llvm-6502/lib/Transforms/Scalar/GVN.cpp
Owen Anderson 3cd8eb314a Revert support for insertvalue and extractvalue instructions for the moment.
GVN expects that all inputs which to an instruction fall somewhere in the value
hierarchy, which isn't true for these.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@52496 91177308-0d34-0410-b5e6-96231b3b80d8
2008-06-19 17:25:39 +00:00

1267 lines
41 KiB
C++

//===- GVN.cpp - Eliminate redundant values and loads ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass performs global value numbering to eliminate fully redundant
// instructions. It also performs simple dead load elimination.
//
// Note that this pass does the value numbering itself, it does not use the
// ValueNumbering analysis passes.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "gvn"
#include "llvm/Transforms/Scalar.h"
#include "llvm/BasicBlock.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/Instructions.h"
#include "llvm/Value.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
using namespace llvm;
STATISTIC(NumGVNInstr, "Number of instructions deleted");
STATISTIC(NumGVNLoad, "Number of loads deleted");
STATISTIC(NumGVNPRE, "Number of instructions PRE'd");
//===----------------------------------------------------------------------===//
// ValueTable Class
//===----------------------------------------------------------------------===//
/// This class holds the mapping between values and value numbers. It is used
/// as an efficient mechanism to determine the expression-wise equivalence of
/// two values.
namespace {
struct VISIBILITY_HIDDEN Expression {
enum ExpressionOpcode { ADD, SUB, MUL, UDIV, SDIV, FDIV, UREM, SREM,
FREM, SHL, LSHR, ASHR, AND, OR, XOR, ICMPEQ,
ICMPNE, ICMPUGT, ICMPUGE, ICMPULT, ICMPULE,
ICMPSGT, ICMPSGE, ICMPSLT, ICMPSLE, FCMPOEQ,
FCMPOGT, FCMPOGE, FCMPOLT, FCMPOLE, FCMPONE,
FCMPORD, FCMPUNO, FCMPUEQ, FCMPUGT, FCMPUGE,
FCMPULT, FCMPULE, FCMPUNE, EXTRACT, INSERT,
SHUFFLE, SELECT, TRUNC, ZEXT, SEXT, FPTOUI,
FPTOSI, UITOFP, SITOFP, FPTRUNC, FPEXT,
PTRTOINT, INTTOPTR, BITCAST, GEP, CALL, CONSTANT,
EMPTY, TOMBSTONE };
ExpressionOpcode opcode;
const Type* type;
uint32_t firstVN;
uint32_t secondVN;
uint32_t thirdVN;
SmallVector<uint32_t, 4> varargs;
Value* function;
Expression() { }
Expression(ExpressionOpcode o) : opcode(o) { }
bool operator==(const Expression &other) const {
if (opcode != other.opcode)
return false;
else if (opcode == EMPTY || opcode == TOMBSTONE)
return true;
else if (type != other.type)
return false;
else if (function != other.function)
return false;
else if (firstVN != other.firstVN)
return false;
else if (secondVN != other.secondVN)
return false;
else if (thirdVN != other.thirdVN)
return false;
else {
if (varargs.size() != other.varargs.size())
return false;
for (size_t i = 0; i < varargs.size(); ++i)
if (varargs[i] != other.varargs[i])
return false;
return true;
}
}
bool operator!=(const Expression &other) const {
if (opcode != other.opcode)
return true;
else if (opcode == EMPTY || opcode == TOMBSTONE)
return false;
else if (type != other.type)
return true;
else if (function != other.function)
return true;
else if (firstVN != other.firstVN)
return true;
else if (secondVN != other.secondVN)
return true;
else if (thirdVN != other.thirdVN)
return true;
else {
if (varargs.size() != other.varargs.size())
return true;
for (size_t i = 0; i < varargs.size(); ++i)
if (varargs[i] != other.varargs[i])
return true;
return false;
}
}
};
class VISIBILITY_HIDDEN ValueTable {
private:
DenseMap<Value*, uint32_t> valueNumbering;
DenseMap<Expression, uint32_t> expressionNumbering;
AliasAnalysis* AA;
MemoryDependenceAnalysis* MD;
DominatorTree* DT;
uint32_t nextValueNumber;
Expression::ExpressionOpcode getOpcode(BinaryOperator* BO);
Expression::ExpressionOpcode getOpcode(CmpInst* C);
Expression::ExpressionOpcode getOpcode(CastInst* C);
Expression create_expression(BinaryOperator* BO);
Expression create_expression(CmpInst* C);
Expression create_expression(ShuffleVectorInst* V);
Expression create_expression(ExtractElementInst* C);
