DataRefImpl Sec,
bool &Result) const {
const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
if (sec->sh_flags & (ELF::SHF_ALLOC | ELF::SHF_WRITE)
&& sec->sh_type == ELF::SHT_NOBITS)
Result = true;
else
Result = false;
return object_error::success;
}
template<class ELFT>
error_code ELFObjectFile<ELFT>::isSectionRequiredForExecution(
DataRefImpl Sec, bool &Result) const {
const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
if (sec->sh_flags & ELF::SHF_ALLOC)
Result = true;
else
Result = false;
return object_error::success;
}
template<class ELFT>
error_code ELFObjectFile<ELFT>::isSectionVirtual(DataRefImpl Sec,
bool &Result) const {
const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
if (sec->sh_type == ELF::SHT_NOBITS)
Result = true;
else
Result = false;
return object_error::success;
}
template<class ELFT>
error_code ELFObjectFile<ELFT>::isSectionZeroInit(DataRefImpl Sec,
bool &Result) const {
const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
// For ELF, all zero-init sections are virtual (that is, they occupy no space
// in the object image) and vice versa.
Result = sec->sh_type == ELF::SHT_NOBITS;
return object_error::success;
}
template<class ELFT>
error_code ELFObjectFile<ELFT>::isSectionReadOnlyData(DataRefImpl Sec,
bool &Result) const {
const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
if (sec->sh_flags & ELF::SHF_WRITE || sec->sh_flags & ELF::SHF_EXECINSTR)
Result = false;
else
Result = true;
return object_error::success;
}
template<class ELFT>
error_code ELFObjectFile<ELFT>::sectionContainsSymbol(DataRefImpl Sec,
DataRefImpl Symb,
bool &Result) const {
// FIXME: Unimplemented.
Result = false;
return object_error::success;
}
template<class ELFT>
relocation_iterator
ELFObjectFile<ELFT>::getSectionRelBegin(DataRefImpl Sec) const {
DataRefImpl RelData;
const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
typename RelocMap_t::const_iterator ittr = SectionRelocMap.find(sec);
if (sec != 0 && ittr != SectionRelocMap.end()) {
RelData.w.a = getSection(ittr->second[0])->sh_info;
RelData.w.b = ittr->second[0];
RelData.w.c = 0;
}
return relocation_iterator(RelocationRef(RelData, this));
}
template<class ELFT>
relocation_iterator
ELFObjectFile<ELFT>::getSectionRelEnd(DataRefImpl Sec) const {
DataRefImpl RelData;
const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
typename RelocMap_t::const_iterator ittr = SectionRelocMap.find(sec);
if (sec != 0 && ittr != SectionRelocMap.end()) {
// Get the index of the last relocation section for this section.
std::size_t relocsecindex = ittr->second[ittr->second.size() - 1];
const Elf_Shdr *relocsec = getSection(relocsecindex);
RelData.w.a = relocsec->sh_info;
RelData.w.b = relocsecindex;
RelData.w.c = relocsec->sh_size / relocsec->sh_entsize;
}
return relocation_iterator(RelocationRef(RelData, this));
}
// Relocations
template<class ELFT>
error_code ELFObjectFile<ELFT>::getRelocationNext(DataRefImpl Rel,
RelocationRef &Result) const {
++Rel.w.c;
const Elf_Shdr *relocsec = getSection(Rel.w.b);
if (Rel.w.c >= (relocsec->sh_size / relocsec->sh_entsize)) {
// We have reached the end of the relocations for this section. See if there
// is another relocation section.
typename RelocMap_t::mapped_type relocseclist =
SectionRelocMap.lookup(getSection(Rel.w.a));
// Do a binary search for the current reloc section index (which must be
// present). Then get the next one.
typename RelocMap_t::mapped_type::const_iterator loc =
std::lower_bound(relocseclist.begin(), relocseclist.end(), Rel.w.b);
++loc;
// If there is no next one, don't do anything. The ++Rel.w.c above sets Rel
// to the end iterator.
