llvm-6502/include/llvm/Analysis/TargetLibraryInfo.h
Chandler Carruth 6f409cbc05 [PM] Rework how the TargetLibraryInfo pass integrates with the new pass
manager to support the actual uses of it. =]

When I ported instcombine to the new pass manager I discover that it
didn't work because TLI wasn't available in the right places. This is
a somewhat surprising and/or subtle aspect of the new pass manager
design that came up before but I think is useful to be reminded of:

While the new pass manager *allows* a function pass to query a module
analysis, it requires that the module analysis is already run and cached
prior to the function pass manager starting up, possibly with
a 'require<foo>' style utility in the pass pipeline. This is an
intentional hurdle because using a module analysis from a function pass
*requires* that the module analysis is run prior to entering the
function pass manager. Otherwise the other functions in the module could
be in who-knows-what state, etc.

A somewhat surprising consequence of this design decision (at least to
me) is that you have to design a function pass that leverages
a module analysis to do so as an optional feature. Even if that means
your function pass does no work in the absence of the module analysis,
you have to handle that possibility and remain conservatively correct.
This is a natural consequence of things being able to invalidate the
module analysis and us being unable to re-run it. And it's a generally
good thing because it lets us reorder passes arbitrarily without
breaking correctness, etc.

This ends up causing problems in one case. What if we have a module
analysis that is *definitionally* impossible to invalidate. In the
places this might come up, the analysis is usually also definitionally
trivial to run even while other transformation passes run on the module,
regardless of the state of anything. And so, it follows that it is
natural to have a hard requirement on such analyses from a function
pass.

It turns out, that TargetLibraryInfo is just such an analysis, and
InstCombine has a hard requirement on it.

The approach I've taken here is to produce an analysis that models this
flexibility by making it both a module and a function analysis. This
exposes the fact that it is in fact safe to compute at any point. We can
even make it a valid CGSCC analysis at some point if that is useful.
However, we don't want to have a copy of the actual target library info
state for each function! This state is specific to the triple. The
somewhat direct and blunt approach here is to turn TLI into a pimpl,
with the state and mutators in the implementation class and the query
routines primarily in the wrapper. Then the analysis can lazily
construct and cache the implementations, keyed on the triple, and
on-demand produce wrappers of them for each function.

One minor annoyance is that we will end up with a wrapper for each
function in the module. While this is a bit wasteful (one pointer per
function) it seems tolerable. And it has the advantage of ensuring that
we pay the absolute minimum synchronization cost to access this
information should we end up with a nice parallel function pass manager
in the future. We could look into trying to mark when analysis results
are especially cheap to recompute and more eagerly GC-ing the cached
results, or we could look at supporting a variant of analyses whose
results are specifically *not* cached and expected to just be used and
discarded by the consumer. Either way, these seem like incremental
enhancements that should happen when we start profiling the memory and
CPU usage of the new pass manager and not before.