Expression create_expression(InsertElementInst* V);
Expression create_expression(SelectInst* V);
Expression create_expression(CastInst* C);
Expression create_expression(GetElementPtrInst* G);
Expression create_expression(CallInst* C);
Expression create_expression(Constant* C);
public:
ValueTable() : nextValueNumber(1) { }
uint32_t lookup_or_add(Value* V);
uint32_t lookup(Value* V) const;
void add(Value* V, uint32_t num);
void clear();
void erase(Value* v);
unsigned size();
void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
void setDomTree(DominatorTree* D) { DT = D; }
};
}
namespace llvm {
template <> struct DenseMapInfo<Expression> {
static inline Expression getEmptyKey() {
return Expression(Expression::EMPTY);
}
static inline Expression getTombstoneKey() {
return Expression(Expression::TOMBSTONE);
}
static unsigned getHashValue(const Expression e) {
unsigned hash = e.opcode;
hash = e.firstVN + hash * 37;
hash = e.secondVN + hash * 37;
hash = e.thirdVN + hash * 37;
hash = ((unsigned)((uintptr_t)e.type >> 4) ^
(unsigned)((uintptr_t)e.type >> 9)) +
hash * 37;
for (SmallVector<uint32_t, 4>::const_iterator I = e.varargs.begin(),
E = e.varargs.end(); I != E; ++I)
hash = *I + hash * 37;
hash = ((unsigned)((uintptr_t)e.function >> 4) ^
(unsigned)((uintptr_t)e.function >> 9)) +
hash * 37;
return hash;
}
static bool isEqual(const Expression &LHS, const Expression &RHS) {
return LHS == RHS;
}
static bool isPod() { return true; }
};
}
//===----------------------------------------------------------------------===//
// ValueTable Internal Functions
//===----------------------------------------------------------------------===//
Expression::ExpressionOpcode ValueTable::getOpcode(BinaryOperator* BO) {
switch(BO->getOpcode()) {
default: // THIS SHOULD NEVER HAPPEN
assert(0 && "Binary operator with unknown opcode?");
case Instruction::Add: return Expression::ADD;
case Instruction::Sub: return Expression::SUB;
case Instruction::Mul: return Expression::MUL;
case Instruction::UDiv: return Expression::UDIV;
case Instruction::SDiv: return Expression::SDIV;
case Instruction::FDiv: return Expression::FDIV;
case Instruction::URem: return Expression::UREM;
case Instruction::SRem: return Expression::SREM;
case Instruction::FRem: return Expression::FREM;
case Instruction::Shl: return Expression::SHL;
case Instruction::LShr: return Expression::LSHR;
case Instruction::AShr: return Expression::ASHR;
case Instruction::And: return Expression::AND;
case Instruction::Or: return Expression::OR;
case Instruction::Xor: return Expression::XOR;
}
}
Expression::ExpressionOpcode ValueTable::getOpcode(CmpInst* C) {
if (isa<ICmpInst>(C) || isa<VICmpInst>(C)) {
switch (C->getPredicate()) {
default: // THIS SHOULD NEVER HAPPEN
assert(0 && "Comparison with unknown predicate?");
case ICmpInst::ICMP_EQ: return Expression::ICMPEQ;
case ICmpInst::ICMP_NE: return Expression::ICMPNE;
case ICmpInst::ICMP_UGT: return Expression::ICMPUGT;
case ICmpInst::ICMP_UGE: return Expression::ICMPUGE;
case ICmpInst::ICMP_ULT: return Expression::ICMPULT;
case ICmpInst::ICMP_ULE: return Expression::ICMPULE;
case ICmpInst::ICMP_SGT: return Expression::ICMPSGT;
case ICmpInst::ICMP_SGE: return Expression::ICMPSGE;
case ICmpInst::ICMP_SLT: return Expression::ICMPSLT;
case ICmpInst::ICMP_SLE: return Expression::ICMPSLE;
}
}
assert((isa<FCmpInst>(C) || isa<VFCmpInst>(C)) && "Unknown compare");
switch (C->getPredicate()) {
default: // THIS SHOULD NEVER HAPPEN
assert(0 && "Comparison with unknown predicate?");
case FCmpInst::FCMP_OEQ: return Expression::FCMPOEQ;
case FCmpInst::FCMP_OGT: return Expression::FCMPOGT;
case FCmpInst::FCMP_OGE: return Expression::FCMPOGE;
case FCmpInst::FCMP_OLT: return Expression::FCMPOLT;
case FCmpInst::FCMP_OLE: return Expression::FCMPOLE;
case FCmpInst::FCMP_ONE: return Expression::FCMPONE;
case FCmpInst::FCMP_ORD: return Expression::FCMPORD;
case FCmpInst::FCMP_UNO: return Expression::FCMPUNO;
case FCmpInst::FCMP_UEQ: return Expression::FCMPUEQ;
case FCmpInst::FCMP_UGT: return Expression::FCMPUGT;
case FCmpInst::FCMP_UGE: return Expression::FCMPUGE;