if (loc != relocseclist.end()) {
Rel.w.b = *loc;
Rel.w.a = 0;
}
}
Result = RelocationRef(Rel, this);
return object_error::success;
}
template<class ELFT>
error_code ELFObjectFile<ELFT>::getRelocationSymbol(DataRefImpl Rel,
SymbolRef &Result) const {
uint32_t symbolIdx;
const Elf_Shdr *sec = getSection(Rel.w.b);
switch (sec->sh_type) {
default :
report_fatal_error("Invalid section type in Rel!");
case ELF::SHT_REL : {
symbolIdx = getRel(Rel)->getSymbol();
break;
}
case ELF::SHT_RELA : {
symbolIdx = getRela(Rel)->getSymbol();
break;
}
}
DataRefImpl SymbolData;
IndexMap_t::const_iterator it = SymbolTableSectionsIndexMap.find(sec->sh_link);
if (it == SymbolTableSectionsIndexMap.end())
report_fatal_error("Relocation symbol table not found!");
SymbolData.d.a = symbolIdx;
SymbolData.d.b = it->second;
Result = SymbolRef(SymbolData, this);
return object_error::success;
}
template<class ELFT>
error_code ELFObjectFile<ELFT>::getRelocationAddress(DataRefImpl Rel,
uint64_t &Result) const {
uint64_t offset;
const Elf_Shdr *sec = getSection(Rel.w.b);
switch (sec->sh_type) {
default :
report_fatal_error("Invalid section type in Rel!");
case ELF::SHT_REL : {
offset = getRel(Rel)->r_offset;
break;
}
case ELF::SHT_RELA : {
offset = getRela(Rel)->r_offset;
break;
}
}
Result = offset;
return object_error::success;
}
template<class ELFT>
error_code ELFObjectFile<ELFT>::getRelocationOffset(DataRefImpl Rel,
uint64_t &Result) const {
uint64_t offset;
const Elf_Shdr *sec = getSection(Rel.w.b);
switch (sec->sh_type) {
default :
report_fatal_error("Invalid section type in Rel!");
case ELF::SHT_REL : {
offset = getRel(Rel)->r_offset;
break;
}
case ELF::SHT_RELA : {
offset = getRela(Rel)->r_offset;
break;
}
}
Result = offset - sec->sh_addr;
return object_error::success;
}
template<class ELFT>
error_code ELFObjectFile<ELFT>::getRelocationType(DataRefImpl Rel,
uint64_t &Result) const {
const Elf_Shdr *sec = getSection(Rel.w.b);
switch (sec->sh_type) {
default :
report_fatal_error("Invalid section type in Rel!");
case ELF::SHT_REL : {
Result = getRel(Rel)->getType();
break;
}
case ELF::SHT_RELA : {
Result = getRela(Rel)->getType();
break;
}
}
return object_error::success;
}
#define LLVM_ELF_SWITCH_RELOC_TYPE_NAME(enum) \
case ELF::enum: res = #enum; break;
template<class ELFT>
error_code ELFObjectFile<ELFT>::getRelocationTypeName(
DataRefImpl Rel, SmallVectorImpl<char> &Result) const {
const Elf_Shdr *sec = getSection(Rel.w.b);
uint32_t type;
StringRef res;
switch (sec->sh_type) {
default :
return object_error::parse_failed;
case ELF::SHT_REL : {
type = getRel(Rel)->getType();
break;
}
case ELF::SHT_RELA : {
type = getRela(Rel)->getType();
break;
}
}
switch (Header->e_machine) {
case ELF::EM_X86_64:
switch (type) {
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_NONE);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_64);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_PC32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOT32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_PLT32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_COPY);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GLOB_DAT);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_JUMP_SLOT);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_RELATIVE);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOTPCREL);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_32S);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_PC16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_8);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_PC8);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_DTPMOD64);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_DTPOFF64);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_TPOFF64);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_TLSGD);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_TLSLD);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_DTPOFF32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOTTPOFF);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_TPOFF32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_PC64);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOTOFF64);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOTPC32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_SIZE32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_SIZE64);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOTPC32_TLSDESC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_TLSDESC_CALL);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_TLSDESC);
default:
res = "Unknown";
}
break;
case ELF::EM_386:
switch (type) {
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_NONE);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_PC32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_GOT32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_PLT32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_COPY);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_GLOB_DAT);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_JUMP_SLOT);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_RELATIVE);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_GOTOFF);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_GOTPC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_32PLT);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_TPOFF);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_IE);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GOTIE);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LE);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GD);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LDM);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_PC16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_8);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_PC8);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GD_32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GD_PUSH);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GD_CALL);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GD_POP);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LDM_32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LDM_PUSH);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LDM_CALL);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LDM_POP);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LDO_32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_IE_32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LE_32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_DTPMOD32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_DTPOFF32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_TPOFF32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GOTDESC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_DESC_CALL);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_DESC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_IRELATIVE);
default:
res = "Unknown";
}
break;
case ELF::EM_AARCH64:
switch (type) {
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_NONE);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_ABS64);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_ABS32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_ABS16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_PREL64);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_PREL32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_PREL16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_UABS_G0);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_UABS_G0_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_UABS_G1);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_UABS_G1_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_UABS_G2);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_UABS_G2_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_UABS_G3);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_SABS_G0);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_SABS_G1);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_SABS_G2);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_LD_PREL_LO19);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_ADR_PREL_LO21);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_ADR_PREL_PG_HI21);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_ADD_ABS_LO12_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_LDST8_ABS_LO12_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TSTBR14);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_CONDBR19);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_JUMP26);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_CALL26);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_LDST16_ABS_LO12_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_LDST32_ABS_LO12_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_LDST64_ABS_LO12_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_LDST128_ABS_LO12_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_ADR_GOT_PAGE);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_LD64_GOT_LO12_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_MOVW_DTPREL_G2);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_MOVW_DTPREL_G1);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_MOVW_DTPREL_G1_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_MOVW_DTPREL_G0);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_ADD_DTPREL_HI12);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_ADD_DTPREL_LO12);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_LDST8_DTPREL_LO12);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_LDST16_DTPREL_LO12);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_LDST32_DTPREL_LO12);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_LDST64_DTPREL_LO12);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSIE_MOVW_GOTTPREL_G1);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_MOVW_TPREL_G2);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_MOVW_TPREL_G1);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_MOVW_TPREL_G1_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_MOVW_TPREL_G0);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_MOVW_TPREL_G0_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_ADD_TPREL_HI12);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_ADD_TPREL_LO12);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_ADD_TPREL_LO12_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_LDST8_TPREL_LO12);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_LDST16_TPREL_LO12);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_LDST32_TPREL_LO12);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_LDST64_TPREL_LO12);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSDESC_ADR_PAGE);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSDESC_LD64_LO12_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSDESC_ADD_LO12_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSDESC_CALL);
default:
res = "Unknown";
}
break;
case ELF::EM_ARM:
switch (type) {