The other minor annoyance is that if we end up using the TLI in both
a module pass and a function pass, those will be produced by two
separate analyses, and thus will point to separate copies of the
implementation state. While a minor issue, I dislike this and would like
to find a way to cleanly allow a single analysis instance to be used
across multiple IR unit managers. But I don't have a good solution to
this today, and I don't want to hold up all of the work waiting to come
up with one. This too seems like a reasonable thing to incrementally
improve later.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226981 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-24 02:06:09 +00:00

925 lines
29 KiB
C++

//===-- TargetLibraryInfo.h - Library information ---------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_TARGETLIBRARYINFO_H
#define LLVM_ANALYSIS_TARGETLIBRARYINFO_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/Triple.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Module.h"
#include "llvm/Pass.h"
namespace llvm {
class PreservedAnalyses;
namespace LibFunc {
enum Func {
/// int _IO_getc(_IO_FILE * __fp);
under_IO_getc,
/// int _IO_putc(int __c, _IO_FILE * __fp);
under_IO_putc,
/// void operator delete[](void*);
ZdaPv,
/// void operator delete[](void*, nothrow);
ZdaPvRKSt9nothrow_t,
/// void operator delete[](void*, unsigned int);
ZdaPvj,
/// void operator delete[](void*, unsigned long);
ZdaPvm,
/// void operator delete(void*);
ZdlPv,
/// void operator delete(void*, nothrow);
ZdlPvRKSt9nothrow_t,
/// void operator delete(void*, unsigned int);
ZdlPvj,
/// void operator delete(void*, unsigned long);
ZdlPvm,
/// void *new[](unsigned int);
Znaj,
/// void *new[](unsigned int, nothrow);
ZnajRKSt9nothrow_t,
/// void *new[](unsigned long);
Znam,
/// void *new[](unsigned long, nothrow);
ZnamRKSt9nothrow_t,
/// void *new(unsigned int);
Znwj,
/// void *new(unsigned int, nothrow);
ZnwjRKSt9nothrow_t,
/// void *new(unsigned long);
Znwm,
/// void *new(unsigned long, nothrow);
ZnwmRKSt9nothrow_t,
/// double __cospi(double x);
cospi,
/// float __cospif(float x);
cospif,
/// int __cxa_atexit(void (*f)(void *), void *p, void *d);
cxa_atexit,
/// void __cxa_guard_abort(guard_t *guard);
/// guard_t is int64_t in Itanium ABI or int32_t on ARM eabi.
cxa_guard_abort,
/// int __cxa_guard_acquire(guard_t *guard);
cxa_guard_acquire,
/// void __cxa_guard_release(guard_t *guard);
cxa_guard_release,
/// int __isoc99_scanf (const char *format, ...)
dunder_isoc99_scanf,
/// int __isoc99_sscanf(const char *s, const char *format, ...)
dunder_isoc99_sscanf,
/// void *__memcpy_chk(void *s1, const void *s2, size_t n, size_t s1size);
memcpy_chk,
/// void *__memmove_chk(void *s1, const void *s2, size_t n,
/// size_t s1size);
memmove_chk,
/// void *__memset_chk(void *s, char v, size_t n, size_t s1size);
memset_chk,
/// double __sincospi_stret(double x);
sincospi_stret,
/// float __sincospif_stret(float x);
sincospif_stret,
/// double __sinpi(double x);
sinpi,
/// float __sinpif(float x);
sinpif,
/// double __sqrt_finite(double x);
sqrt_finite,
/// float __sqrt_finite(float x);
sqrtf_finite,
/// long double __sqrt_finite(long double x);
sqrtl_finite,
/// char *__stpcpy_chk(char *s1, const char *s2, size_t s1size);
stpcpy_chk,
/// char *__stpncpy_chk(char *s1, const char *s2, size_t n,
/// size_t s1size);
stpncpy_chk,
/// char *__strcpy_chk(char *s1, const char *s2, size_t s1size);
strcpy_chk,
/// char * __strdup(const char *s);
dunder_strdup,
/// char *__strncpy_chk(char *s1, const char *s2, size_t n,
/// size_t s1size);
strncpy_chk,
/// char *__strndup(const char *s, size_t n);
dunder_strndup,
/// char * __strtok_r(char *s, const char *delim, char **save_ptr);
dunder_strtok_r,
/// int abs(int j);
abs,
/// int access(const char *path, int amode);