case FCmpInst::FCMP_ULT: return Expression::FCMPULT;
case FCmpInst::FCMP_ULE: return Expression::FCMPULE;
case FCmpInst::FCMP_UNE: return Expression::FCMPUNE;
}
}
Expression::ExpressionOpcode ValueTable::getOpcode(CastInst* C) {
switch(C->getOpcode()) {
default: // THIS SHOULD NEVER HAPPEN
assert(0 && "Cast operator with unknown opcode?");
case Instruction::Trunc: return Expression::TRUNC;
case Instruction::ZExt: return Expression::ZEXT;
case Instruction::SExt: return Expression::SEXT;
case Instruction::FPToUI: return Expression::FPTOUI;
case Instruction::FPToSI: return Expression::FPTOSI;
case Instruction::UIToFP: return Expression::UITOFP;
case Instruction::SIToFP: return Expression::SITOFP;
case Instruction::FPTrunc: return Expression::FPTRUNC;
case Instruction::FPExt: return Expression::FPEXT;
case Instruction::PtrToInt: return Expression::PTRTOINT;
case Instruction::IntToPtr: return Expression::INTTOPTR;
case Instruction::BitCast: return Expression::BITCAST;
}
}
Expression ValueTable::create_expression(CallInst* C) {
Expression e;
e.type = C->getType();
e.firstVN = 0;
e.secondVN = 0;
e.thirdVN = 0;
e.function = C->getCalledFunction();
e.opcode = Expression::CALL;
for (CallInst::op_iterator I = C->op_begin()+1, E = C->op_end();
I != E; ++I)
e.varargs.push_back(lookup_or_add(*I));
return e;
}
Expression ValueTable::create_expression(BinaryOperator* BO) {
Expression e;
e.firstVN = lookup_or_add(BO->getOperand(0));
e.secondVN = lookup_or_add(BO->getOperand(1));
e.thirdVN = 0;
e.function = 0;
e.type = BO->getType();
e.opcode = getOpcode(BO);
return e;
}
Expression ValueTable::create_expression(CmpInst* C) {
Expression e;
e.firstVN = lookup_or_add(C->getOperand(0));
e.secondVN = lookup_or_add(C->getOperand(1));
e.thirdVN = 0;
e.function = 0;
e.type = C->getType();
e.opcode = getOpcode(C);
return e;
}
Expression ValueTable::create_expression(CastInst* C) {
Expression e;
e.firstVN = lookup_or_add(C->getOperand(0));
e.secondVN = 0;
e.thirdVN = 0;
e.function = 0;
e.type = C->getType();
e.opcode = getOpcode(C);
return e;
}
Expression ValueTable::create_expression(ShuffleVectorInst* S) {
Expression e;
e.firstVN = lookup_or_add(S->getOperand(0));
e.secondVN = lookup_or_add(S->getOperand(1));
e.thirdVN = lookup_or_add(S->getOperand(2));
e.function = 0;
e.type = S->getType();
e.opcode = Expression::SHUFFLE;
return e;
}
Expression ValueTable::create_expression(ExtractElementInst* E) {
Expression e;
e.firstVN = lookup_or_add(E->getOperand(0));
e.secondVN = lookup_or_add(E->getOperand(1));
e.thirdVN = 0;
e.function = 0;
e.type = E->getType();
e.opcode = Expression::EXTRACT;
return e;
}
Expression ValueTable::create_expression(InsertElementInst* I) {
Expression e;
e.firstVN = lookup_or_add(I->getOperand(0));
e.secondVN = lookup_or_add(I->getOperand(1));
e.thirdVN = lookup_or_add(I->getOperand(2));
e.function = 0;
e.type = I->getType();
e.opcode = Expression::INSERT;
return e;
}
Expression ValueTable::create_expression(SelectInst* I) {
Expression e;
e.firstVN = lookup_or_add(I->getCondition());
e.secondVN = lookup_or_add(I->getTrueValue());
e.thirdVN = lookup_or_add(I->getFalseValue());
e.function = 0;
e.type = I->getType();
e.opcode = Expression::SELECT;
return e;
}
Expression ValueTable::create_expression(GetElementPtrInst* G) {
Expression e;
e.firstVN = lookup_or_add(G->getPointerOperand());
e.secondVN = 0;
e.thirdVN = 0;
e.function = 0;
e.type = G->getType();
e.opcode = Expression::GEP;
for (GetElementPtrInst::op_iterator I = G->idx_begin(), E = G->idx_end();
I != E; ++I)
e.varargs.push_back(lookup_or_add(*I));
return e;
}
//===----------------------------------------------------------------------===//
// ValueTable External Functions
//===----------------------------------------------------------------------===//
/// add - Insert a value into the table with a specified value number.
void ValueTable::add(Value* V, uint32_t num) {
valueNumbering.insert(std::make_pair(V, num));
}
/// lookup_or_add - Returns the value number for the specified value, assigning
/// it a new number if it did not have one before.