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_NONE);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PC24);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ABS32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_REL32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDR_PC_G0);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ABS16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ABS12);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_ABS5);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ABS8);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_SBREL32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_CALL);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_PC8);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_BREL_ADJ);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_DESC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_SWI8);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_XPC25);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_XPC22);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_DTPMOD32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_DTPOFF32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_TPOFF32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_COPY);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GLOB_DAT);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_JUMP_SLOT);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_RELATIVE);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GOTOFF32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_BASE_PREL);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GOT_BREL);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PLT32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_CALL);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_JUMP24);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_JUMP24);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_BASE_ABS);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PCREL_7_0);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PCREL_15_8);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PCREL_23_15);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDR_SBREL_11_0_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_SBREL_19_12_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_SBREL_27_20_CK);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TARGET1);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_SBREL31);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_V4BX);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TARGET2);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PREL31);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_MOVW_ABS_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_MOVT_ABS);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_MOVW_PREL_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_MOVT_PREL);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_MOVW_ABS_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_MOVT_ABS);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_MOVW_PREL_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_MOVT_PREL);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_JUMP19);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_JUMP6);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_ALU_PREL_11_0);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_PC12);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ABS32_NOI);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_REL32_NOI);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PC_G0_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PC_G0);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PC_G1_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PC_G1);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PC_G2);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDR_PC_G1);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDR_PC_G2);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDRS_PC_G0);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDRS_PC_G1);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDRS_PC_G2);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDC_PC_G0);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDC_PC_G1);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDC_PC_G2);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_SB_G0_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_SB_G0);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_SB_G1_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_SB_G1);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_SB_G2);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDR_SB_G0);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDR_SB_G1);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDR_SB_G2);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDRS_SB_G0);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDRS_SB_G1);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDRS_SB_G2);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDC_SB_G0);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDC_SB_G1);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDC_SB_G2);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_MOVW_BREL_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_MOVT_BREL);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_MOVW_BREL);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_MOVW_BREL_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_MOVT_BREL);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_MOVW_BREL);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_GOTDESC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_CALL);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_DESCSEQ);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_TLS_CALL);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PLT32_ABS);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GOT_ABS);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GOT_PREL);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GOT_BREL12);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GOTOFF12);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GOTRELAX);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GNU_VTENTRY);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GNU_VTINHERIT);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_JUMP11);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_JUMP8);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_GD32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_LDM32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_LDO32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_IE32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_LE32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_LDO12);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_LE12);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_IE12GP);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_0);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_1);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_2);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_3);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_4);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_5);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_6);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_7);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_8);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_9);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_10);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_11);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_12);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_13);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_14);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_15);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ME_TOO);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_TLS_DESCSEQ16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_TLS_DESCSEQ32);
default:
res = "Unknown";
}
break;
case ELF::EM_HEXAGON:
switch (type) {
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_NONE);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B22_PCREL);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B15_PCREL);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B7_PCREL);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_LO16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_HI16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_8);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GPREL16_0);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GPREL16_1);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GPREL16_2);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GPREL16_3);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_HL16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B13_PCREL);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B9_PCREL);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B32_PCREL_X);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_32_6_X);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B22_PCREL_X);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B15_PCREL_X);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B13_PCREL_X);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B9_PCREL_X);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B7_PCREL_X);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_16_X);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_12_X);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_11_X);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_10_X);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_9_X);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_8_X);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_7_X);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_6_X);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_32_PCREL);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_COPY);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GLOB_DAT);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_JMP_SLOT);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_RELATIVE);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_PLT_B22_PCREL);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOTREL_LO16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOTREL_HI16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOTREL_32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOT_LO16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOT_HI16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOT_32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOT_16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPMOD_32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPREL_LO16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPREL_HI16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPREL_32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPREL_16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_PLT_B22_PCREL);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_GOT_LO16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_GOT_HI16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_GOT_32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_GOT_16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_LO16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_HI16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_GOT_LO16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_GOT_HI16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_GOT_32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_GOT_16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_TPREL_LO16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_TPREL_HI16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_TPREL_32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_TPREL_16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_6_PCREL_X);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOTREL_32_6_X);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOTREL_16_X);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOTREL_11_X);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOT_32_6_X);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOT_16_X);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOT_11_X);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPREL_32_6_X);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPREL_16_X);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPREL_11_X);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_GOT_32_6_X);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_GOT_16_X);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_GOT_11_X);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_32_6_X);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_16_X);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_GOT_32_6_X);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_GOT_16_X);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_GOT_11_X);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_TPREL_32_6_X);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_TPREL_16_X);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_TPREL_11_X);
default:
res = "Unknown";
}
break;
default:
res = "Unknown";
}
Result.append(res.begin(), res.end());
return object_error::success;
}
#undef LLVM_ELF_SWITCH_RELOC_TYPE_NAME
template<class ELFT>
error_code ELFObjectFile<ELFT>::getRelocationAdditionalInfo(
DataRefImpl Rel, int64_t &Result) const {
const Elf_Shdr *sec = getSection(Rel.w.b);
switch (sec->sh_type) {
default :
report_fatal_error("Invalid section type in Rel!");
case ELF::SHT_REL : {
Result = 0;
return object_error::success;
}
case ELF::SHT_RELA : {
Result = getRela(Rel)->r_addend;
return object_error::success;
}
}
}
template<class ELFT>
error_code ELFObjectFile<ELFT>::getRelocationValueString(
DataRefImpl Rel, SmallVectorImpl<char> &Result) const {
const Elf_Shdr *sec = getSection(Rel.w.b);
uint8_t type;
StringRef res;
int64_t addend = 0;
uint16_t symbol_index = 0;
switch (sec->sh_type) {
default:
return object_error::parse_failed;
case ELF::SHT_REL: {
type = getRel(Rel)->getType();
symbol_index = getRel(Rel)->getSymbol();
// TODO: Read implicit addend from section data.