access,
/// double acos(double x);
acos,
/// float acosf(float x);
acosf,
/// double acosh(double x);
acosh,
/// float acoshf(float x);
acoshf,
/// long double acoshl(long double x);
acoshl,
/// long double acosl(long double x);
acosl,
/// double asin(double x);
asin,
/// float asinf(float x);
asinf,
/// double asinh(double x);
asinh,
/// float asinhf(float x);
asinhf,
/// long double asinhl(long double x);
asinhl,
/// long double asinl(long double x);
asinl,
/// double atan(double x);
atan,
/// double atan2(double y, double x);
atan2,
/// float atan2f(float y, float x);
atan2f,
/// long double atan2l(long double y, long double x);
atan2l,
/// float atanf(float x);
atanf,
/// double atanh(double x);
atanh,
/// float atanhf(float x);
atanhf,
/// long double atanhl(long double x);
atanhl,
/// long double atanl(long double x);
atanl,
/// double atof(const char *str);
atof,
/// int atoi(const char *str);
atoi,
/// long atol(const char *str);
atol,
/// long long atoll(const char *nptr);
atoll,
/// int bcmp(const void *s1, const void *s2, size_t n);
bcmp,
/// void bcopy(const void *s1, void *s2, size_t n);
bcopy,
/// void bzero(void *s, size_t n);
bzero,
/// void *calloc(size_t count, size_t size);
calloc,
/// double cbrt(double x);
cbrt,
/// float cbrtf(float x);
cbrtf,
/// long double cbrtl(long double x);
cbrtl,
/// double ceil(double x);
ceil,
/// float ceilf(float x);
ceilf,
/// long double ceill(long double x);
ceill,
/// int chmod(const char *path, mode_t mode);
chmod,
/// int chown(const char *path, uid_t owner, gid_t group);
chown,
/// void clearerr(FILE *stream);
clearerr,
/// int closedir(DIR *dirp);
closedir,
/// double copysign(double x, double y);
copysign,
/// float copysignf(float x, float y);
copysignf,
/// long double copysignl(long double x, long double y);
copysignl,
/// double cos(double x);
cos,
/// float cosf(float x);
cosf,
/// double cosh(double x);
cosh,
/// float coshf(float x);
coshf,
/// long double coshl(long double x);
coshl,
/// long double cosl(long double x);
cosl,
/// char *ctermid(char *s);
ctermid,
/// double exp(double x);
exp,
/// double exp10(double x);
exp10,
/// float exp10f(float x);
exp10f,
/// long double exp10l(long double x);
exp10l,
/// double exp2(double x);
exp2,
/// float exp2f(float x);
exp2f,
/// long double exp2l(long double x);
exp2l,
/// float expf(float x);
expf,
/// long double expl(long double x);
expl,
/// double expm1(double x);
expm1,
/// float expm1f(float x);
expm1f,
/// long double expm1l(long double x);
expm1l,
/// double fabs(double x);
fabs,
/// float fabsf(float x);
fabsf,
/// long double fabsl(long double x);
fabsl,
/// int fclose(FILE *stream);
fclose,
/// FILE *fdopen(int fildes, const char *mode);
fdopen,
/// int feof(FILE *stream);
feof,
/// int ferror(FILE *stream);
ferror,
/// int fflush(FILE *stream);
fflush,
/// int ffs(int i);
ffs,
/// int ffsl(long int i);
ffsl,
/// int ffsll(long long int i);
ffsll,
/// int fgetc(FILE *stream);
fgetc,
/// int fgetpos(FILE *stream, fpos_t *pos);
fgetpos,
/// char *fgets(char *s, int n, FILE *stream);
fgets,
/// int fileno(FILE *stream);
fileno,
/// int fiprintf(FILE *stream, const char *format, ...);
fiprintf,
/// void flockfile(FILE *file);
flockfile,
/// double floor(double x);
floor,
/// float floorf(float x);
floorf,
/// long double floorl(long double x);
floorl,
/// double fmax(double x, double y);
fmax,
/// float fmaxf(float x, float y);
fmaxf,
/// long double fmaxl(long double x, long double y);
fmaxl,
/// double fmin(double x, double y);
fmin,
/// float fminf(float x, float y);
fminf,
/// long double fminl(long double x, long double y);
fminl,
/// double fmod(double x, double y);
fmod,
/// float fmodf(float x, float y);
fmodf,
/// long double fmodl(long double x, long double y);
fmodl,