uint32_t ValueTable::lookup_or_add(Value* V) {
DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
if (VI != valueNumbering.end())
return VI->second;
if (CallInst* C = dyn_cast<CallInst>(V)) {
if (AA->doesNotAccessMemory(C)) {
Expression e = create_expression(C);
DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
if (EI != expressionNumbering.end()) {
valueNumbering.insert(std::make_pair(V, EI->second));
return EI->second;
} else {
expressionNumbering.insert(std::make_pair(e, nextValueNumber));
valueNumbering.insert(std::make_pair(V, nextValueNumber));
return nextValueNumber++;
}
} else if (AA->onlyReadsMemory(C)) {
Expression e = create_expression(C);
if (expressionNumbering.find(e) == expressionNumbering.end()) {
expressionNumbering.insert(std::make_pair(e, nextValueNumber));
valueNumbering.insert(std::make_pair(V, nextValueNumber));
return nextValueNumber++;
}
Instruction* local_dep = MD->getDependency(C);
if (local_dep == MemoryDependenceAnalysis::None) {
valueNumbering.insert(std::make_pair(V, nextValueNumber));
return nextValueNumber++;
} else if (local_dep != MemoryDependenceAnalysis::NonLocal) {
if (!isa<CallInst>(local_dep)) {
valueNumbering.insert(std::make_pair(V, nextValueNumber));
return nextValueNumber++;
}
CallInst* local_cdep = cast<CallInst>(local_dep);
if (local_cdep->getCalledFunction() != C->getCalledFunction() ||
local_cdep->getNumOperands() != C->getNumOperands()) {
valueNumbering.insert(std::make_pair(V, nextValueNumber));
return nextValueNumber++;
} else if (!C->getCalledFunction()) {
valueNumbering.insert(std::make_pair(V, nextValueNumber));
return nextValueNumber++;
} else {
for (unsigned i = 1; i < C->getNumOperands(); ++i) {
uint32_t c_vn = lookup_or_add(C->getOperand(i));
uint32_t cd_vn = lookup_or_add(local_cdep->getOperand(i));
if (c_vn != cd_vn) {
valueNumbering.insert(std::make_pair(V, nextValueNumber));
return nextValueNumber++;
}
}
uint32_t v = lookup_or_add(local_cdep);
valueNumbering.insert(std::make_pair(V, v));
return v;
}
}
DenseMap<BasicBlock*, Value*> deps;
MD->getNonLocalDependency(C, deps);
CallInst* cdep = 0;
for (DenseMap<BasicBlock*, Value*>::iterator I = deps.begin(),
E = deps.end(); I != E; ++I) {
if (I->second == MemoryDependenceAnalysis::None) {
valueNumbering.insert(std::make_pair(V, nextValueNumber));
return nextValueNumber++;
} else if (I->second != MemoryDependenceAnalysis::NonLocal) {
if (DT->properlyDominates(I->first, C->getParent())) {
if (CallInst* CD = dyn_cast<CallInst>(I->second))
cdep = CD;
else {
valueNumbering.insert(std::make_pair(V, nextValueNumber));
return nextValueNumber++;
}
} else {
valueNumbering.insert(std::make_pair(V, nextValueNumber));
return nextValueNumber++;
}
}
}
if (!cdep) {
valueNumbering.insert(std::make_pair(V, nextValueNumber));
return nextValueNumber++;
}
if (cdep->getCalledFunction() != C->getCalledFunction() ||
cdep->getNumOperands() != C->getNumOperands()) {
valueNumbering.insert(std::make_pair(V, nextValueNumber));
return nextValueNumber++;
} else if (!C->getCalledFunction()) {
valueNumbering.insert(std::make_pair(V, nextValueNumber));
return nextValueNumber++;
} else {
for (unsigned i = 1; i < C->getNumOperands(); ++i) {
uint32_t c_vn = lookup_or_add(C->getOperand(i));
uint32_t cd_vn = lookup_or_add(cdep->getOperand(i));
if (c_vn != cd_vn) {
valueNumbering.insert(std::make_pair(V, nextValueNumber));
return nextValueNumber++;
}
}
uint32_t v = lookup_or_add(cdep);
valueNumbering.insert(std::make_pair(V, v));
return v;
}
} else {
valueNumbering.insert(std::make_pair(V, nextValueNumber));
return nextValueNumber++;
}
} else if (BinaryOperator* BO = dyn_cast<BinaryOperator>(V)) {
Expression e = create_expression(BO);
DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
if (EI != expressionNumbering.end()) {
valueNumbering.insert(std::make_pair(V, EI->second));
return EI->second;
} else {
expressionNumbering.insert(std::make_pair(e, nextValueNumber));
valueNumbering.insert(std::make_pair(V, nextValueNumber));
return nextValueNumber++;
}
} else if (CmpInst* C = dyn_cast<CmpInst>(V)) {
Expression e = create_expression(C);
DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
if (EI != expressionNumbering.end()) {
valueNumbering.insert(std::make_pair(V, EI->second));
return EI->second;
} else {
expressionNumbering.insert(std::make_pair(e, nextValueNumber));
valueNumbering.insert(std::make_pair(V, nextValueNumber));
return nextValueNumber++;
}
} else if (ShuffleVectorInst* U = dyn_cast<ShuffleVectorInst>(V)) {
Expression e = create_expression(U);
DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
if (EI != expressionNumbering.end()) {
valueNumbering.insert(std::make_pair(V, EI->second));
return EI->second;
} else {
expressionNumbering.insert(std::make_pair(e, nextValueNumber));
valueNumbering.insert(std::make_pair(V, nextValueNumber));
return nextValueNumber++;