break;
}
case ELF::SHT_RELA: {
type = getRela(Rel)->getType();
symbol_index = getRela(Rel)->getSymbol();
addend = getRela(Rel)->r_addend;
break;
}
}
const Elf_Sym *symb = getEntry<Elf_Sym>(sec->sh_link, symbol_index);
StringRef symname;
if (error_code ec = getSymbolName(getSection(sec->sh_link), symb, symname))
return ec;
switch (Header->e_machine) {
case ELF::EM_X86_64:
switch (type) {
case ELF::R_X86_64_PC8:
case ELF::R_X86_64_PC16:
case ELF::R_X86_64_PC32: {
std::string fmtbuf;
raw_string_ostream fmt(fmtbuf);
fmt << symname << (addend < 0 ? "" : "+") << addend << "-P";
fmt.flush();
Result.append(fmtbuf.begin(), fmtbuf.end());
}
break;
case ELF::R_X86_64_8:
case ELF::R_X86_64_16:
case ELF::R_X86_64_32:
case ELF::R_X86_64_32S:
case ELF::R_X86_64_64: {
std::string fmtbuf;
raw_string_ostream fmt(fmtbuf);
fmt << symname << (addend < 0 ? "" : "+") << addend;
fmt.flush();
Result.append(fmtbuf.begin(), fmtbuf.end());
}
break;
default:
res = "Unknown";
}
break;
case ELF::EM_AARCH64:
case ELF::EM_ARM:
case ELF::EM_HEXAGON:
res = symname;
break;
default:
res = "Unknown";
}
if (Result.empty())
Result.append(res.begin(), res.end());
return object_error::success;
}
// Verify that the last byte in the string table in a null.
template<class ELFT>
void ELFObjectFile<ELFT>::VerifyStrTab(const Elf_Shdr *sh) const {
const char *strtab = (const char*)base() + sh->sh_offset;
if (strtab[sh->sh_size - 1] != 0)
// FIXME: Proper error handling.
report_fatal_error("String table must end with a null terminator!");
}
template<class ELFT>
ELFObjectFile<ELFT>::ELFObjectFile(MemoryBuffer *Object, error_code &ec)
: ObjectFile(getELFType(
static_cast<endianness>(ELFT::TargetEndianness) == support::little,
ELFT::Is64Bits),
Object,
ec)
, isDyldELFObject(false)
, SectionHeaderTable(0)
, dot_shstrtab_sec(0)
, dot_strtab_sec(0)
, dot_dynstr_sec(0)
, dot_dynamic_sec(0)
, dot_gnu_version_sec(0)
, dot_gnu_version_r_sec(0)
, dot_gnu_version_d_sec(0)
, dt_soname(0)
{
const uint64_t FileSize = Data->getBufferSize();
if (sizeof(Elf_Ehdr) > FileSize)
// FIXME: Proper error handling.
report_fatal_error("File too short!");
Header = reinterpret_cast<const Elf_Ehdr *>(base());
if (Header->e_shoff == 0)
return;
const uint64_t SectionTableOffset = Header->e_shoff;
if (SectionTableOffset + sizeof(Elf_Shdr) > FileSize)
// FIXME: Proper error handling.
report_fatal_error("Section header table goes past end of file!");
// The getNumSections() call below depends on SectionHeaderTable being set.
SectionHeaderTable =
reinterpret_cast<const Elf_Shdr *>(base() + SectionTableOffset);
const uint64_t SectionTableSize = getNumSections() * Header->e_shentsize;
if (SectionTableOffset + SectionTableSize > FileSize)
// FIXME: Proper error handling.
report_fatal_error("Section table goes past end of file!");
// To find the symbol tables we walk the section table to find SHT_SYMTAB.
const Elf_Shdr* SymbolTableSectionHeaderIndex = 0;
const Elf_Shdr* sh = SectionHeaderTable;
// Reserve SymbolTableSections[0] for .dynsym
SymbolTableSections.push_back(NULL);
for (uint64_t i = 0, e = getNumSections(); i != e; ++i) {
switch (sh->sh_type) {
case ELF::SHT_SYMTAB_SHNDX: {
if (SymbolTableSectionHeaderIndex)
// FIXME: Proper error handling.
report_fatal_error("More than one .symtab_shndx!");
SymbolTableSectionHeaderIndex = sh;
break;
}
case ELF::SHT_SYMTAB: {
SymbolTableSectionsIndexMap[i] = SymbolTableSections.size();
SymbolTableSections.push_back(sh);
break;
}
case ELF::SHT_DYNSYM: {
if (SymbolTableSections[0] != NULL)
// FIXME: Proper error handling.
report_fatal_error("More than one .dynsym!");
SymbolTableSectionsIndexMap[i] = 0;
SymbolTableSections[0] = sh;
break;
}
case ELF::SHT_REL:
case ELF::SHT_RELA: {
SectionRelocMap[getSection(sh->sh_info)].push_back(i);
break;
}
case ELF::SHT_DYNAMIC: {
if (dot_dynamic_sec != NULL)
// FIXME: Proper error handling.
report_fatal_error("More than one .dynamic!");
dot_dynamic_sec = sh;
break;
}
case ELF::SHT_GNU_versym: {
if (dot_gnu_version_sec != NULL)
// FIXME: Proper error handling.
report_fatal_error("More than one .gnu.version section!");
dot_gnu_version_sec = sh;
break;
}
case ELF::SHT_GNU_verdef: {
if (dot_gnu_version_d_sec != NULL)
// FIXME: Proper error handling.
report_fatal_error("More than one .gnu.version_d section!");
dot_gnu_version_d_sec = sh;
break;
}
case ELF::SHT_GNU_verneed: {
if (dot_gnu_version_r_sec != NULL)
// FIXME: Proper error handling.
report_fatal_error("More than one .gnu.version_r section!");
dot_gnu_version_r_sec = sh;
break;
}
}
++sh;
}
// Sort section relocation lists by index.
for (typename RelocMap_t::iterator i = SectionRelocMap.begin(),
e = SectionRelocMap.end(); i != e; ++i) {
std::sort(i->second.begin(), i->second.end());
}
// Get string table sections.
dot_shstrtab_sec = getSection(getStringTableIndex());
if (dot_shstrtab_sec) {
// Verify that the last byte in the string table in a null.