/// FILE *fopen(const char *filename, const char *mode);
fopen,
/// FILE *fopen64(const char *filename, const char *opentype)
fopen64,
/// int fprintf(FILE *stream, const char *format, ...);
fprintf,
/// int fputc(int c, FILE *stream);
fputc,
/// int fputs(const char *s, FILE *stream);
fputs,
/// size_t fread(void *ptr, size_t size, size_t nitems, FILE *stream);
fread,
/// void free(void *ptr);
free,
/// double frexp(double num, int *exp);
frexp,
/// float frexpf(float num, int *exp);
frexpf,
/// long double frexpl(long double num, int *exp);
frexpl,
/// int fscanf(FILE *stream, const char *format, ... );
fscanf,
/// int fseek(FILE *stream, long offset, int whence);
fseek,
/// int fseeko(FILE *stream, off_t offset, int whence);
fseeko,
/// int fseeko64(FILE *stream, off64_t offset, int whence)
fseeko64,
/// int fsetpos(FILE *stream, const fpos_t *pos);
fsetpos,
/// int fstat(int fildes, struct stat *buf);
fstat,
/// int fstat64(int filedes, struct stat64 *buf)
fstat64,
/// int fstatvfs(int fildes, struct statvfs *buf);
fstatvfs,
/// int fstatvfs64(int fildes, struct statvfs64 *buf);
fstatvfs64,
/// long ftell(FILE *stream);
ftell,
/// off_t ftello(FILE *stream);
ftello,
/// off64_t ftello64(FILE *stream)
ftello64,
/// int ftrylockfile(FILE *file);
ftrylockfile,
/// void funlockfile(FILE *file);
funlockfile,
/// size_t fwrite(const void *ptr, size_t size, size_t nitems,
/// FILE *stream);
fwrite,
/// int getc(FILE *stream);
getc,
/// int getc_unlocked(FILE *stream);
getc_unlocked,
/// int getchar(void);
getchar,
/// char *getenv(const char *name);
getenv,
/// int getitimer(int which, struct itimerval *value);
getitimer,
/// int getlogin_r(char *name, size_t namesize);
getlogin_r,
/// struct passwd *getpwnam(const char *name);
getpwnam,
/// char *gets(char *s);
gets,
/// int gettimeofday(struct timeval *tp, void *tzp);
gettimeofday,
/// uint32_t htonl(uint32_t hostlong);
htonl,
/// uint16_t htons(uint16_t hostshort);
htons,
/// int iprintf(const char *format, ...);
iprintf,
/// int isascii(int c);
isascii,
/// int isdigit(int c);
isdigit,
/// long int labs(long int j);
labs,
/// int lchown(const char *path, uid_t owner, gid_t group);
lchown,
/// double ldexp(double x, int n);
ldexp,
/// float ldexpf(float x, int n);
ldexpf,
/// long double ldexpl(long double x, int n);
ldexpl,
/// long long int llabs(long long int j);
llabs,
/// double log(double x);
log,
/// double log10(double x);
log10,
/// float log10f(float x);
log10f,
/// long double log10l(long double x);
log10l,
/// double log1p(double x);
log1p,
/// float log1pf(float x);
log1pf,
/// long double log1pl(long double x);
log1pl,
/// double log2(double x);
log2,
/// float log2f(float x);
log2f,
/// double long double log2l(long double x);
log2l,
/// double logb(double x);
logb,
/// float logbf(float x);
logbf,
/// long double logbl(long double x);
logbl,
/// float logf(float x);
logf,
/// long double logl(long double x);
logl,
/// int lstat(const char *path, struct stat *buf);
lstat,
/// int lstat64(const char *path, struct stat64 *buf);
lstat64,
/// void *malloc(size_t size);
malloc,
/// void *memalign(size_t boundary, size_t size);
memalign,
/// void *memccpy(void *s1, const void *s2, int c, size_t n);
memccpy,
/// void *memchr(const void *s, int c, size_t n);
memchr,
/// int memcmp(const void *s1, const void *s2, size_t n);
memcmp,
/// void *memcpy(void *s1, const void *s2, size_t n);
memcpy,
/// void *memmove(void *s1, const void *s2, size_t n);
memmove,
// void *memrchr(const void *s, int c, size_t n);
memrchr,
/// void *memset(void *b, int c, size_t len);
memset,
/// void memset_pattern16(void *b, const void *pattern16, size_t len);
memset_pattern16,
/// int mkdir(const char *path, mode_t mode);
mkdir,
/// time_t mktime(struct tm *timeptr);
mktime,
/// double modf(double x, double *iptr);
modf,