}
} else if (ExtractElementInst* U = dyn_cast<ExtractElementInst>(V)) {
Expression e = create_expression(U);
DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
if (EI != expressionNumbering.end()) {
valueNumbering.insert(std::make_pair(V, EI->second));
return EI->second;
} else {
expressionNumbering.insert(std::make_pair(e, nextValueNumber));
valueNumbering.insert(std::make_pair(V, nextValueNumber));
return nextValueNumber++;
}
} else if (InsertElementInst* U = dyn_cast<InsertElementInst>(V)) {
Expression e = create_expression(U);
DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
if (EI != expressionNumbering.end()) {
valueNumbering.insert(std::make_pair(V, EI->second));
return EI->second;
} else {
expressionNumbering.insert(std::make_pair(e, nextValueNumber));
valueNumbering.insert(std::make_pair(V, nextValueNumber));
return nextValueNumber++;
}
} else if (SelectInst* U = dyn_cast<SelectInst>(V)) {
Expression e = create_expression(U);
DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
if (EI != expressionNumbering.end()) {
valueNumbering.insert(std::make_pair(V, EI->second));
return EI->second;
} else {
expressionNumbering.insert(std::make_pair(e, nextValueNumber));
valueNumbering.insert(std::make_pair(V, nextValueNumber));
return nextValueNumber++;
}
} else if (CastInst* U = dyn_cast<CastInst>(V)) {
Expression e = create_expression(U);
DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
if (EI != expressionNumbering.end()) {
valueNumbering.insert(std::make_pair(V, EI->second));
return EI->second;
} else {
expressionNumbering.insert(std::make_pair(e, nextValueNumber));
valueNumbering.insert(std::make_pair(V, nextValueNumber));
return nextValueNumber++;
}
} else if (GetElementPtrInst* U = dyn_cast<GetElementPtrInst>(V)) {
Expression e = create_expression(U);
DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
if (EI != expressionNumbering.end()) {
valueNumbering.insert(std::make_pair(V, EI->second));
return EI->second;
} else {
expressionNumbering.insert(std::make_pair(e, nextValueNumber));
valueNumbering.insert(std::make_pair(V, nextValueNumber));
return nextValueNumber++;
}
} else {
valueNumbering.insert(std::make_pair(V, nextValueNumber));
return nextValueNumber++;
}
}
/// lookup - Returns the value number of the specified value. Fails if
/// the value has not yet been numbered.
uint32_t ValueTable::lookup(Value* V) const {
DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
assert(VI != valueNumbering.end() && "Value not numbered?");
return VI->second;
}
/// clear - Remove all entries from the ValueTable
void ValueTable::clear() {
valueNumbering.clear();
expressionNumbering.clear();
nextValueNumber = 1;
}
/// erase - Remove a value from the value numbering
void ValueTable::erase(Value* V) {
valueNumbering.erase(V);
}
//===----------------------------------------------------------------------===//
// GVN Pass
//===----------------------------------------------------------------------===//
namespace llvm {
template<> struct DenseMapInfo<uint32_t> {
static inline uint32_t getEmptyKey() { return ~0; }
static inline uint32_t getTombstoneKey() { return ~0 - 1; }
static unsigned getHashValue(const uint32_t& Val) { return Val * 37; }
static bool isPod() { return true; }
static bool isEqual(const uint32_t& LHS, const uint32_t& RHS) {
return LHS == RHS;
}
};
}
namespace {
class VISIBILITY_HIDDEN GVN : public FunctionPass {
bool runOnFunction(Function &F);
public:
static char ID; // Pass identification, replacement for typeid
GVN() : FunctionPass((intptr_t)&ID) { }
private:
ValueTable VN;
DenseMap<BasicBlock*, DenseMap<uint32_t, Value*> > localAvail;
typedef DenseMap<Value*, SmallPtrSet<Instruction*, 4> > PhiMapType;
PhiMapType phiMap;
// This transformation requires dominator postdominator info
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
AU.addRequired<DominatorTree>();
AU.addRequired<MemoryDependenceAnalysis>();
AU.addRequired<AliasAnalysis>();
AU.addPreserved<AliasAnalysis>();
AU.addPreserved<MemoryDependenceAnalysis>();
}
// Helper fuctions
// FIXME: eliminate or document these better
bool processLoad(LoadInst* L,
DenseMap<Value*, LoadInst*> &lastLoad,
SmallVectorImpl<Instruction*> &toErase);
bool processInstruction(Instruction* I,
DenseMap<Value*, LoadInst*>& lastSeenLoad,
SmallVectorImpl<Instruction*> &toErase);
bool processNonLocalLoad(LoadInst* L,
SmallVectorImpl<Instruction*> &toErase);
bool processBlock(DomTreeNode* DTN);
Value *GetValueForBlock(BasicBlock *BB, LoadInst* orig,
DenseMap<BasicBlock*, Value*> &Phis,
bool top_level = false);
void dump(DenseMap<uint32_t, Value*>& d);
bool iterateOnFunction(Function &F);
Value* CollapsePhi(PHINode* p);
bool isSafeReplacement(PHINode* p, Instruction* inst);
bool performPRE(Function& F);
};
char GVN::ID = 0;
}
// createGVNPass - The public interface to this file...