VerifyStrTab(dot_shstrtab_sec);
}
// Merge this into the above loop.
for (const char *i = reinterpret_cast<const char *>(SectionHeaderTable),
*e = i + getNumSections() * Header->e_shentsize;
i != e; i += Header->e_shentsize) {
const Elf_Shdr *sh = reinterpret_cast<const Elf_Shdr*>(i);
if (sh->sh_type == ELF::SHT_STRTAB) {
StringRef SectionName(getString(dot_shstrtab_sec, sh->sh_name));
if (SectionName == ".strtab") {
if (dot_strtab_sec != 0)
// FIXME: Proper error handling.
report_fatal_error("Already found section named .strtab!");
dot_strtab_sec = sh;
VerifyStrTab(dot_strtab_sec);
} else if (SectionName == ".dynstr") {
if (dot_dynstr_sec != 0)
// FIXME: Proper error handling.
report_fatal_error("Already found section named .dynstr!");
dot_dynstr_sec = sh;
VerifyStrTab(dot_dynstr_sec);
}
}
}
// Build symbol name side-mapping if there is one.
if (SymbolTableSectionHeaderIndex) {
const Elf_Word *ShndxTable = reinterpret_cast<const Elf_Word*>(base() +
SymbolTableSectionHeaderIndex->sh_offset);
error_code ec;
for (symbol_iterator si = begin_symbols(),
se = end_symbols(); si != se; si.increment(ec)) {
if (ec)
report_fatal_error("Fewer extended symbol table entries than symbols!");
if (*ShndxTable != ELF::SHN_UNDEF)
ExtendedSymbolTable[getSymbol(si->getRawDataRefImpl())] = *ShndxTable;
++ShndxTable;
}
}
}
// Get the symbol table index in the symtab section given a symbol
template<class ELFT>
uint64_t ELFObjectFile<ELFT>::getSymbolIndex(const Elf_Sym *Sym) const {
assert(SymbolTableSections.size() == 1 && "Only one symbol table supported!");
const Elf_Shdr *SymTab = *SymbolTableSections.begin();
uintptr_t SymLoc = uintptr_t(Sym);
uintptr_t SymTabLoc = uintptr_t(base() + SymTab->sh_offset);
assert(SymLoc > SymTabLoc && "Symbol not in symbol table!");
uint64_t SymOffset = SymLoc - SymTabLoc;
assert(SymOffset % SymTab->sh_entsize == 0 &&
"Symbol not multiple of symbol size!");
return SymOffset / SymTab->sh_entsize;
}
template<class ELFT>
symbol_iterator ELFObjectFile<ELFT>::begin_symbols() const {
DataRefImpl SymbolData;
if (SymbolTableSections.size() <= 1) {
SymbolData.d.a = std::numeric_limits<uint32_t>::max();
SymbolData.d.b = std::numeric_limits<uint32_t>::max();
} else {
SymbolData.d.a = 1; // The 0th symbol in ELF is fake.
SymbolData.d.b = 1; // The 0th table is .dynsym
}
return symbol_iterator(SymbolRef(SymbolData, this));
}
template<class ELFT>
symbol_iterator ELFObjectFile<ELFT>::end_symbols() const {
DataRefImpl SymbolData;
SymbolData.d.a = std::numeric_limits<uint32_t>::max();
SymbolData.d.b = std::numeric_limits<uint32_t>::max();
return symbol_iterator(SymbolRef(SymbolData, this));
}
template<class ELFT>
symbol_iterator ELFObjectFile<ELFT>::begin_dynamic_symbols() const {
DataRefImpl SymbolData;
if (SymbolTableSections[0] == NULL) {
SymbolData.d.a = std::numeric_limits<uint32_t>::max();
SymbolData.d.b = std::numeric_limits<uint32_t>::max();
} else {
SymbolData.d.a = 1; // The 0th symbol in ELF is fake.