/// float modff(float, float *iptr);
modff,
/// long double modfl(long double value, long double *iptr);
modfl,
/// double nearbyint(double x);
nearbyint,
/// float nearbyintf(float x);
nearbyintf,
/// long double nearbyintl(long double x);
nearbyintl,
/// uint32_t ntohl(uint32_t netlong);
ntohl,
/// uint16_t ntohs(uint16_t netshort);
ntohs,
/// int open(const char *path, int oflag, ... );
open,
/// int open64(const char *filename, int flags[, mode_t mode])
open64,
/// DIR *opendir(const char *dirname);
opendir,
/// int pclose(FILE *stream);
pclose,
/// void perror(const char *s);
perror,
/// FILE *popen(const char *command, const char *mode);
popen,
/// int posix_memalign(void **memptr, size_t alignment, size_t size);
posix_memalign,
/// double pow(double x, double y);
pow,
/// float powf(float x, float y);
powf,
/// long double powl(long double x, long double y);
powl,
/// ssize_t pread(int fildes, void *buf, size_t nbyte, off_t offset);
pread,
/// int printf(const char *format, ...);
printf,
/// int putc(int c, FILE *stream);
putc,
/// int putchar(int c);
putchar,
/// int puts(const char *s);
puts,
/// ssize_t pwrite(int fildes, const void *buf, size_t nbyte,
/// off_t offset);
pwrite,
/// void qsort(void *base, size_t nel, size_t width,
/// int (*compar)(const void *, const void *));
qsort,
/// ssize_t read(int fildes, void *buf, size_t nbyte);
read,
/// ssize_t readlink(const char *path, char *buf, size_t bufsize);
readlink,
/// void *realloc(void *ptr, size_t size);
realloc,
/// void *reallocf(void *ptr, size_t size);
reallocf,
/// char *realpath(const char *file_name, char *resolved_name);
realpath,
/// int remove(const char *path);
remove,
/// int rename(const char *old, const char *new);
rename,
/// void rewind(FILE *stream);
rewind,
/// double rint(double x);
rint,
/// float rintf(float x);
rintf,
/// long double rintl(long double x);
rintl,
/// int rmdir(const char *path);
rmdir,
/// double round(double x);
round,
/// float roundf(float x);
roundf,
/// long double roundl(long double x);
roundl,
/// int scanf(const char *restrict format, ... );
scanf,
/// void setbuf(FILE *stream, char *buf);
setbuf,
/// int setitimer(int which, const struct itimerval *value,
/// struct itimerval *ovalue);
setitimer,
/// int setvbuf(FILE *stream, char *buf, int type, size_t size);
setvbuf,
/// double sin(double x);
sin,
/// float sinf(float x);
sinf,
/// double sinh(double x);
sinh,
/// float sinhf(float x);
sinhf,
/// long double sinhl(long double x);
sinhl,
/// long double sinl(long double x);
sinl,
/// int siprintf(char *str, const char *format, ...);
siprintf,
/// int snprintf(char *s, size_t n, const char *format, ...);
snprintf,
/// int sprintf(char *str, const char *format, ...);
sprintf,
/// double sqrt(double x);
sqrt,
/// float sqrtf(float x);
sqrtf,
/// long double sqrtl(long double x);
sqrtl,
/// int sscanf(const char *s, const char *format, ... );
sscanf,
/// int stat(const char *path, struct stat *buf);
stat,
/// int stat64(const char *path, struct stat64 *buf);
stat64,
/// int statvfs(const char *path, struct statvfs *buf);
statvfs,
/// int statvfs64(const char *path, struct statvfs64 *buf)
statvfs64,
/// char *stpcpy(char *s1, const char *s2);
stpcpy,
/// char *stpncpy(char *s1, const char *s2, size_t n);
stpncpy,
/// int strcasecmp(const char *s1, const char *s2);
strcasecmp,
/// char *strcat(char *s1, const char *s2);
strcat,
/// char *strchr(const char *s, int c);
strchr,
/// int strcmp(const char *s1, const char *s2);
strcmp,
/// int strcoll(const char *s1, const char *s2);
strcoll,
/// char *strcpy(char *s1, const char *s2);
strcpy,
/// size_t strcspn(const char *s1, const char *s2);
strcspn,
/// char *strdup(const char *s1);
strdup,
/// size_t strlen(const char *s);
strlen,
/// int strncasecmp(const char *s1, const char *s2, size_t n);