FunctionPass *llvm::createGVNPass() { return new GVN(); }
static RegisterPass<GVN> X("gvn",
"Global Value Numbering");
void GVN::dump(DenseMap<uint32_t, Value*>& d) {
printf("{\n");
for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
E = d.end(); I != E; ++I) {
printf("%d\n", I->first);
I->second->dump();
}
printf("}\n");
}
Value* GVN::CollapsePhi(PHINode* p) {
DominatorTree &DT = getAnalysis<DominatorTree>();
Value* constVal = p->hasConstantValue();
if (!constVal) return 0;
Instruction* inst = dyn_cast<Instruction>(constVal);
if (!inst)
return constVal;
if (DT.dominates(inst, p))
if (isSafeReplacement(p, inst))
return inst;
return 0;
}
bool GVN::isSafeReplacement(PHINode* p, Instruction* inst) {
if (!isa<PHINode>(inst))
return true;
for (Instruction::use_iterator UI = p->use_begin(), E = p->use_end();
UI != E; ++UI)
if (PHINode* use_phi = dyn_cast<PHINode>(UI))
if (use_phi->getParent() == inst->getParent())
return false;
return true;
}
/// GetValueForBlock - Get the value to use within the specified basic block.
/// available values are in Phis.
Value *GVN::GetValueForBlock(BasicBlock *BB, LoadInst* orig,
DenseMap<BasicBlock*, Value*> &Phis,
bool top_level) {
// If we have already computed this value, return the previously computed val.
DenseMap<BasicBlock*, Value*>::iterator V = Phis.find(BB);
if (V != Phis.end() && !top_level) return V->second;
BasicBlock* singlePred = BB->getSinglePredecessor();
if (singlePred) {
Value *ret = GetValueForBlock(singlePred, orig, Phis);
Phis[BB] = ret;
return ret;
}
// Otherwise, the idom is the loop, so we need to insert a PHI node. Do so
// now, then get values to fill in the incoming values for the PHI.
PHINode *PN = PHINode::Create(orig->getType(), orig->getName()+".rle",
BB->begin());
PN->reserveOperandSpace(std::distance(pred_begin(BB), pred_end(BB)));
if (Phis.count(BB) == 0)
Phis.insert(std::make_pair(BB, PN));
// Fill in the incoming values for the block.
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
Value* val = GetValueForBlock(*PI, orig, Phis);
PN->addIncoming(val, *PI);
}
AliasAnalysis& AA = getAnalysis<AliasAnalysis>();
AA.copyValue(orig, PN);
// Attempt to collapse PHI nodes that are trivially redundant
Value* v = CollapsePhi(PN);
if (!v) {
// Cache our phi construction results
phiMap[orig->getPointerOperand()].insert(PN);
return PN;
}
MemoryDependenceAnalysis& MD = getAnalysis<MemoryDependenceAnalysis>();
MD.removeInstruction(PN);
PN->replaceAllUsesWith(v);
for (DenseMap<BasicBlock*, Value*>::iterator I = Phis.begin(),
E = Phis.end(); I != E; ++I)
if (I->second == PN)
I->second = v;
PN->eraseFromParent();
Phis[BB] = v;
return v;
}
/// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
/// non-local by performing PHI construction.
bool GVN::processNonLocalLoad(LoadInst* L,
SmallVectorImpl<Instruction*> &toErase) {
MemoryDependenceAnalysis& MD = getAnalysis<MemoryDependenceAnalysis>();
// Find the non-local dependencies of the load
DenseMap<BasicBlock*, Value*> deps;
MD.getNonLocalDependency(L, deps);
DenseMap<BasicBlock*, Value*> repl;
// Filter out useless results (non-locals, etc)
for (DenseMap<BasicBlock*, Value*>::iterator I = deps.begin(), E = deps.end();
I != E; ++I) {
if (I->second == MemoryDependenceAnalysis::None)
return false;
if (I->second == MemoryDependenceAnalysis::NonLocal)
continue;
if (StoreInst* S = dyn_cast<StoreInst>(I->second)) {
if (S->getPointerOperand() != L->getPointerOperand())
return false;
repl[I->first] = S->getOperand(0);
} else if (LoadInst* LD = dyn_cast<LoadInst>(I->second)) {
if (LD->getPointerOperand() != L->getPointerOperand())
return false;
repl[I->first] = LD;
} else {
return false;
}
}
// Use cached PHI construction information from previous runs
SmallPtrSet<Instruction*, 4>& p = phiMap[L->getPointerOperand()];
for (SmallPtrSet<Instruction*, 4>::iterator I = p.begin(), E = p.end();
I != E; ++I) {
if ((*I)->getParent() == L->getParent()) {
MD.removeInstruction(L);
L->replaceAllUsesWith(*I);
toErase.push_back(L);
NumGVNLoad++;
return true;
}
repl.insert(std::make_pair((*I)->getParent(), *I));
}
// Perform PHI construction
SmallPtrSet<BasicBlock*, 4> visited;
Value* v = GetValueForBlock(L->getParent(), L, repl, true);
MD.removeInstruction(L);
L->replaceAllUsesWith(v);
toErase.push_back(L);
NumGVNLoad++;
return true;
}
/// processLoad - Attempt to eliminate a load, first by eliminating it
/// locally, and then attempting non-local elimination if that fails.
bool GVN::processLoad(LoadInst *L, DenseMap<Value*, LoadInst*> &lastLoad,
SmallVectorImpl<Instruction*> &toErase) {
if (L->isVolatile()) {
lastLoad[L->getPointerOperand()] = L;
return false;
}
Value* pointer = L->getPointerOperand();
LoadInst*& last = lastLoad[pointer];
// ... to a pointer that has been loaded from before...