SymbolData.d.b = 0; // The 0th table is .dynsym
}
return symbol_iterator(SymbolRef(SymbolData, this));
}
template<class ELFT>
symbol_iterator ELFObjectFile<ELFT>::end_dynamic_symbols() const {
DataRefImpl SymbolData;
SymbolData.d.a = std::numeric_limits<uint32_t>::max();
SymbolData.d.b = std::numeric_limits<uint32_t>::max();
return symbol_iterator(SymbolRef(SymbolData, this));
}
template<class ELFT>
section_iterator ELFObjectFile<ELFT>::begin_sections() const {
DataRefImpl ret;
ret.p = reinterpret_cast<intptr_t>(base() + Header->e_shoff);
return section_iterator(SectionRef(ret, this));
}
template<class ELFT>
section_iterator ELFObjectFile<ELFT>::end_sections() const {
DataRefImpl ret;
ret.p = reinterpret_cast<intptr_t>(base()
+ Header->e_shoff
+ (Header->e_shentsize*getNumSections()));
return section_iterator(SectionRef(ret, this));
}
template<class ELFT>
typename ELFObjectFile<ELFT>::dyn_iterator
ELFObjectFile<ELFT>::begin_dynamic_table() const {
DataRefImpl DynData;
if (dot_dynamic_sec == NULL || dot_dynamic_sec->sh_size == 0) {
DynData.d.a = std::numeric_limits<uint32_t>::max();
} else {
DynData.d.a = 0;
}
return dyn_iterator(DynRef(DynData, this));
}
template<class ELFT>
typename ELFObjectFile<ELFT>::dyn_iterator
ELFObjectFile<ELFT>::end_dynamic_table() const {
DataRefImpl DynData;
DynData.d.a = std::numeric_limits<uint32_t>::max();
return dyn_iterator(DynRef(DynData, this));
}
template<class ELFT>
error_code ELFObjectFile<ELFT>::getDynNext(DataRefImpl DynData,
DynRef &Result) const {
++DynData.d.a;
// Check to see if we are at the end of .dynamic
if (DynData.d.a >= dot_dynamic_sec->getEntityCount()) {
// We are at the end. Return the terminator.
DynData.d.a = std::numeric_limits<uint32_t>::max();
}
Result = DynRef(DynData, this);
return object_error::success;
}
template<class ELFT>
StringRef
ELFObjectFile<ELFT>::getLoadName() const {
if (!dt_soname) {
// Find the DT_SONAME entry
dyn_iterator it = begin_dynamic_table();
dyn_iterator ie = end_dynamic_table();
error_code ec;
while (it != ie) {
if (it->getTag() == ELF::DT_SONAME)
break;
it.increment(ec);
if (ec)
report_fatal_error("dynamic table iteration failed");
}
if (it != ie) {
if (dot_dynstr_sec == NULL)
report_fatal_error("Dynamic string table is missing");
dt_soname = getString(dot_dynstr_sec, it->getVal());
} else {
dt_soname = "";
}
}
return dt_soname;
}
template<class ELFT>
library_iterator ELFObjectFile<ELFT>::begin_libraries_needed() const {
// Find the first DT_NEEDED entry
dyn_iterator i = begin_dynamic_table();
dyn_iterator e = end_dynamic_table();
error_code ec;
while (i != e) {
if (i->getTag() == ELF::DT_NEEDED)
break;
i.increment(ec);
if (ec)
report_fatal_error("dynamic table iteration failed");
}
// Use the same DataRefImpl format as DynRef.
return library_iterator(LibraryRef(i->getRawDataRefImpl(), this));
}
template<class ELFT>
error_code ELFObjectFile<ELFT>::getLibraryNext(DataRefImpl Data,
LibraryRef &Result) const {
// Use the same DataRefImpl format as DynRef.
dyn_iterator i = dyn_iterator(DynRef(Data, this));
dyn_iterator e = end_dynamic_table();
// Skip the current dynamic table entry.
error_code ec;
if (i != e) {
i.increment(ec);
// TODO: proper error handling
if (ec)
report_fatal_error("dynamic table iteration failed");
}
// Find the next DT_NEEDED entry.
while (i != e) {
if (i->getTag() == ELF::DT_NEEDED)
break;
i.increment(ec);
if (ec)
report_fatal_error("dynamic table iteration failed");
}
Result = LibraryRef(i->getRawDataRefImpl(), this);
return object_error::success;
}
template<class ELFT>
error_code ELFObjectFile<ELFT>::getLibraryPath(DataRefImpl Data,
StringRef &Res) const {
dyn_iterator i = dyn_iterator(DynRef(Data, this));
if (i == end_dynamic_table())
report_fatal_error("getLibraryPath() called on iterator end");
if (i->getTag() != ELF::DT_NEEDED)
report_fatal_error("Invalid library_iterator");
// This uses .dynstr to lookup the name of the DT_NEEDED entry.
// THis works as long as DT_STRTAB == .dynstr. This is true most of
// the time, but the specification allows exceptions.
// TODO: This should really use DT_STRTAB instead. Doing this requires
// reading the program headers.
if (dot_dynstr_sec == NULL)
report_fatal_error("Dynamic string table is missing");
Res = getString(dot_dynstr_sec, i->getVal());
return object_error::success;
}
template<class ELFT>
library_iterator ELFObjectFile<ELFT>::end_libraries_needed() const {
dyn_iterator e = end_dynamic_table();
// Use the same DataRefImpl format as DynRef.
return library_iterator(LibraryRef(e->getRawDataRefImpl(), this));
}
template<class ELFT>
uint8_t ELFObjectFile<ELFT>::getBytesInAddress() const {
return ELFT::Is64Bits ? 8 : 4;
}
template<class ELFT>
StringRef ELFObjectFile<ELFT>::getFileFormatName() const {
switch(Header->e_ident[ELF::EI_CLASS]) {
case ELF::ELFCLASS32:
switch(Header->e_machine) {
case ELF::EM_386:
return "ELF32-i386";
case ELF::EM_X86_64:
return "ELF32-x86-64";
case ELF::EM_ARM:
return "ELF32-arm";
case ELF::EM_HEXAGON:
return "ELF32-hexagon";
case ELF::EM_MIPS:
return "ELF32-mips";
default:
return "ELF32-unknown";
}
case ELF::ELFCLASS64:
switch(Header->e_machine) {
case ELF::EM_386:
return "ELF64-i386";
case ELF::EM_X86_64:
return "ELF64-x86-64";
case ELF::EM_AARCH64:
return "ELF64-aarch64";
case ELF::EM_PPC64:
return "ELF64-ppc64";
default:
return "ELF64-unknown";
}
default:
// FIXME: Proper error handling.
report_fatal_error("Invalid ELFCLASS!");
}
}
template<class ELFT>
unsigned ELFObjectFile<ELFT>::getArch() const {
switch(Header->e_machine) {
case ELF::EM_386:
return Triple::x86;
case ELF::EM_X86_64:
return Triple::x86_64;
case ELF::EM_AARCH64:
return Triple::aarch64;
case ELF::EM_ARM:
return Triple::arm;
case ELF::EM_HEXAGON:
return Triple::hexagon;
case ELF::EM_MIPS:
return (ELFT::TargetEndianness == support::little) ?