strncasecmp,
/// char *strncat(char *s1, const char *s2, size_t n);
strncat,
/// int strncmp(const char *s1, const char *s2, size_t n);
strncmp,
/// char *strncpy(char *s1, const char *s2, size_t n);
strncpy,
/// char *strndup(const char *s1, size_t n);
strndup,
/// size_t strnlen(const char *s, size_t maxlen);
strnlen,
/// char *strpbrk(const char *s1, const char *s2);
strpbrk,
/// char *strrchr(const char *s, int c);
strrchr,
/// size_t strspn(const char *s1, const char *s2);
strspn,
/// char *strstr(const char *s1, const char *s2);
strstr,
/// double strtod(const char *nptr, char **endptr);
strtod,
/// float strtof(const char *nptr, char **endptr);
strtof,
// char *strtok(char *s1, const char *s2);
strtok,
// char *strtok_r(char *s, const char *sep, char **lasts);
strtok_r,
/// long int strtol(const char *nptr, char **endptr, int base);
strtol,
/// long double strtold(const char *nptr, char **endptr);
strtold,
/// long long int strtoll(const char *nptr, char **endptr, int base);
strtoll,
/// unsigned long int strtoul(const char *nptr, char **endptr, int base);
strtoul,
/// unsigned long long int strtoull(const char *nptr, char **endptr,
/// int base);
strtoull,
/// size_t strxfrm(char *s1, const char *s2, size_t n);
strxfrm,
/// int system(const char *command);
system,
/// double tan(double x);
tan,
/// float tanf(float x);
tanf,
/// double tanh(double x);
tanh,
/// float tanhf(float x);
tanhf,
/// long double tanhl(long double x);
tanhl,
/// long double tanl(long double x);
tanl,
/// clock_t times(struct tms *buffer);
times,
/// FILE *tmpfile(void);
tmpfile,
/// FILE *tmpfile64(void)
tmpfile64,
/// int toascii(int c);
toascii,
/// double trunc(double x);
trunc,
/// float truncf(float x);
truncf,
/// long double truncl(long double x);
truncl,
/// int uname(struct utsname *name);
uname,
/// int ungetc(int c, FILE *stream);
ungetc,
/// int unlink(const char *path);
unlink,
/// int unsetenv(const char *name);
unsetenv,
/// int utime(const char *path, const struct utimbuf *times);
utime,
/// int utimes(const char *path, const struct timeval times[2]);
utimes,
/// void *valloc(size_t size);
valloc,
/// int vfprintf(FILE *stream, const char *format, va_list ap);
vfprintf,
/// int vfscanf(FILE *stream, const char *format, va_list arg);
vfscanf,
/// int vprintf(const char *restrict format, va_list ap);
vprintf,
/// int vscanf(const char *format, va_list arg);
vscanf,
/// int vsnprintf(char *s, size_t n, const char *format, va_list ap);
vsnprintf,
/// int vsprintf(char *s, const char *format, va_list ap);
vsprintf,
/// int vsscanf(const char *s, const char *format, va_list arg);
vsscanf,
/// ssize_t write(int fildes, const void *buf, size_t nbyte);
write,
NumLibFuncs
};
}
/// \brief Implementation of the target library information.
///
/// This class constructs tables that hold the target library information and
/// make it available. However, it is somewhat expensive to compute and only
/// depends on the triple. So users typicaly interact with the \c
/// TargetLibraryInfo wrapper below.
class TargetLibraryInfoImpl {
friend class TargetLibraryInfo;
unsigned char AvailableArray[(LibFunc::NumLibFuncs+3)/4];
llvm::DenseMap<unsigned, std::string> CustomNames;
static const char* StandardNames[LibFunc::NumLibFuncs];
enum AvailabilityState {
StandardName = 3, // (memset to all ones)
CustomName = 1,
Unavailable = 0 // (memset to all zeros)
};
void setState(LibFunc::Func F, AvailabilityState State) {
AvailableArray[F/4] &= ~(3 << 2*(F&3));
AvailableArray[F/4] |= State << 2*(F&3);
}
AvailabilityState getState(LibFunc::Func F) const {
return static_cast<AvailabilityState>((AvailableArray[F/4] >> 2*(F&3)) & 3);
}
public:
TargetLibraryInfoImpl();
explicit TargetLibraryInfoImpl(const Triple &T);
// Provide value semantics.