MemoryDependenceAnalysis& MD = getAnalysis<MemoryDependenceAnalysis>();
bool removedNonLocal = false;
Instruction* dep = MD.getDependency(L);
if (dep == MemoryDependenceAnalysis::NonLocal &&
L->getParent() != &L->getParent()->getParent()->getEntryBlock()) {
removedNonLocal = processNonLocalLoad(L, toErase);
if (!removedNonLocal)
last = L;
return removedNonLocal;
}
bool deletedLoad = false;
// Walk up the dependency chain until we either find
// a dependency we can use, or we can't walk any further
while (dep != MemoryDependenceAnalysis::None &&
dep != MemoryDependenceAnalysis::NonLocal &&
(isa<LoadInst>(dep) || isa<StoreInst>(dep))) {
// ... that depends on a store ...
if (StoreInst* S = dyn_cast<StoreInst>(dep)) {
if (S->getPointerOperand() == pointer) {
// Remove it!
MD.removeInstruction(L);
L->replaceAllUsesWith(S->getOperand(0));
toErase.push_back(L);
deletedLoad = true;
NumGVNLoad++;
}
// Whether we removed it or not, we can't
// go any further
break;
} else if (!last) {
// If we don't depend on a store, and we haven't
// been loaded before, bail.
break;
} else if (dep == last) {
// Remove it!
MD.removeInstruction(L);
L->replaceAllUsesWith(last);
toErase.push_back(L);
deletedLoad = true;
NumGVNLoad++;
break;
} else {
dep = MD.getDependency(L, dep);
}
}
if (dep != MemoryDependenceAnalysis::None &&
dep != MemoryDependenceAnalysis::NonLocal &&
isa<AllocationInst>(dep)) {
// Check that this load is actually from the
// allocation we found
Value* v = L->getOperand(0);
while (true) {
if (BitCastInst *BC = dyn_cast<BitCastInst>(v))
v = BC->getOperand(0);
else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(v))
v = GEP->getOperand(0);
else
break;
}
if (v == dep) {
// If this load depends directly on an allocation, there isn't
// anything stored there; therefore, we can optimize this load
// to undef.
MD.removeInstruction(L);
L->replaceAllUsesWith(UndefValue::get(L->getType()));
toErase.push_back(L);
deletedLoad = true;
NumGVNLoad++;
}
}
if (!deletedLoad)
last = L;
return deletedLoad;
}
/// processInstruction - When calculating availability, handle an instruction
/// by inserting it into the appropriate sets
bool GVN::processInstruction(Instruction *I,
DenseMap<Value*, LoadInst*> &lastSeenLoad,
SmallVectorImpl<Instruction*> &toErase) {
if (LoadInst* L = dyn_cast<LoadInst>(I)) {
bool changed = processLoad(L, lastSeenLoad, toErase);
if (!changed) {
unsigned num = VN.lookup_or_add(L);
localAvail[I->getParent()].insert(std::make_pair(num, L));
}
return changed;
}
unsigned num = VN.lookup_or_add(I);
// Allocations are always uniquely numbered, so we can save time and memory
// by fast failing them.
if (isa<AllocationInst>(I)) {
localAvail[I->getParent()].insert(std::make_pair(num, I));
return false;
}
// Collapse PHI nodes
if (PHINode* p = dyn_cast<PHINode>(I)) {
Value* constVal = CollapsePhi(p);
if (constVal) {
for (PhiMapType::iterator PI = phiMap.begin(), PE = phiMap.end();
PI != PE; ++PI)
if (PI->second.count(p))
PI->second.erase(p);
p->replaceAllUsesWith(constVal);
toErase.push_back(p);
} else {
localAvail[I->getParent()].insert(std::make_pair(num, I));
}
// Perform value-number based elimination
} else if (localAvail[I->getParent()].count(num)) {
Value* repl = localAvail[I->getParent()][num];
// Remove it!
MemoryDependenceAnalysis& MD = getAnalysis<MemoryDependenceAnalysis>();
MD.removeInstruction(I);
VN.erase(I);
I->replaceAllUsesWith(repl);
toErase.push_back(I);
return true;
} else if (!I->isTerminator()) {
localAvail[I->getParent()].insert(std::make_pair(num, I));
}
return false;
}
// GVN::runOnFunction - This is the main transformation entry point for a
// function.
//
bool GVN::runOnFunction(Function& F) {
VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
VN.setMemDep(&getAnalysis<MemoryDependenceAnalysis>());
VN.setDomTree(&getAnalysis<DominatorTree>());
bool changed = false;
bool shouldContinue = true;
while (shouldContinue) {
shouldContinue = iterateOnFunction(F);
changed |= shouldContinue;
}
return changed;
}
bool GVN::processBlock(DomTreeNode* DTN) {
BasicBlock* BB = DTN->getBlock();
SmallVector<Instruction*, 8> toErase;
DenseMap<Value*, LoadInst*> lastSeenLoad;
bool changed_function = false;
if (DTN->getIDom())
localAvail.insert(std::make_pair(BB,
localAvail[DTN->getIDom()->getBlock()]));
for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
BI != BE;) {
changed_function |= processInstruction(BI, lastSeenLoad, toErase);
if (toErase.empty()) {
++BI;
continue;
}
// If we need some instructions deleted, do it now.