Triple::mipsel : Triple::mips;
case ELF::EM_PPC64:
return Triple::ppc64;
default:
return Triple::UnknownArch;
}
}
template<class ELFT>
uint64_t ELFObjectFile<ELFT>::getNumSections() const {
assert(Header && "Header not initialized!");
if (Header->e_shnum == ELF::SHN_UNDEF) {
assert(SectionHeaderTable && "SectionHeaderTable not initialized!");
return SectionHeaderTable->sh_size;
}
return Header->e_shnum;
}
template<class ELFT>
uint64_t
ELFObjectFile<ELFT>::getStringTableIndex() const {
if (Header->e_shnum == ELF::SHN_UNDEF) {
if (Header->e_shstrndx == ELF::SHN_HIRESERVE)
return SectionHeaderTable->sh_link;
if (Header->e_shstrndx >= getNumSections())
return 0;
}
return Header->e_shstrndx;
}
template<class ELFT>
template<typename T>
inline const T *
ELFObjectFile<ELFT>::getEntry(uint16_t Section, uint32_t Entry) const {
return getEntry<T>(getSection(Section), Entry);
}
template<class ELFT>
template<typename T>
inline const T *
ELFObjectFile<ELFT>::getEntry(const Elf_Shdr * Section, uint32_t Entry) const {
return reinterpret_cast<const T *>(
base()
+ Section->sh_offset
+ (Entry * Section->sh_entsize));
}
template<class ELFT>
const typename ELFObjectFile<ELFT>::Elf_Sym *
ELFObjectFile<ELFT>::getSymbol(DataRefImpl Symb) const {
return getEntry<Elf_Sym>(SymbolTableSections[Symb.d.b], Symb.d.a);
}
template<class ELFT>
const typename ELFObjectFile<ELFT>::Elf_Dyn *
ELFObjectFile<ELFT>::getDyn(DataRefImpl DynData) const {
return getEntry<Elf_Dyn>(dot_dynamic_sec, DynData.d.a);
}
template<class ELFT>
const typename ELFObjectFile<ELFT>::Elf_Rel *
ELFObjectFile<ELFT>::getRel(DataRefImpl Rel) const {
return getEntry<Elf_Rel>(Rel.w.b, Rel.w.c);
}
template<class ELFT>
const typename ELFObjectFile<ELFT>::Elf_Rela *
ELFObjectFile<ELFT>::getRela(DataRefImpl Rela) const {
return getEntry<Elf_Rela>(Rela.w.b, Rela.w.c);
}
template<class ELFT>
const typename ELFObjectFile<ELFT>::Elf_Shdr *
ELFObjectFile<ELFT>::getSection(DataRefImpl Symb) const {
const Elf_Shdr *sec = getSection(Symb.d.b);
if (sec->sh_type != ELF::SHT_SYMTAB || sec->sh_type != ELF::SHT_DYNSYM)
// FIXME: Proper error handling.
report_fatal_error("Invalid symbol table section!");
return sec;
}
template<class ELFT>
const typename ELFObjectFile<ELFT>::Elf_Shdr *
ELFObjectFile<ELFT>::getSection(uint32_t index) const {
if (index == 0)
return 0;
if (!SectionHeaderTable || index >= getNumSections())
// FIXME: Proper error handling.
report_fatal_error("Invalid section index!");
return reinterpret_cast<const Elf_Shdr *>(
reinterpret_cast<const char *>(SectionHeaderTable)
+ (index * Header->e_shentsize));
}
template<class ELFT>
const char *ELFObjectFile<ELFT>::getString(uint32_t section,
ELF::Elf32_Word offset) const {
return getString(getSection(section), offset);
}
template<class ELFT>
const char *ELFObjectFile<ELFT>::getString(const Elf_Shdr *section,
ELF::Elf32_Word offset) const {
assert(section && section->sh_type == ELF::SHT_STRTAB && "Invalid section!");
if (offset >= section->sh_size)
// FIXME: Proper error handling.
report_fatal_error("Symbol name offset outside of string table!");
return (const char *)base() + section->sh_offset + offset;
}
template<class ELFT>
error_code ELFObjectFile<ELFT>::getSymbolName(const Elf_Shdr *section,
const Elf_Sym *symb,
StringRef &Result) const {
if (symb->st_name == 0) {
const Elf_Shdr *section = getSection(symb);
if (!section)
Result = "";
else
Result = getString(dot_shstrtab_sec, section->sh_name);
return object_error::success;
}
if (section == SymbolTableSections[0]) {
// Symbol is in .dynsym, use .dynstr string table
Result = getString(dot_dynstr_sec, symb->st_name);
} else {
// Use the default symbol table name section.