TargetLibraryInfoImpl(const TargetLibraryInfoImpl &TLI);
TargetLibraryInfoImpl(TargetLibraryInfoImpl &&TLI);
TargetLibraryInfoImpl &operator=(const TargetLibraryInfoImpl &TLI);
TargetLibraryInfoImpl &operator=(TargetLibraryInfoImpl &&TLI);
/// \brief Searches for a particular function name.
///
/// If it is one of the known library functions, return true and set F to the
/// corresponding value.
bool getLibFunc(StringRef funcName, LibFunc::Func &F) const;
/// \brief Forces a function to be marked as unavailable.
void setUnavailable(LibFunc::Func F) {
setState(F, Unavailable);
}
/// \brief Forces a function to be marked as available.
void setAvailable(LibFunc::Func F) {
setState(F, StandardName);
}
/// \brief Forces a function to be marked as available and provide an
/// alternate name that must be used.
void setAvailableWithName(LibFunc::Func F, StringRef Name) {
if (StandardNames[F] != Name) {
setState(F, CustomName);
CustomNames[F] = Name;
assert(CustomNames.find(F) != CustomNames.end());
} else {
setState(F, StandardName);
}
}
/// \brief Disables all builtins.
///
/// This can be used for options like -fno-builtin.
void disableAllFunctions();
};
/// \brief Provides information about what library functions are available for
/// the current target.
///
/// This both allows optimizations to handle them specially and frontends to
/// disable such optimizations through -fno-builtin etc.
class TargetLibraryInfo {
friend class TargetLibraryAnalysis;
friend class TargetLibraryInfoWrapperPass;
const TargetLibraryInfoImpl *Impl;
public:
explicit TargetLibraryInfo(const TargetLibraryInfoImpl &Impl) : Impl(&Impl) {}
// Provide value semantics.
TargetLibraryInfo(const TargetLibraryInfo &TLI) : Impl(TLI.Impl) {}
TargetLibraryInfo(TargetLibraryInfo &&TLI) : Impl(TLI.Impl) {}
TargetLibraryInfo &operator=(const TargetLibraryInfo &TLI) {
Impl = TLI.Impl;
return *this;
}
TargetLibraryInfo &operator=(TargetLibraryInfo &&TLI) {
Impl = TLI.Impl;
return *this;
}
/// \brief Searches for a particular function name.
///
/// If it is one of the known library functions, return true and set F to the
/// corresponding value.
bool getLibFunc(StringRef funcName, LibFunc::Func &F) const {
return Impl->getLibFunc(funcName, F);
}
/// \brief Tests wether a library function is available.
bool has(LibFunc::Func F) const {
return Impl->getState(F) != TargetLibraryInfoImpl::Unavailable;
}
/// \brief Tests if the function is both available and a candidate for
/// optimized code generation.