NumGVNInstr += toErase.size();
// Avoid iterator invalidation.
bool AtStart = BI == BB->begin();
if (!AtStart)
--BI;
for (SmallVector<Instruction*, 4>::iterator I = toErase.begin(),
E = toErase.end(); I != E; ++I)
(*I)->eraseFromParent();
if (AtStart)
BI = BB->begin();
else
++BI;
toErase.clear();
}
return changed_function;
}
/// performPRE - Perform a purely local form of PRE that looks for diamond
/// control flow patterns and attempts to perform simple PRE at the join point.
bool GVN::performPRE(Function& F) {
bool changed = false;
for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
BasicBlock* CurrentBlock = *DI;
// Nothing to PRE in the entry block.
if (CurrentBlock == &F.getEntryBlock()) continue;
for (BasicBlock::iterator BI = CurrentBlock->begin(),
BE = CurrentBlock->end(); BI != BE; ) {
if (isa<AllocaInst>(BI) || isa<TerminatorInst>(BI) ||
isa<LoadInst>(BI) || isa<StoreInst>(BI) ||
isa<CallInst>(BI) || isa<PHINode>(BI)) {
BI++;
continue;
}
uint32_t valno = VN.lookup(BI);
// Look for the predecessors for PRE opportunities. We're
// only trying to solve the basic diamond case, where
// a value is computed in the successor and one predecessor,
// but not the other. We also explicitly disallow cases
// where the successor is its own predecessor, because they're
// more complicated to get right.
unsigned numWith = 0;
unsigned numWithout = 0;
BasicBlock* PREPred = 0;
for (pred_iterator PI = pred_begin(CurrentBlock),
PE = pred_end(CurrentBlock); PI != PE; ++PI) {
// We're not interested in PRE where the block is its
// own predecessor.
if (*PI == CurrentBlock)
numWithout = 2;
if (!localAvail[*PI].count(valno)) {
PREPred = *PI;
numWithout++;
} else if (localAvail[*PI][valno] == BI) {
numWithout = 2;
} else {
numWith++;
}
}
// Don't do PRE when it might increase code size, i.e. when
// we would need to insert instructions in more than one pred.
if (numWithout != 1 || numWith == 0) {
BI++;
continue;
}
// Instantiate the expression the in predecessor that lacked it.
// Because we are going top-down through the block, all value numbers
// will be available in the predecessor by the time we need them. Any
// that weren't original present will have been instantiated earlier
// in this loop.
Instruction* PREInstr = BI->clone();
bool success = true;
for (unsigned i = 0; i < BI->getNumOperands(); ++i) {
Value* op = BI->getOperand(i);
if (isa<Argument>(op) || isa<Constant>(op) || isa<GlobalValue>(op))
PREInstr->setOperand(i, op);
else if (!localAvail[PREPred].count(VN.lookup(op))) {
success = false;
break;
} else
PREInstr->setOperand(i, localAvail[PREPred][VN.lookup(op)]);
}
// Fail out if we encounter an operand that is not available in
// the PRE predecessor. This is typically because of loads which
// are not value numbered precisely.
if (!success) {
delete PREInstr;
BI++;
continue;
}
PREInstr->insertBefore(PREPred->getTerminator());
PREInstr->setName(BI->getName() + ".pre");
VN.add(PREInstr, valno);
NumGVNPRE++;
// Update the availability map to include the new instruction.
localAvail[PREPred].insert(std::make_pair(valno, PREInstr));
// Create a PHI to make the value available in this block.
PHINode* Phi = PHINode::Create(BI->getType(),
BI->getName() + ".pre-phi",
CurrentBlock->begin());
for (pred_iterator PI = pred_begin(CurrentBlock),
PE = pred_end(CurrentBlock); PI != PE; ++PI)
Phi->addIncoming(localAvail[*PI][valno], *PI);
VN.add(Phi, valno);
// The newly created PHI completely replaces the old instruction,
// so we need to update the maps to reflect this.
for (DenseMap<BasicBlock*, DenseMap<uint32_t, Value*> >::iterator
UI = localAvail.begin(), UE = localAvail.end(); UI != UE; ++UI)
for (DenseMap<uint32_t, Value*>::iterator UUI = UI->second.begin(),
UUE = UI->second.end(); UUI != UUE; ++UUI)
if (UUI->second == BI)
UUI->second = Phi;
BI->replaceAllUsesWith(Phi);
Instruction* erase = BI;
BI++;
erase->eraseFromParent();
changed = true;
}
}
return changed;
}
// GVN::iterateOnFunction - Executes one iteration of GVN
bool GVN::iterateOnFunction(Function &F) {
// Clean out global sets from any previous functions
VN.clear();
localAvail.clear();
phiMap.clear();
DominatorTree &DT = getAnalysis<DominatorTree>();
// Top-down walk of the dominator tree
bool changed = false;
for (df_iterator<DomTreeNode*> DI = df_begin(DT.getRootNode()),
DE = df_end(DT.getRootNode()); DI != DE; ++DI)
changed |= processBlock(*DI);
changed |= performPRE(F);
return changed;
}