Result = getString(dot_strtab_sec, symb->st_name);
}
return object_error::success;
}
template<class ELFT>
error_code ELFObjectFile<ELFT>::getSectionName(const Elf_Shdr *section,
StringRef &Result) const {
Result = StringRef(getString(dot_shstrtab_sec, section->sh_name));
return object_error::success;
}
template<class ELFT>
error_code ELFObjectFile<ELFT>::getSymbolVersion(const Elf_Shdr *section,
const Elf_Sym *symb,
StringRef &Version,
bool &IsDefault) const {
// Handle non-dynamic symbols.
if (section != SymbolTableSections[0]) {
// Non-dynamic symbols can have versions in their names
// A name of the form 'foo@V1' indicates version 'V1', non-default.
// A name of the form 'foo@@V2' indicates version 'V2', default version.
StringRef Name;
error_code ec = getSymbolName(section, symb, Name);
if (ec != object_error::success)
return ec;
size_t atpos = Name.find('@');
if (atpos == StringRef::npos) {
Version = "";
IsDefault = false;
return object_error::success;
}
++atpos;
if (atpos < Name.size() && Name[atpos] == '@') {
IsDefault = true;
++atpos;
} else {
IsDefault = false;
}
Version = Name.substr(atpos);
return object_error::success;
}
// This is a dynamic symbol. Look in the GNU symbol version table.
if (dot_gnu_version_sec == NULL) {
// No version table.
Version = "";
IsDefault = false;
return object_error::success;
}
// Determine the position in the symbol table of this entry.
const char *sec_start = (const char*)base() + section->sh_offset;
size_t entry_index = ((const char*)symb - sec_start)/section->sh_entsize;
// Get the corresponding version index entry
const Elf_Versym *vs = getEntry<Elf_Versym>(dot_gnu_version_sec, entry_index);
size_t version_index = vs->vs_index & ELF::VERSYM_VERSION;
// Special markers for unversioned symbols.
if (version_index == ELF::VER_NDX_LOCAL ||
version_index == ELF::VER_NDX_GLOBAL) {
Version = "";
IsDefault = false;
return object_error::success;
}
// Lookup this symbol in the version table
LoadVersionMap();
if (version_index >= VersionMap.size() || VersionMap[version_index].isNull())
report_fatal_error("Symbol has version index without corresponding "
"define or reference entry");
const VersionMapEntry &entry = VersionMap[version_index];
// Get the version name string
size_t name_offset;
if (entry.isVerdef()) {
// The first Verdaux entry holds the name.
name_offset = entry.getVerdef()->getAux()->vda_name;
} else {
name_offset = entry.getVernaux()->vna_name;
}
Version = getString(dot_dynstr_sec, name_offset);
// Set IsDefault
if (entry.isVerdef()) {
IsDefault = !(vs->vs_index & ELF::VERSYM_HIDDEN);
} else {
IsDefault = false;
}
return object_error::success;
}
template<class ELFT>
inline DynRefImpl<ELFT>::DynRefImpl(DataRefImpl DynP, const OwningType *Owner)
: DynPimpl(DynP)
, OwningObject(Owner) {}
template<class ELFT>
inline bool DynRefImpl<ELFT>::operator==(const DynRefImpl &Other) const {
return DynPimpl == Other.DynPimpl;
}
template<class ELFT>
inline bool DynRefImpl<ELFT>::operator <(const DynRefImpl &Other) const {
return DynPimpl < Other.DynPimpl;
}
template<class ELFT>
inline error_code DynRefImpl<ELFT>::getNext(DynRefImpl &Result) const {
return OwningObject->getDynNext(DynPimpl, Result);
}
template<class ELFT>
inline int64_t DynRefImpl<ELFT>::getTag() const {
return OwningObject->getDyn(DynPimpl)->d_tag;
}
template<class ELFT>
inline uint64_t DynRefImpl<ELFT>::getVal() const {
return OwningObject->getDyn(DynPimpl)->d_un.d_val;
}
template<class ELFT>
inline uint64_t DynRefImpl<ELFT>::getPtr() const {
return OwningObject->getDyn(DynPimpl)->d_un.d_ptr;
}
template<class ELFT>
inline DataRefImpl DynRefImpl<ELFT>::getRawDataRefImpl() const {
return DynPimpl;
}
/// This is a generic interface for retrieving GNU symbol version
/// information from an ELFObjectFile.
static inline error_code GetELFSymbolVersion(const ObjectFile *Obj,
const SymbolRef &Sym,
StringRef &Version,
bool &IsDefault) {
// Little-endian 32-bit
if (const ELFObjectFile<ELFType<support::little, 4, false> > *ELFObj =
dyn_cast<ELFObjectFile<ELFType<support::little, 4, false> > >(Obj))
return ELFObj->getSymbolVersion(Sym, Version, IsDefault);
// Big-endian 32-bit
if (const ELFObjectFile<ELFType<support::big, 4, false> > *ELFObj =
dyn_cast<ELFObjectFile<ELFType<support::big, 4, false> > >(Obj))
return ELFObj->getSymbolVersion(Sym, Version, IsDefault);
// Little-endian 64-bit
if (const ELFObjectFile<ELFType<support::little, 8, true> > *ELFObj =
dyn_cast<ELFObjectFile<ELFType<support::little, 8, true> > >(Obj))
return ELFObj->getSymbolVersion(Sym, Version, IsDefault);
// Big-endian 64-bit
if (const ELFObjectFile<ELFType<support::big, 8, true> > *ELFObj =
dyn_cast<ELFObjectFile<ELFType<support::big, 8, true> > >(Obj))
return ELFObj->getSymbolVersion(Sym, Version, IsDefault);
llvm_unreachable("Object passed to GetELFSymbolVersion() is not ELF");
}
}
}
#endif