bool hasOptimizedCodeGen(LibFunc::Func F) const {
if (Impl->getState(F) == TargetLibraryInfoImpl::Unavailable)
return false;
switch (F) {
default: break;
case LibFunc::copysign: case LibFunc::copysignf: case LibFunc::copysignl:
case LibFunc::fabs: case LibFunc::fabsf: case LibFunc::fabsl:
case LibFunc::sin: case LibFunc::sinf: case LibFunc::sinl:
case LibFunc::cos: case LibFunc::cosf: case LibFunc::cosl:
case LibFunc::sqrt: case LibFunc::sqrtf: case LibFunc::sqrtl:
case LibFunc::sqrt_finite: case LibFunc::sqrtf_finite:
case LibFunc::sqrtl_finite:
case LibFunc::fmax: case LibFunc::fmaxf: case LibFunc::fmaxl:
case LibFunc::fmin: case LibFunc::fminf: case LibFunc::fminl:
case LibFunc::floor: case LibFunc::floorf: case LibFunc::floorl:
case LibFunc::nearbyint: case LibFunc::nearbyintf: case LibFunc::nearbyintl:
case LibFunc::ceil: case LibFunc::ceilf: case LibFunc::ceill:
case LibFunc::rint: case LibFunc::rintf: case LibFunc::rintl:
case LibFunc::round: case LibFunc::roundf: case LibFunc::roundl:
case LibFunc::trunc: case LibFunc::truncf: case LibFunc::truncl:
case LibFunc::log2: case LibFunc::log2f: case LibFunc::log2l:
case LibFunc::exp2: case LibFunc::exp2f: case LibFunc::exp2l:
case LibFunc::memcmp: case LibFunc::strcmp: case LibFunc::strcpy:
case LibFunc::stpcpy: case LibFunc::strlen: case LibFunc::strnlen:
case LibFunc::memchr:
return true;
}
return false;
}
StringRef getName(LibFunc::Func F) const {
auto State = Impl->getState(F);
if (State == TargetLibraryInfoImpl::Unavailable)
return StringRef();
if (State == TargetLibraryInfoImpl::StandardName)
return Impl->StandardNames[F];
assert(State == TargetLibraryInfoImpl::CustomName);
return Impl->CustomNames.find(F)->second;
}
/// \brief Handle invalidation from the pass manager.
///
/// If we try to invalidate this info, just return false. It cannot become
/// invalid even if the module changes.
bool invalidate(Module &, const PreservedAnalyses &) { return false; }
};
/// \brief Analysis pass providing the \c TargetLibraryInfo.
///
/// Note that this pass's result cannot be invalidated, it is immutable for the
/// life of the module.
class TargetLibraryAnalysis {
public:
typedef TargetLibraryInfo Result;
/// \brief Opaque, unique identifier for this analysis pass.
static void *ID() { return (void *)&PassID; }
/// \brief Default construct the library analysis.
///
/// This will use the module's triple to construct the library info for that
/// module.
TargetLibraryAnalysis() {}
/// \brief Construct a library analysis with preset info.
///
/// This will directly copy the preset info into the result without
/// consulting the module's triple.
TargetLibraryAnalysis(TargetLibraryInfoImpl PresetInfoImpl)
: PresetInfoImpl(std::move(PresetInfoImpl)) {}
// Move semantics. We spell out the constructors for MSVC.
TargetLibraryAnalysis(TargetLibraryAnalysis &&Arg)
: PresetInfoImpl(std::move(Arg.PresetInfoImpl)), Impls(std::move(Arg.Impls)) {}
TargetLibraryAnalysis &operator=(TargetLibraryAnalysis &&RHS) {
PresetInfoImpl = std::move(RHS.PresetInfoImpl);
Impls = std::move(RHS.Impls);
return *this;
}
TargetLibraryInfo run(Module &M);
TargetLibraryInfo run(Function &F);
/// \brief Provide access to a name for this pass for debugging purposes.
static StringRef name() { return "TargetLibraryAnalysis"; }
private:
static char PassID;
Optional<TargetLibraryInfoImpl> PresetInfoImpl;
StringMap<std::unique_ptr<TargetLibraryInfoImpl>> Impls;
TargetLibraryInfoImpl &lookupInfoImpl(Triple T);
};
class TargetLibraryInfoWrapperPass : public ImmutablePass {
TargetLibraryInfoImpl TLIImpl;
TargetLibraryInfo TLI;
virtual void anchor();
public:
static char ID;
TargetLibraryInfoWrapperPass();
explicit TargetLibraryInfoWrapperPass(const Triple &T);
explicit TargetLibraryInfoWrapperPass(const TargetLibraryInfoImpl &TLI);
TargetLibraryInfo &getTLI() { return TLI; }
const TargetLibraryInfo &getTLI() const { return TLI; }
};
} // end namespace llvm
#endif